
Ukrainian Mathematical Journal, Vol. 75, No. 11, April, 2024 (Ukrainian Original Vol. 75, No. 11, November, 2023)

FEYNMAN–KAC REPRESENTATION FOR PARABOLIC ANDERSON EQUATIONS
WITH GENERAL GAUSSIAN NOISE

Xia Chen UDC 519.21

We provide the Feynman–Kac representation for the parabolic Anderson equations driven by a general
Gaussian noise. As a feature of the idea, we can mention the argument of subadditivity used to establish
the required exponential integrability.

1. Introduction

Consider a parabolic Anderson equation

@u

@t
(t, x) =

1

2
∆u(t, x) + Ẇ (t, x)u(t, x), (t, x) 2 R+ ⇥ Rd

,

u(0, x) = u0(x), x 2 Rd
,

(1.1)

run by the mean zero and, possibly, a generalized time-space Gaussian noise Ẇ (t, x), (t, x) 2 R ⇥ Rd
, with the

covariance function

Cov
⇣
Ẇ (t, x), Ẇ (s, y)

⌘
= |t− s|−↵0γ(x− y), x, y 2 Rd

, (1.2)

where 0 < ↵0 < 1. Throughout the paper, we assume that γ(·) ≥ 0. With maximal generality, the present
paper allows that γ(·) can be a generalized function defined as a linear functional on S

�
Rd

�
, the set of all rapidly

decreasing functions known as the Schwartz space. Since γ(·) is nonnegative definite as a covariance function,
by Bochner’s theorem, there is a unique measure on Rd known as the spectral measure of γ(·) such that

γ(x) =

Z

Rd

e
i⇠·x

µ(d⇠). (1.3)

Further, µ(d⇠) is tempered in a sense that

Z

Rd

✓
1

1 + |⇠|2

◆
p

µ(d⇠) < 1

for some p > 0. In particular, µ(d⇠) is locally finite.

Department of Mathematics, University of Tennessee, Knoxville, TN, USA; e-mail: xchen3@tennessee.edu.

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, No. 11, pp. 1552–1569, November, 2023. Ukrainian DOI: 10.3842/
umzh.v75i11.7475. Original article submitted February 5, 2023.

1758 0041-5995/24/7511–1758 © 2024 Springer Science+Business Media, LLC

DOI 10.1007/s11253-024-02290-2



FEYNMAN–KAC REPRESENTATION FOR PARABOLIC ANDERSON EQUATIONS WITH GENERAL GAUSSIAN NOISE 1759

The singularity of the system does not make (1.1) a rigorous definition. Mathematically, a random field u(t, x),

(t, x) 2 R+ ⇥ Rd
, is called a weak solution of (1.1) if

Z

Rd

u(t, x)'(x) dx =

Z

Rd

u0(x)'(x) dx+
1

2

tZ

0

Z

Rd

u(s, x)∆'(x) dx ds

+

tZ

0

Z

Rd

u(s, x)'(x)W (ds dx) a.s. (1.4)

for every C
1 -function ' with compact support, where the stochastic integral on the right-hand side is known as

the Stratonovich integral, which is defined as follows:

tZ

0

Z

Rd

v(s, x)W (ds dx)

= lim

✏!0+

tZ

0

Z

Rd

v(s, x)Ẇ✏(t, x) dx ds in probability

(whenever the limit exists) for all random fields v(t, x), (t, x) 2 R+ ⇥ Rd
, satisfying the inequality

tZ

0

Z

Rd

|v(s, x)| dx ds < 1 a.s.

Here, Ẇ✏(t, x) is a smoothed version of Ẇ (t, x) (see relation (2.1) in what follows).
In the case where

Ẇ (t, x) =
@
d+1

W
H(t, x)

@t@x1 . . . @xd
, x = (x1, . . . , xd), (1.5)

is the formal derivative of a fractional Brownian sheet WH(t, x) with the Hurst parameter (H0, . . . , Hd), where
H0 > 1/2 and H1, . . . , Hd ≥ 1/2, it was proved in [7] that, under the condition

2H0 +

dX

j=1

Hj > d+ 1, (1.6)

the random field

u(t, x)

= Ex exp

8
<

:

tZ

0

Ẇ (t− s,Bs) ds

9
=

;u0(Bt), (t, x) 2 R+ ⇥ Rd
, (1.7)

provides a weak solution to the parabolic Anderson equation (1.1). Here Bs is a d-dimensional Brownian motion
starting at x and independent of Ẇ , Ex is the expectation with respect to the Brownian motion, and the time-
integral on the right-hand side is properly defined by the way of approximation [see relation (2.1) in what follows].

In the literature, formula (1.7) is known as the Feynman–Kac representation. For the first time, it appeared
in the setting of deterministic heat equation (see, e.g., Theorem 2.2 in [5, p. 132]) with Ẇ (t, x) replaced by
a deterministic function with sufficient regularity.
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Representation (1.7) has been extended (see Section 6 in [4]) to a class of Gaussian noises with spatial covari-
ance of the homogeneity

γ(cx) = c
−↵

γ(x), x 2 Rd
, c > 0, (1.8)

with 0 < ↵ < 2(1− ↵0).

