Homework # 2
Chapter 18
1, 6,9, 10, 14, 15
1. Applying Tto-formula to f(z) = e*
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Applying Ito-formula to f(z) = v
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A sideremark: The Ito-integral in the second case is extented Ito-integral for ¢ > 1/2..

6. (a). Nothing more than a integration by parts formula.

(b). Let f(x,y) = xy and consider the 2-dimensional Brownian motion B; = (b¢, 5;).
By Ito-formula

F(B) = [ V(B -ab.+ 3 [ arBds

Notice that Af(z,y) =0 and Vf(z,y) = (y,x). So we have
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When b; and 3; are not independent,
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where the last step follows from
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So . ,
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A side remark. In the extreme case when b; = (3;. The above identity becomes:
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a formula we derived before.

9. Applying Ito-formula (Theorem 18.11, p.310) to the function f(¢,z) = e'/?cosx
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where the last step follows from
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Applying Ito-formula (Corollary 17.10, p.261) to the function
[t z) = (z+1)exp{—z —1/2}

we have
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Remark. Both examples shows that f(¢, B;) is a martingale.

10. (a). By the fact that

b—s <1 and & <1
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are well-defined.

(b). Notice that under the notation B(t) = (b, 5t),
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is a square integrable and continous martingale with the quadratic variation
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Thus, the martingale

is a 1-dimensional Brownian motion.

14. B is a square integrable and continuous martingale. To make it a 1-dimensional
Brownian motion, all we need is to show (3); = t. Indeed,
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15. Set .
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By Ito-formula
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Hence

For the first term,

K/ /(B dB) /@(Ms)g(Bs)stﬂ ZE/Otf(Bs)q)’(Ms)g(Bs)ds
> / f<Bs>g<Bs><I>'( / ngdBT)dS

As for the second term, it is better to keep it in the current form than writting it as touble
integral due to measurability issue.



