1. Let A, B and C be three events. Prove:
(1). $1_{A \Delta B}=\left|1_{A}-1_{B}\right|$

Proof. Both side equal 0 or $1.1_{A \Delta B}=1$ if and only if $\omega \in A \backslash B$ or $\omega \in B \backslash A$. In either case, there is exactly one of 1_{A} and 1_{B} is one and another is 0 . In either case $\left|1_{A}-1_{B}\right|=1$.
(2). $P(A \Delta C) \leq P(A \Delta B)+P(B \Delta C)$ (triangle inequality).

Proof. By triangle inequality

$$
\left|1_{A}-1_{C}\right|=\left|\left(1_{A}-1_{B}\right)+\left(1_{B}-1_{C}\right)\right| \leq\left|1_{A}-1_{B}\right|+\left|1_{B}-1_{C}\right|
$$

By part (1), it is re-written as $1_{A \Delta C} \leq 1_{A \Delta B}+1_{B \Delta C}$. Hence,

$$
P(A \Delta C) \leq E 1_{A \Delta C} \leq E\left(1_{A \Delta B}+1_{B \Delta C}\right)=E 1_{A \Delta B}+E 1_{B \Delta C}=P(A \Delta B)+P(B \Delta C)
$$

2. In view of Problem 14 in Section 1.6 (p.24), the father-kid matching appears to be a complicated problem. Let X_{n} be the matching number among n fathers and n childrens. Find $E X_{n}$.

Solution. Label the fathers by $1,2, \cdots, n$ according to the time they arrive. Set

$$
Y_{k}= \begin{cases}1 & \text { if the father " } k " \text { picks his child } \\ 0 & \text { otherwise }\end{cases}
$$

Then $X_{n}=Y_{1}+\cdots+Y_{n}$. Set A_{k} as the event that his child has not been picked by other earlier arrived fathers.

$$
P\left\{Y_{k}=1\right\}=P\left(A_{k}\right) P\left\{Y_{k}=1 \mid A_{k}\right\}=\frac{(n-1) \cdots(n-k)}{n \cdots(n-k+1)} \frac{1}{(n-k)}=\frac{n-k}{n} \cdot \frac{1}{n-k}=\frac{1}{n}
$$

Hence,

$$
E Y_{k}=P\left\{X_{k}=1\right\}=\frac{1}{n} \quad k=1, \cdots, n
$$

Thus,

$$
E X_{n}=E\left(Y_{1}+\cdots+Y_{n}\right)=E Y_{1}+\cdots+E Y_{n}=1
$$

3. Let $\left\{A_{n}\right\}_{n \geq 1}$ be a sequence of events such that $P\left(A_{n}\right) \longrightarrow 0$ as $n \rightarrow \infty$. Prove that there is a subsequence $\left\{n_{k}\right\}$ of positive integers such that

$$
P\left\{A_{n_{k}} \text { occurs infinitely often }\right\}=0
$$

Proof. Pick n_{k} such that

$$
\sum_{k=1}^{\infty} P\left(A_{n_{k}}\right)<\infty
$$

Notice

$$
\left\{A_{n_{k}} \text { occurs infinitely often }\right\}=\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_{n_{k}}
$$

By continuity theorem

$$
P\left\{A_{n_{k}} \text { occurs infinitely often }\right\}=P\left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_{n_{k}}\right)=\lim _{m \rightarrow \infty} P\left(\bigcup_{k=m}^{\infty} A_{n_{k}}\right)
$$

By sub-additivity

$$
P\left(\bigcup_{k=m}^{\infty} A_{n_{k}}\right) \leq \sum_{k=m}^{\infty} P\left(A_{n_{k}}\right)
$$

The right hand side converges to 0 as $m \rightarrow \infty$. So we have

$$
P\left\{A_{n_{k}} \text { occurs infinitely often }\right\}=0
$$

4. Sometimes we consider extended random vairable (Line 2, p.26). That is, a random variable is a measurable map $X: \Omega \longrightarrow[-\infty, \infty]$. Under this definition, X is allowed to take $\pm \infty$. Staying with this new definiton, prove that $|X|<\infty$ a.s. if and only if

$$
\lim _{n \rightarrow \infty} P\{|X| \geq n\}=0
$$

Proof. Notice that

$$
\{|X|=\infty\}=\bigcap_{n=1}^{\infty}\{|X| \geq n\}
$$

By continuity theorem,

$$
P\{|X|=\infty\}=P\left(\bigcap_{n=1}^{\infty}\{|X| \geq n\}\right)=\lim _{n \rightarrow \infty} P\{|X| \geq n\}
$$

Hence, $|X|<\infty$ a.s. if and only if the right hand side is equal to 0 .
5. Let X be a non-negative random variable on the probability space (Ω, \mathcal{F}, P) with $E X<\infty$. Let $A \in \mathcal{F}$ be an event such that

$$
P(A \cap\{X \leq x\})=P(A) P\{X \leq x\} \quad \forall x \in \mathbf{R}
$$

Prove that

$$
E X 1_{A}=P(A) E X
$$

Proof. First, for any $a<b$,

$$
\begin{aligned}
& P(A \cap\{a<X \leq b\})=P(A \cap\{X \leq b\})-P(A \cap\{X \leq a\}) \\
& =P(A) P\{X \leq b\}-P(A) P\{P\{X \leq a\}=P(A)(P\{X \leq b\}-P\{X \leq a\}) \\
& =P(A) P\{a<X \leq b\}
\end{aligned}
$$

Define the non-negative simple random variables

$$
X_{n}=\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} 1\left\{\frac{k-1}{2^{n}}<X \leq \frac{k}{2^{n}}\right\} \quad n-1,2, \cdots
$$

Then,

$$
\begin{aligned}
& E X_{n} 1_{A}=\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} E 1\left\{\frac{k-1}{2^{n}}<X \leq \frac{k}{2^{n}}\right\} 1_{A}=\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} P\left(A \cap\left\{\frac{k-1}{2^{n}}<X \leq \frac{k}{2^{n}}\right\}\right) \\
& =\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} P(A) P\left\{\frac{k-1}{2^{n}}<X \leq \frac{k}{2^{n}}\right\}=P(A) \sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} P\left\{\frac{k-1}{2^{n}}<X \leq \frac{k}{2^{n}}\right\} \\
& =P(A) E X_{n}
\end{aligned}
$$

We now let $n \rightarrow \infty$ on the both sides. Notice that $X_{n} \uparrow X$ as $n \rightarrow \infty$. So by the definition of $E X$ for non-negative X,

$$
\lim _{n \rightarrow \infty} E X_{n}=E X
$$

Further, by the fact $Z_{n}=X_{n} 1_{A}$ is non-negative simple simple with $Z_{n} \uparrow X 1_{A}(n \rightarrow \infty)$, we have

$$
\lim _{n \rightarrow \infty} E X_{n} 1_{A}=E X 1_{A}
$$

Another alternative justification for taking the limit $n \rightarrow \infty$ is to apply mononotonic convergence to X_{n} and $X_{n} 1_{A}$ separately.