In the present paper, we solve the parabolic Anderson equation by establishing representation (1.7) for the
Gaussian noise with the general spatial covariance γ(·).

Theorem 1.1. Assume that u0(x) is a bounded and measurable function on Rd and

Z

Rd

✓
1

1 + |⇠|2

◆1−↵0

µ(d⇠) < 1. (1.9)

The random field u(t, x) given in (1.7) is well defined and is a weak solution of the parabolic Anderson equa-
tion (1.1). Further, u(t, x) 2 Lm(⌦,A,P) for all (t, x) 2 R+ ⇥ Rd with the following representation:

Eum(t, x) = Ex exp

8
<

:

mX

j,k=1

tZ

0

tZ

0

γ(Bj(s)−Bk(r))

|s− r|↵0
ds dr

9
=

;

mY

j=1

u0(Bj(t)), (1.10)

where B1(t), . . . , Bm(t) are independent d-dimensional Brownian motions with Bj(0) = x, Ex is the expec-
tation with respect to the Brownian motions, and the time-Hamiltonians on the right-hand side are defined by
an appropriate approximation [see (2.6) and (2.7) in what follows].

For the purpose of comparison, we mention a different regime in which the parabolic Anderson equation (1.1)
is defined by

u(t, x) = (pt ⇤ u0)(x) +
tZ

0

Z

Rd

pt−s(y − x)u(s, y)W (ds dy), (t, x) 2 R+ ⇥ Rd
,

where pt(x) is a Brownian semigroup defined as follows:

pt(x) =
1

(2⇡t)d/2
exp

⇢
− 1

2t
|x|2

�
, (t, x) 2 R+ ⇥ Rd

,

and the stochastic integral on the right-hand side is understood as a Skorokhod integral. In the Skorokhod case, it
was proved (see Theorem 3.6 in [6]) that equation (1.1) has the following solution under the Dalang condition:

Z

Rd

1

1 + |⇠|2 µ(d⇠) < 1. (1.11)

Contrary to (1.11), assumption (1.9) shows that the singularity of the time component (quantified by ↵0 ) of the
Gaussian noise Ẇ (t, x) contributes to the system singularity in the setting of weak solution.
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Assumption (1.9) is necessary when u0(x) = 1 : by (2.5) and (2.8) in what follows, we get,

E⌦ Ex

2

4
tZ

0

Ẇ (t− s,Bs) ds

3

5
2

= E0

tZ

0

tZ

0

γ(B(s)−B(r))

|s− r|↵0
ds dr

=

Z

Rd

µ(d⇠)

tZ

0

tZ

0

|s− r|−↵0 exp

⇢
− |⇠|2

2
|s− r|

�
.

One can check [see the computation next to (2.5) in what follows] that condition (1.9) is equivalent to

E⌦ Ex

2

4
tZ

0

Ẇ (t− s,Bs) ds

3

5
2

< 1 for some t > 0 or, equivalently, for every t > 0.

Hence, condition (1.9) is necessary for the meaningful and integrable expression given by (1.7).
In view of the homogeneity condition (1.8), by virtue of Lemma 3.10 in [3], we get

Z

Rd

✓
1

1 + |⇠|2

◆1−↵0

µ(d⇠) = ↵µ(B(0, 1))

1Z

0

✓
1

1 + ⇢2

◆1−↵0

⇢
↵−1

d⇢.

Since µ(d⇠) is tempered, µ(B(0, 1)) < 1. Therefore, (1.9) holds if and only if ↵ < 2(1− ↵0).

Corollary 1.1. Under assumption (1.8) with 0 < ↵ < 2(1− ↵0), all statements in Theorem 1.1 are true.

As in the special case where Ẇ (t, x) is the fractional Gaussian noise given by (1.5), the homogeneity condi-
tion (1.8) is satisfied with

↵0 = 2− 2H0 and ↵ = 2d− 2

dX

j=1

Hj .

Consequently, (1.6) is equivalent to 0 < ↵ < 2(1− ↵0).

The proof of Theorem 1.1 is given in the next section. We especially mention a striking fact that the exponential
integrability [given by (2.10) below] of the Brownian Hamiltonian

tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr

is determined by its local behavior near t = 0 (Lemma 2.1), and the efficiency of the subadditivity approach used
to prove this fact.

2. Proof of Theorem 1.1

The time-integral in representation (1.7) is defined as follows:

tZ

0

Ẇ (t− s,Bs) ds

= lim

✏!0+

tZ

0

Ẇ✏(t− s,Bs) ds in L2(⌦,A,Px ⌦ P), (2.1)
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where Ẇ✏ is a pointwise-defined Gaussian field Ẇ✏(t, x) given by

Ẇ✏(t, x)

=

Z

Rd+1

Ẇ (u, y)


(2⇡✏)−

d+1
2 exp

⇢
−(t− u)2 + |x− y|2

2✏

��
du dy, (t, x) 2 R+ ⇥ Rd

.

