
Midterm Exam Math 523 (Fall 2022) Name:

1. Let A, B and C be three events. Prove:

(1). 1A∆B = |1A − 1B |

Proof. Both side equal 0 or 1. 1A∆B = 1 if and only if ω ∈ A \ B or ω ∈ B \ A.
In either case, there is exactly one of 1A and 1B is one and another is 0. In either case
|1A − 1B | = 1.

(2). P (A∆C) ≤ P (A∆B) + P (B∆C) (triangle inequality).

Proof. By triangle inequality

|1A − 1C | = |(1A − 1B) + (1B − 1C)| ≤ |1A − 1B |+ |1B − 1C |

By part (1), it is re-written as 1A∆C ≤ 1A∆B + 1B∆C . Hence,

P (A∆C) ≤ E1A∆C ≤ E(1A∆B + 1B∆C) = E1A∆B + E1B∆C = P (A∆B) + P (B∆C)

2. In view of Problem 14 in Section 1.6 (p.24), the father-kid matching appears to be
a complicated problem. Let Xn be the matching number among n fathers and n childrens.
Find EXn.

Solution. Label the fathers by 1, 2, · · · , n according to the time they arrive. Set

Yk =

{
1 if the father ”k” picks his child

0 otherwise

Then Xn = Y1 + · · ·+ Yn. Set Ak as the event that his child has not been picked by other
earlier arrived fathers.

P{Yk = 1} = P (Ak)P{Yk = 1|Ak} =
(n− 1) · · · (n− k)

n · · · (n− k + 1)

1

(n− k)
=

n− k

n
· 1

n− k
=

1

n

Hence,

EYk = P{Xk = 1} =
1

n
k = 1, · · · , n

Thus,
EXn = E(Y1 + · · ·+ Yn) = EY1 + · · ·+ EYn = 1

3. Let {An}n≥1 be a sequence of events such that P (An) −→ 0 as n → ∞. Prove
that there is a subsequence {nk} of positive integers such that

P
{
Ank

occurs infinitely often
}

= 0



Proof. Pick nk such that
∞∑
k=1

P (Ank
) <∞

Notice {
Ank

occurs infinitely often
}

=
∞⋂

m=1

∞⋃
k=m

Ank

By continuity theorem

P
{
Ank

occurs infinitely often
}

= P
( ∞⋂

m=1

∞⋃
k=m

Ank

)
= lim

m→∞
P
( ∞⋃

k=m

Ank

)
By sub-additivity

P
( ∞⋃

k=m

Ank

)
≤
∞∑

k=m

P (Ank
)

The right hand side converges to 0 as m→∞. So we have

P
{
Ank

occurs infinitely often
}

= 0

4. Sometimes we consider extended random vairable (Line 2, p.26). That is, a random
variable is a measurable map X: Ω −→ [−∞,∞]. Under this definition, X is allowed to
take ±∞. Staying with this new definiton, prove that |X| <∞ a.s. if and only if

lim
n→∞

P{|X| ≥ n} = 0

Proof. Notice that

{|X| =∞} =
∞⋂

n=1

{|X| ≥ n}

By continuity theorem,

P{|X| =∞} = P
( ∞⋂

n=1

{|X| ≥ n}
)

= lim
n→∞

P{|X| ≥ n}

Hence, |X| <∞ a.s. if and only if the right hand side is equal to 0.

5. Let X be a non-negative random variable on the probability space (Ω,F , P ) with
EX <∞. Let A ∈ F be an event such that

P
(
A ∩ {X ≤ x}

)
= P (A)P{X ≤ x} ∀x ∈ R

Prove that
EX1A = P (A)EX



Proof. First, for any a < b,

P
(
A ∩ {a < X ≤ b}

)
= P

(
A ∩ {X ≤ b}

)
− P

(
A ∩ {X ≤ a}

)
= P (A)P{X ≤ b} − P (A)P{P{X ≤ a} = P (A)

(
P{X ≤ b} − P{X ≤ a}

)
= P (A)P{a < X ≤ b}

Define the non-negative simple random variables

Xn =
n2n∑
k=1

k − 1

2n
1{k − 1

2n
< X ≤ k

2n
} n− 1, 2, · · ·

Then,

EXn1A =

n2n∑
k=1

k − 1

2n
E1{k − 1

2n
< X ≤ k

2n
}1A =

n2n∑
k=1

k − 1

2n
P
(
A ∩

{k − 1

2n
< X ≤ k

2n
})

=
n2n∑
k=1

k − 1

2n
P (A)P

{k − 1

2n
< X ≤ k

2n
}

= P (A)
n2n∑
k=1

k − 1

2n
P
{k − 1

2n
< X ≤ k

2n
}

= P (A)EXn

We now let n→∞ on the both sides. Notice thatXn ↑ X as n→∞. So by the definition
of EX for non-negative X,

lim
n→∞

EXn = EX

Further, by the fact Zn = Xn1A is non-negative simple simple with Zn ↑ X1A (n → ∞),
we have

lim
n→∞

EXn1A = EX1A

Another alternative justification for taking the limit n→∞ is to apply mononotonic
convergence to Xn and Xn1A separately.


