Homework # 2

Chapter 18

1, 6, 9, 10, 14, 15

1. Applying Ito-formula to $f(x) = e^x$

$$e^{B_t} - 1 = \int_0^t e^{B_s} dB_s + \frac{1}{2} \int_0^t e^{B_s} ds$$

Or,

$$\int_0^t e^{B_s} dB_s = e^{B_t} - 1 - \frac{1}{2} \int_0^t e^{B_s} ds$$

Applying Ito-formula to $f(x) = e^{x^2}$

$$e^{B_t^2} - 1 = 2\int_0^t B_s e^{B_s^2} dB_s + \int_0^t (1 + 2B_s^2) e^{B_s^2} ds$$

Or

$$\int_0^t B_s e^{B_s^2} dB_s = \frac{1}{2} \left\{ e^{B_t^2} - 1 - \int_0^t (1 + 2B_s^2) e^{B_s^2} ds \right\}$$

A sideremark: The Ito-integral in the second case is extented Ito-integral for $t \ge 1/2$..

6. (a). Nothing more than a integration by parts formula.

(b). Let f(x,y) = xy and consider the 2-dimensional Brownian motion $B_t = (b_t, \beta_t)$. By Ito-formula

$$f(B_t) = \int_0^t \nabla f(B_s) \cdot dB_s + \frac{1}{2} \int_0^t \Delta f(B_s) ds$$

Notice that $\Delta f(x,y) = 0$ and $\nabla f(x,y) = \langle y,x \rangle$. So we have

$$b_t \beta_t = \int_0^t \beta_s db_s + \int_0^t b_s d\beta_s$$

When b_t and β_t are not independent,

$$f(B_t) = \int_0^t \nabla f(B_s) \cdot dB_s + \frac{1}{2} \int_0^t \Delta f(B_s) ds + \int_0^t \frac{\partial^2 f}{\partial x \partial y} (B_s) d\langle b, \beta \rangle_s$$
$$= \int_0^t \beta_s db_s + \int_0^t b_s d\beta_s + \langle b, \beta \rangle_t = \int_0^t \beta_s db_s + \int_0^t b_s d\beta_s + E(b_1 \beta_1) t$$

where the last step follows from

$$\langle b, \beta \rangle_t = \frac{1}{4} \Big\{ \langle b + \beta \rangle_t - \langle b - \beta \rangle_t \Big\} = \frac{1}{4} \Big\{ E(b_1 + \beta_1)^2 t - E(b_1 - \beta_1)^2 t \Big\} = tEb_1\beta_1$$

So

$$\int_0^t b_s d\beta_s = b_t \beta_t - \int_0^t \beta_s db_s - E(b_1 \beta_1)t$$

A side remark. In the extreme case when $b_t = \beta_t$. The above identity becomes:

$$\int_0^t b_s db_s = b_t^2 - \int_0^t b_s db_s - t \text{ or } b_t^2 = 2 \int_0^t b_s db_s + t,$$

a formula we derived before.

9. Applying Ito-formula (Theorem 18.11, p.310) to the function $f(t,x) = e^{t/2} \cos x$

$$X_t = f(t, B_t) = f(0, 0) + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \int_0^t \left\{ \frac{\partial f}{\partial t}(s, B_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, B_s) \right\} ds$$
$$= 1 - \int_0^t e^{s/2} \sin B_s dB_s$$

where the last step follows from

$$\frac{\partial f}{\partial t}(t,x) + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t,x) = 0$$

Applying Ito-formula (Corollary 17.10, p.261) to the function

$$f(t,x) = (x+t)\exp\{-x - t/2\}$$

we have

$$X_t = f(t, B_t) = f(0, 0) + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \int_0^t \left\{ \frac{\partial f}{\partial t}(s, B_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, B_s) \right\} ds$$
$$= \int_0^t (1 - B_s - s) \exp\{-B_s - s/2\} dB_s$$

Remark. Both examples shows that $f(t, B_t)$ is a martingale.

10. (a). By the fact that

$$\left| \frac{b_s}{r_s} \right| \le 1$$
 and $\left| \frac{\beta_s}{r_s} \right| \le 1$

we have

$$E \int_0^t \left| \frac{b_s}{r_s} \right|^2 ds \le t < \infty \text{ and } E \int_0^t \left| \frac{\beta_s}{r_s} \right|^2 ds \le t < \infty$$

Therefore the Ito integrals

$$\int_0^t \frac{b_s}{r_s} db_s \text{ and } \int_0^t \frac{\beta_s}{r_s} d\beta_s$$

are well-defined.

(b). Notice that under the notation $B(t) = (b_t, \beta_t)$,

$$\int_0^t \frac{b_s}{r_s} db_s n t_0^t \frac{b_s}{r_s} db_s + \int_0^t \frac{\beta_s}{r_s} d\beta_s = \int_0^t \frac{B_s}{\|B_s\|} \cdot dB_s$$

is a square integrable and continous martingale with the quadratic variation

$$\left\langle \int_0^{\cdot} \frac{B_s}{\|B_s\|} \cdot dB_s \right\rangle_t = \int_0^t \left\| \frac{B_s}{\|B_s\|} \right\|^2 ds = t$$

Thus, the martingale

$$\int_0^t \frac{B_s}{\|B_s\|} \cdot dB_s \qquad (t \ge 0)$$

is a 1-dimensional Brownian motion.

14. β_t is a square integrable and continuous martingale. To make it a 1-dimensional Brownian motion, all we need is to show $\langle \beta \rangle_t = t$. Indeed,

$$\langle \beta \rangle_t = \int_0^t |\operatorname{sgn}(B_s)|^2 ds = t \quad a.s.$$

15. Set

$$M_t = \int_0^t g(r)dB_r$$

By Ito-formula

$$\Phi(M_t) = \Phi(0) + \int_0^t \Phi'(M_s) dM_s + \frac{1}{2} \int_0^t \Phi''(M_s) d\langle M \rangle_s$$
$$= \int_0^t \Phi'(M_s) g(B_s) dB_s + \frac{1}{2} \int_0^t \Phi''(M_s) g^2(B_s) ds$$

Hence

$$\begin{split} &E\bigg[\bigg(\int_0^t f(B_s)dB_s\bigg)\Phi\bigg(\int_0^t g(r)dB_r\bigg)\bigg]\\ &=E\bigg[\bigg(\int_0^t f(B_s)dB_s\bigg)\bigg(\int_0^t \Phi'(M_s)g(B_s)dB_s\bigg)\bigg]\\ &+\frac{1}{2}E\bigg[\bigg(\int_0^t f(B_s)dB_s\bigg)\bigg(\int_0^t \Phi''(M_s)g^2(B_s)ds\bigg)\bigg] \end{split}$$

For the first term,

$$E\left[\left(\int_0^t f(B_s)dB_s\right)\left(\int_0^t \Phi'(M_s)g(B_s)dB_s\right)\right] = E\int_0^t f(B_s)\Phi'(M_s)g(B_s)ds$$
$$= E\int_0^t f(B_s)g(B_s)\Phi'\left(\int_0^s g(r)dB_r\right)ds$$

As for the second term, it is better to keep it in the current form than writting it as touble integral due to measurability issue.