To make it working, it is necessary to show that the limit on the right-hand side exists. To this end, all we need
is to show that the limit

lim
✏,✏0!0+

Ex ⌦ E

0

@
tZ

0

Ẇ✏(t− s,Bs) ds

1

A

0

@
tZ

0

Ẇ✏0(t− s,Bs) ds

1

A

exists.
Note that

Cov (W✏(s, x),W✏(r, y)) = γ0,✏+✏0(s− r)γ✏+✏0(x− y),

where

γ0,✏(u) =

Z

R

1

|v|↵0


1p
2⇡✏

exp

⇢
−(u− v)2

2✏

��
dv, (2.2)

γ✏(x) =

Z

Rd

γ(y)


1

(2⇡✏)d/2
exp

⇢
− |x− y|2

2✏

��
dy. (2.3)

We have

Ex ⌦ E

0

@
tZ

0

Ẇ✏(t− s,Bs) ds

1

A

0

@
tZ

0

Ẇ✏0(t− s,Bs) ds

1

A

= E0

tZ

0

tZ

0

EẆ✏(t− s,Bs)Ẇ✏0(t− r,Br) ds dr

= E0

tZ

0

tZ

0

γ0,✏+✏0(s− r)γ✏+✏0(Bs −Br) ds dr.

We also note that, for any δ > 0, γδ(·) has the spectral measure e
−δ|⇠|2/2

µ(d⇠). Let µ0(dλ) be the spectral
measure of | · |−↵0 (one can easily show that µ0(dλ) is a constant multiple of |λ|−(1−↵0)dλ). Then γ0,δ(·) has the
spectral measure e

−δλ
2
/2
µ0(dλ). By the Fourier transform, we get

tZ

0

tZ

0

γ0,✏+✏0(s− r)γ✏+✏0(Bs −Br) ds dr

=

Z

Rd+1

exp

⇢
−✏+ ✏

0

2

�
λ
2 + |⇠|2

��
������

tZ

0

exp {iλs+ i⇠ ·Bs} ds

������

2

µ0(dλ)µ(d⇠).
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Therefore, by the dominated convergence theorem,

lim
✏,✏0!0+

Ex ⌦ E

0

@
tZ

0

Ẇ✏(t− s,Bs) ds

1

A

0

@
tZ

0

Ẇ✏0(t− s,Bs)ds

1

A

=

Z

Rd+1

E0

������

tZ

0

exp{iλs+ i⇠ ·Bs} ds

������

2

µ0(dλ)µ(d⇠)

provided that

Z

Rd+1

E0

������

tZ

0

exp{iλs+ i⇠ ·Bs} ds

������

2

µ0(dλ)µ(d⇠) < 1 8t > 0. (2.4)

Here, we have used the fact that the integral in (2.4) is independent of the starting point x of the Brownian motion
(and, hence, we take x = 0). Indeed,

Z

Rd+1

E0

������

tZ

0

exp{iλs+ i⇠ ·Bs} ds

������

2

µ0(dλ)µ(d⇠)

=

Z

Rd

µ(d⇠)E0

tZ

0

tZ

0

|s− r|−↵0 exp{i⇠ · (Bs −Br)} ds dr

=

Z

Rd

µ(d⇠)

tZ

0

tZ

0

|s− r|−↵0 exp

⇢
− |⇠|2

2
|s− r|

�
ds dr. (2.5)

Note that the right-hand side is monotonic in t. To establish (2.4), all we need is to prove that

Z

Rd

µ(d⇠)

1Z

0

dte
−t

tZ

0

tZ

0

|s− r|−↵0 exp

⇢
− |⇠|2

2
|s− r|

�
ds dr < 1.

Indeed,

Z

Rd

µ(d⇠)

1Z

0

dte
−t

tZ

0

tZ

0

|s− r|−↵0 exp

⇢
− |⇠|2

2
|s− r|

�
ds dr

= 2

Z

Rd

µ(d⇠)

1Z

0

dte
−t

tZ

0

tZ

r

(s− r)−↵0 exp

⇢
− |⇠|2

2
(s− r)

�
ds dr
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= 2

Z

Rd

µ(d⇠)

1Z

0

t
−↵0 exp

⇢
− |⇠|2

2
t

�
e
−t

dt

= 2

0

@
1Z

0

t
−↵0e

−t
dt

1

A
Z

Rd

✓
1

1 + 2−1|⇠|2

◆1−↵0

µ(d⇠),

where the last step follows from the integration substitution

t 7!
�
1 + 2−1|⇠|2

�−1
t.

In summary, by using condition (1.9) we have proved (2.4) and, therefore, justified the definition in (2.1).
Further, we clarify the time-Hamiltonians in (1.10) by introducing the following definition:

tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr


= lim

✏!0+

tZ

0

tZ

0

γ0,✏(s− r)γ✏(Bs −Br) ds dr in L(⌦,A,Px), (2.6)

tZ

0

tZ

0

γ

⇣
Bs − eBr

⌘

|s− r|↵0
ds dr


= lim

✏!0+

tZ

0

tZ

0

γ0,✏(s− r)γ✏

⇣
Bs − eBr

⌘
ds dr in L(⌦,A,Px) (2.7)

for two independent Brownian motions Bt and eBt, where γ0,✏(·) and γ✏(·) are given by (2.2) and (2.3), respec-
tively.

Once again, we note that the problem is independent of the starting point of Brownian motions, that

tZ

0

tZ

0

γ0,✏(s− r)γ✏(Bs −Br) ds dr

=

Z

Rd+1

������

tZ

0

e
iλs+i⇠·Bs ds

������

2

exp
n
− ✏

2

�
λ
2 + |⇠|2

�o
µ0(dλ)µ(d⇠),

and that

tZ

0

tZ

0

γ0,✏(s− r)γ✏

⇣
Bs − eBr

⌘
ds dr

=

Z

Rd+1

2

4
tZ

0

e
iλs+i⇠·Bs ds

3

5

2

4
tZ

0

e
−iλs−i⇠· eBs ds

3

5exp
n
− ✏

2

�
λ
2 + |⇠|2

�o
µ0(dλ)µ(d⇠).
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Hence, we have

E0

������

tZ

0

tZ

0

γ0,✏(s− r)γ✏(Bs −Br) ds dr −
tZ

0

tZ

0

γ0,✏0(s− r)γ✏0(Bs −Br) ds dr

������


Z

Rd+1

����exp
n
− ✏

2

�
λ
2 + |⇠|2

�o
− exp

⇢
−✏

0

2

�
λ
2 + |⇠|2

������

⇥ E0

������

tZ

0

e
iλs+i⇠·Bs ds

������

2

µ0(dλ)µ(d⇠)

and

E0

������

tZ

0

tZ

0

γ0,✏(s− r)γ✏

⇣
Bs − eBr

⌘
ds dr −

tZ

0

tZ

0

γ0,✏0(s− r)γ✏0
⇣
Bs − eBr

⌘
ds dr

������


Z

Rd+1

����exp
n
− ✏

2

�
λ
2 + |⇠|2

�o
− exp

⇢
−✏

0

2

�
λ
2 + |⇠|2

������

⇥

8
<

:E0

������

tZ

0

e
iλs+i⇠·Bs ds

������

9
=

;

2

µ0(dλ)µ(d⇠).

By (2.4) and dominated convergence, the right-hand sides tend to 0 as ✏, ✏
0 ! 0+. This is the justification

for (2.6) and (2.7). Further, from above argument, we get

tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr =

Z

Rd+1

������

tZ

0

e
iλs+i⇠·Bs ds

������

2

µ0(dλ)µ(d⇠). (2.8)

We now show that the random field u(t, x) in (1.7) is well defined by proving that

E|u(t, x)| < 1 8(t, x) 2 R+ ⇥ Rd
. (2.9)

By assumption, |u0(·)|  C for some constant C > 0. Thus, we obtain

E|u(t, x)|  CE⌦ Ex exp

8
<

:

tZ

0

Ẇ (t− s,Bs) ds

9
=

;

= CE⌦ E0 exp

8
<

:

tZ

0

Ẇ (t− s,Bs) ds

9
=

; .
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From (2.1) and (2.6), we can see that conditioning on the Brownian motion, the random variable

tZ

0

Ẇ (t− s,Bs) ds

is a mean-zero normal with the variance
tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr.

Hence, we get

E exp

8
<

:

tZ

0

Ẇ (t− s,Bs) ds

9
=

; = exp

8
<

:
1

2

tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr

9
=

; a.s.

Therefore, to establish the integrability requested for the definition in (1.7), all we need is the exponential integra-
bility

E0 exp

8
<

:✓

tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr

9
=

; < 1 8✓, t > 0. (2.10)

To this end, we first establish the following lemma:

Lemma 2.1. Under condition (1.9),

lim
t!0+

1

t
E0

Z

Rd+1

������

tZ

0

e
iλs+i⇠·Bs ds

������

2

µ0(dλ)µ(d⇠) = 0. (2.11)

Proof. From (2.5) and variable substitution, we get

E0

Z

Rd+1

������

tZ

0

e
iλs+i⇠·Bs ds

������

2

µ0(dλ)µ(d⇠)

=

Z

Rd

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

|⇠|2tZ

0

1

|s− r|↵0
exp

⇢
−1

2
|s− r|

�
ds dr

=

Z

{|⇠|t−1/2}

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

|⇠|2tZ

0

1

|s− r|↵0
exp

⇢
−1

2
|s− r|

�
ds dr

+

Z

{|⇠|>t−1/2}

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

|⇠|2tZ

0

1

|s− r|↵0
exp

⇢
−1

2
|s− r|

�
ds dr.
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For the first term, we obtain

Z

{|⇠|t−1/2}

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

|⇠|2tZ

0

1

|s− r|↵0
exp

⇢
−1

2
|s− r|

�
ds dr


Z

{|⇠|t−1/2}

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

|⇠|2tZ

0

1

|s− r|↵0
ds dr

=
2t2−↵0

(1− ↵0)(2− ↵0)
µ

⇣
B

⇣
0, t−1/2

⌘⌘
.

According to the Kronecker lemma, (1.9) implies that

lim
t!0+

t
1−↵0µ

⇣
B

⇣
0, t−1/2

⌘⌘
= 0.

As for the second term in our decomposition, we use a simple bound

Z

{|⇠|>t−1/2}

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

|⇠|2tZ

0

1

|s− r|↵0
exp

⇢
−1

2
|s− r|

�
ds dr

 2

Z

{|⇠|>t−1/2}

µ(d⇠)

|⇠|4−2↵0

|⇠|2tZ

0

1Z

r

1

(s− r)↵0
exp

⇢
−1

2
(s− r)

�
ds dr

= 2

0

@
1Z

0

1

s↵0
exp

⇢
−1

2
s

�
ds

1

A t

Z

{|⇠|>t−1/2}

µ(d⇠)

|⇠|2(1−↵0)

and the following obvious fact derived from (1.9):

lim
t!0+

Z

{|⇠|>t−1/2}

µ(d⇠)

|⇠|2(1−↵0)
= 0.

The lemma is proved.

To establish (2.10), we use the subadditivity argument. A stochastic process Zt, t ≥ 0, is said to be sub-
additive if, for any t1, t2 > 0, there exists a random variable Z

0
t2

such that Z 0
t2

d
= Zt1 , Z

0
t2

is independent of
{Zs, s  t1}, and Zt1+t2  Zt1 + Z

0
t2

a.s. An interested reader is referred to Section 1.3 in [1] for the discussion
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on this topic. Specifically, a nonnegative, nondecreasing, and sample-path continuous subadditive process Zt with
Z0 = 0 has the following property ([1, p. 21], (1.3.7)):

P{Zt ≥ a+ b}  P{Zt ≥ a}P{Zt ≥ b} 8a, b, t > 0. (2.12)

We now examine subadditivity for the process

Zt


=

0

@
tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr

1

A
1/2

, t ≥ 0.

Indeed, by (2.8) and the triangle inequality, the subadditivity Zt1+t2  Zt1 + Z
0
t2

holds with

Z
0
t2
=

0

B@
Z

Rd+1

������

t1+t2Z

t1

e
iλs+i⇠·Bs ds

������

2

µ0(dλ)µ(d⇠)

1

CA

1/2

=

0

B@
Z

Rd+1

������

t2Z

0

e
iλs+i⇠·(Bt1+s−Bt1 ) ds

������

2

µ0(dλ)µ(d⇠)

1

CA

1/2

.

Clearly, Z0 = 0 and Zt is nondecreasing. By (2.8), Zt is sample-path continuous [more precisely, relation (2.8)
provides a sample-path continuous modification of Zt ]. Hence, Zt satisfies (2.12).

For any ✓ > 0, by using (2.12) repeatedly, we get

P0

n
Zt ≥ m✓

−1
p
t

o


⇣
P0

n
Zt ≥ ✓

−1
p
t

o⌘
m

, m = 1, 2, . . . .

By Lemma 2.1, (2.8), and Chebyshev’s inequality, there exists a (possibly) small t0 > 0 such that

sup
tt0

P0

n
Zt ≥ ✓

−1
p
t

o
 e

−2
.

Hence,

E0 exp
n
✓Zt/

p
t

o
= 1 +

1Z

0

e
b P0

n
Zt ≥ b✓

−1
p
t

o
db

 1 + e+

1X

m=1

e
m+1 P0

n
Zt ≥ m✓

−1
p
t

o

 1 + e+
1X

m=0

e
m+1

e
−2m =

2e2 − 1

e− 1
< 1

for all 0 < t  t0. Unfortunately, (2.13) is not even close to what is requested by (2.10). To improve this, we first
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note that the above estimation yields the following uniform bound:

E0Z
n

t  2e2 − 1

e− 1
✓
−n

n!tn/2, 0 < t < t0, n = 1, 2, . . . . (2.13)

By subadditivity, for any t1, t2 > 0 and integer n ≥ 1, we have

E0Z
n

t1+t2
 E

⇥
Zt1 + Z

0
t2

⇤
n
=

nX

l=0

 
n

l

!n
EZ l

t1

o n
EZn−l

t2

o
.

For any t > 0 and integer m ≥ 1, repeating the above inequality, we obtain

EZn

t 
X

l1+...+lm=n

n!

l1! . . . lm!

mY

k=1

EZ lk

t/m
=

X

l1+...+lm=n

n!

l1! . . . lm!

mY

k=1

EZ lk

t/m
.

Taking m = n and t  t0, by virtue of (2.13), we get

EZn

t 
X

l1+...+ln=n

n!

l1! . . . ln!

nY

k=1

2e2 − 1

e− 1
✓
−lj lj !

✓
t

n

◆
lj/2

=

 
✓
−1

�
2e2 − 1

�

e− 1

!
n

n!n−n/2
t
n/2

X

l1+...+ln=n

1.

A simple combinatorial argument gives

X

l1+...+ln=n

1 =

 
2n− 1

n

!
 4n.

Thus, we arrive at the following improved version of (2.13):

E0Z
n

t 
 
4✓−1

�
2e2 − 1

�

e− 1

!
np

n!tn/2, 0 < t  t0, n = 1, 2, . . . .

Replacing n with 2n, we get

E0Z
2n
t 

 
4✓−1

�
2e2 − 1

�

e− 1

!2np
(2n)! tn 

 
4
p
2✓−1

�
2e2 − 1

�

e− 1

!2n
n! tn

for any 0 < t  t0 and n = 1, 2, . . . . Consequently, by the Taylor expansion, we have

sup
0<tt0

E0 exp

(✓
(e− 1)✓

8 (2e2 − 1)

◆2
Z

2
t

t

)
< 1. (2.14)
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In addition, we can show that the process

St


=

Z
2
t

t
=

1

t

tZ

0

tZ

0

γ(Bs −Br)

|s− r|↵0
ds dr, t > 0,

is subadditive. Indeed, by (2.8) and Jensen’s inequality, we can establish the subadditivity St1+t2  St1 + S
0
t2
,

where

S
0
t2
=

1

t2

Z

Rd+1

������

t1+t2Z

t1

e
iλs+i⇠·Bs ds

������

2

µ0(dλ)µ(d⇠)

=
1

t2

Z

Rd+1

������

t2Z

0

e
iλs+i⇠·(Bt1+s−Bt1 ) ds

������

2

µ0(dλ)µ(d⇠)

satisfies all requirements for subadditivity.1 Therefore,

E0 exp

(✓
(e− 1)✓

8(2e2 − 1)

◆2

St1+t2

)
 E0 exp

(✓
(e− 1)✓

8 (2e2 − 1)

◆2

St1

)
E0 exp

(✓
(e− 1)✓

8 (2e2 − 1)

◆2

St2

)

for any 0 < t1, t2 < t0. By (2.14), the right-hand side is finite. Therefore, (2.14) can be extended to all t > 0 :

E exp

(✓
(e− 1)✓

8 (2e2 − 1)

◆2

St

)
< 1 8t > 0.

In particular, we take t = 1 and note that ✓ > 0 is arbitrary. Thus, we have reached the conclusion

E0 exp

8
<

:✓

1Z

0

1Z

0

γ(Bs −Br)

|s− r|↵0
ds dr

9
=

; < 1 8✓ > 0.

This can be further extended to (2.10) since [by (2.8)], for any t1, t2 > 0,

t1+t2Z

0

t1+t2Z

0

γ(Bs −Br)

|s− r|↵0
ds dr  2

t1Z

0

t1Z

0

γ(Bs −Br)

|s− r|↵0
ds dr + 2

t2Z

0

t2Z

0

γ

⇣
eBs − eBr

⌘

|s− r|↵0
ds dr

with eB(s) = Bt1+s −Bt1 being a Brownian motion independent of {Bs, s  t1}.
More than (2.9), we now show that, for any integer m ≥ 1, u(t, x) 2 Lm(⌦,A,P) with representation (2.10).

Indeed, conditioning on the Brownian motions, the random variable

mX

j=1

tZ

0

Ẇ (t− s,Bj(s)) ds

1 We do not have (2.12) in this case due to the lack of monotonicity and because St is not defined for t = 0.
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is a mean-zero normal random variable with the following variance:

mX

j,k=1

E

2

4
tZ

0

Ẇ (t− s,Bj(s)) ds

3

5

2

4
tZ

0

Ẇ (t− s,Bk(s)) ds

3

5 .

On the other hand, for any ✏ > 0, we get

E

2

4
tZ

0

Ẇ✏(t− s,Bj(s)) ds

3

5

2

4
tZ

0

Ẇ✏(t− s,Bk(s))ds

3

5

=

tZ

0

tZ

0

γ0,2✏(s− r)γ2✏(Bj(s)−Bk(r)) ds dr.

Therefore, by (2.1), (2.6), and (2.7),

E

2

4
tZ

0

Ẇ (t− s,Bj(s)) ds

3

5

2

4
tZ

0

Ẇ
�
t− s,Bk(s)

�
ds

3

5

=

tZ

0

tZ

0

γ(Bj(s)−Bk(r))

|s− r|↵0
ds dr. (2.15)

Hence, we get

E exp

8
<

:

mX

j=1

tZ

0

Ẇ (t− s,Bj(s)) ds

9
=

; = exp

8
<

:
1

2

mX

j,k=1

tZ

0

tZ

0

γ(Bj(s)−Bk(r))

|s− r|↵0
ds dr

9
=

; .

On the other hand, from (1.9), we obtain

u
m(t, x) = Ex exp

8
<

:

mX

j=1

tZ

0

Ẇ (t− s,Bj(s))ds

9
=

;

mY

j=1

u0(Bj(t)).

By the Fubini theorem,

Eum(t, x) = Ex

0

@E exp

8
<

:

mX

j=1

tZ

0

Ẇ (t− s,Bj(s)) ds

9
=

;

1

A
mY

j=1

u0(Bj(t))

= Ex exp

8
<

:
1

2

mX

j,k=1

tZ

0

tZ

0

γ(Bj(s)−Bk(r))

|s− r|↵0
ds dr

9
=

;

mY

j=1

u0(Bj(t)).

This is (1.10). The integrability issue arising from its right-hand side is resolved by the boundedness of u0(·),
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the relation [from (2.15)] that

tZ

0

tZ

0

γ(Bj(s)−Bk(r))

|s− r|↵0
ds dr  1

2

tZ

0

tZ

0

γ(Bj(s)−Bj(r))

|s− r|↵0
ds dr

+
1

2

tZ

0

tZ

0

γ(Bk(s)−Bk(r))

|s− r|↵0
ds dr, j 6= k,

and (2.10).
We finally come to the step of showing that the random field u(t, x) in (1.7) is a weak solution of the parabolic

Anderson equation (1.1). This was done by Hu, Nualart, and Song (see Theorem 4.3 in [7]) in the setting of
fractional noise. In their proof, system (1.1) is approximated by its smoothed version

@u

@t
(t, x) =

1

2
∆u(t, x) + Ẇ✏(t, x)u(t, x), (t, x) 2 R+ ⇥ Rd

,

u(0, x) = u0(x), x 2 Rd
,

(2.16)

where ✏ > 0 is small but fixed (at least for a while) and Ẇ✏(t, x) is given in (2.1).
To follow Hu–Nualart–Song’s footstep, we set

u✏(t, x) = Ex exp

8
<

:

tZ

0

Ẇ✏(t− s,Bs) ds

9
=

;u0(Bt), (t, x) 2 R+ ⇥ Rd
.

The smoothed Gaussian field Ẇ✏(t, x) has a continuous but unbounded path. As pointed out by the referee,
the unboundedness of Ẇ✏(t, x) turns the legitimacy of u✏(t, x) as a solution of (2.16) into a questionable issue.
On the other hand, the argument used by Hu, Nualart, and Song (the proof of Theorem 4.3 in [7]) requires u✏(t, x)

to be a weak solution of (2.16). That is,

Z

Rd

u✏(t, x)'(x) dx =

Z

Rd

u0(x)'(x) dx+
1

2

tZ

0

Z

Rd

u✏(s, x)∆'(x) dx ds

+

tZ

0

Z

Rd

u✏(s, x)'(x)Ẇ✏(s, y) dy ds a.s. (2.17)

for every C
1 -function ' with compact support. By Lemma 3.1 in what follows (conditionally on Ẇ), rela-

tion (2.17) holds if

Z

D

Ex exp

8
<

:

tZ

0

Ẇ✏(t− s,Bs) ds

9
=

; dx < 1 a.s.,

tZ

0

Z

D

Ex exp

8
<

:

sZ

0

Ẇ✏(s− r,Br) dr

9
=

; dx ds < 1 a.s.

(2.18)

for any bounded D ⇢ Rd and t > 0.
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The first inequality in (2.18) follows from the fact that

E
Z

D

Ex exp

8
<

:

tZ

0

Ẇ✏(t− s,Bs) ds

9
=

; dx

=

Z

D

E0 exp

8
<

:
1

2

tZ

0

tZ

0

γ0,✏(s− r)γ✏(Bs −Br) ds dr

9
=

; dx

= |D|E0 exp

8
<

:
1

2

tZ

0

tZ

0

γ0,✏(s− r)γ✏(Bs −Br) ds dr

9
=

; < 1.

Further computations lead to

E
tZ

0

Z

D

Ex exp

8
<

:

sZ

0

Ẇ✏(s− r,Br) dr

9
=

; dx ds

= |D|
tZ

0

E0 exp

8
<

:
1

2

sZ

0

sZ

0

γ0,✏(r1 − r2)γ✏(Br1 −Br2) dr1 dr2

9
=

; ds

 |D|tE0 exp

8
<

:
1

2

tZ

0

tZ

0

γ0,✏(s− r)γ✏(Bs −Br) ds dr

9
=

; < 1,

where the second step follows from the time-monotonicity of the integrand. Thus, we have proved the second
inequality in (2.18).

Based on the exponential integrability (2.10) and its consequence, on the moment integrability of u(t, x)

given in (1.7), on equation (2.17), and on the square integrability stated in Lemma 2.2 below, an argument by
approximation via the Malliavin calculus given in the proof of Theorem 4.3 in [7] validates the Feynman–Kac
representation (1.7) as a weak solution of (1.1).

Theorem 1.1 is proved.

The following lemma is a generalization of Lemma A.4 in [7] and allows us to follow the argument used in
step 5 of the proof of Theorem 4.3 in [7] {see (4.15) and (4.16) in [7] for its relevance}.

Lemma 2.2. Under assumption (1.9),

E0

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

< 1, t > 0.

Proof. By the monotonicity in time, all we need is to show that

1Z

0

e
−tE0

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

dt < 1. (2.19)
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We write

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

= 2

tZ

0

dr
γ(Br)

r↵0

tZ

r

γ(Bs)

s↵0
ds  2

tZ

0

dr
γ(Br)

r↵0

tZ

r

γ(Bs)

(s− r)↵0
ds.

By the Markov property,

E0

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

 2E0

tZ

0

dr
γ(Br)

r↵0

tZ

r

EBrγ(Bs−r)

(s− r)↵0
ds.

By (1.3), for any x 2 Rd
,

Exγ(Bs−r) = E0γ(x+Bs−r) = E0

Z

Rd

e
i⇠·(x+Bs−r)µ(d⇠)

=

Z

Rd

e
i⇠·x exp

⇢
−1

2
|⇠|2(s− r)

�
µ(d⇠)


Z

Rd

exp

⇢
−1

2
|⇠|2(s− r)

�
µ(d⇠).

Hence,

E0

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

 2

tZ

0

dr
E0γ(Br)

r↵0

tZ

r

ds

(s− r)↵0

Z

Rd

exp

⇢
−1

2
|⇠|2(s− r)

�
µ(d⇠).

Taking the Laplace transform, we get

1Z

0

e
−tE0

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

dt  2

0

@
1Z

0

e
−t

E0γ(Bt)

t↵0
dt

1

A

0

@
1Z

0

dt

t↵0
e
−t

Z

Rd

exp

⇢
−1

2
|⇠|2t

�
µ(d⇠)

1

A .

By using (1.3) once again, we obtain

E0γ(Bt) =

Z

Rd

exp

⇢
−1

2
|⇠|2t

�
µ(d⇠).

Hence, we get

1Z

0

e
−tE0

2

4
tZ

0

γ(Bs)

s↵0
ds

3

5
2

dt  2

0

@
1Z

0

dt

t↵0
e
−t

Z

Rd

exp

⇢
−1

2
|⇠|2t

�
µ(d⇠)

1

A
2

.
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Finally, (2.19) is obtained from the following computation:

1Z

0

dt

t↵0
e
−t

Z

Rd

exp

⇢
−1

2
|⇠|2t

�
µ(d⇠) =

Z

Rd

µ(d⇠)

1Z

0

1

t↵0
exp

⇢
−
✓
1 +

1

2
|⇠|2

◆
t

�
dt

=

0

@
1Z

0

t
−↵0e

−t
dt

1

A
Z

Rd

✓
1 +

1

2
|⇠|2

◆−(1−↵0)

µ(d⇠) < 1.

The lemma is proved.

3. Appendix

Let c(t, x), (t, x) 2 R+ ⇥ Rd
, be a continuous function. Consider the deterministic heat equation

@u

@t
(t, x) =

1

2
∆u(t, x) + c(t, x)u(t, x), (t, x) 2 R+ ⇥ Rd

,

u(0, x) = u0(x), x 2 Rd
.

(3.1)

As earlier, u0(x) is bounded and measurable. We now write the corresponding Feynman–Kac representation

u(t, x) = Ex exp

8
<

:

tZ

0

c(t− s,Bs)ds

9
=

;u0(Bt), (t, x) 2 R+ ⇥ Rd
, (3.2)

whenever the right-hand side of this expression makes sense. It is not clear whether or not u(t, x) in (3.2) is
a path-wise solution of (3.1) if c(t, x) is unbounded on R+ ⇥ Rd

. In the following lemma, we claim that it is at
least a weak solution of (3.1).

Lemma 3.1. Assume that the Feynman–Kac representation in (3.2) is well defined on R+ ⇥ Rd and

Z

D

Ex exp

8
<

:

tZ

0

c(t− s,Bs) ds

9
=

; dx < 1,

tZ

0

Z

D

Ex exp

8
<

:

sZ

0

c(s− r,Br)dr

9
=

; dx ds < 1

(3.3)

for any bounded D ⇢ Rd and t > 0. Then the Feynman–Kac representation u(t, x) in (3.2) is a weak solution
of (3.1) in the sense that

Z

Rd

u(t, x)'(x) dx =

Z

Rd

u0(x)'(x) dx
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+
1

2

tZ

0

Z

Rd

u(s, x)∆'(x) dx ds +

tZ

0

Z

Rd

u(s, x)'(x)c(s, y) dy ds (3.4)

for any C
1 -function ' with compact support.

Proof. For any R > 0, we write DR = {x 2 Rd
, |x| < R}. Consider the heat equation with zero boundary

condition:

@u

@t
(t, x) =

1

2
∆u(t, x) + c(t, x)u(t, x), (t, x) 2 R+ ⇥DR,

u(0, x) = u
R

0 (x), x 2 DR, (3.5)

u(t, @DR) = 0, t 2 R+
,

where u
R

0 (x) is a bounded function supported on DR and such that
��uR0 (x)

��  |u0|(x) and u
R

0 (x) ! u0(x) for
any x 2 Rd as R ! 1.

We set the Brownian exit time as follows:

⌧R = inf{t > 0, Bt 62 DR}.

According to Theorem 2.3 in [5, p. 133], the Feynman–Kac representation

u
R(t, x) = Ex exp

8
<

:

tZ

0

c(t− s,Bs) ds

9
=

;u
R

0 (Bt)1{⌧R≥t}, (t, x) 2 R+ ⇥DR,

is a path-wise solution of (3.5). Given a C
1 -function ' with compact support D, we take sufficiently large R so

that D ⇢ DR. Thus, we get

Z

Rd

u
R(t, x)'(x) dx =

Z

Rd

u
R

0 (x)'(x) dx

+
1

2

tZ

0

Z

Rd

u
R(s, x)∆'(x) dx ds+

tZ

0

Z

Rd

u
R(s, x)'(x)c(s, y) dy ds. (3.6)

Note that uR(t, x) −! u(t, x) pointwise as R ! 1. In addition,

��uR(t, x)
��  ku0k1Ex exp

8
<

:

tZ

0

c(t− s,Bs) ds

9
=

; , (t, x) 2 R+ ⇥ Rd
.

Let R ! 1 in (3.6). In view of assumption (3.3), if we properly apply the dominated convergence theorem
to each term in (3.6), then we get (3.4).

The lemma is proved.
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