Homework \# 4

Section 3.10

2.(a) Write $X^{2}=X^{4 / 3} \cdot X^{2 / 3}$. Take $p=3$ and $q=3 / 2$ in Hölder inequality

$$
1=E X^{2} \leq\left\{E X^{4}\right\}^{1 / 3}\{E|X|\}^{2 / 3}
$$

This leads to the desired inequality.
(b). Assume $E X^{2}=1$. To see how to link the Hölder inequality to our inequality Write $X^{2}=X^{\alpha} X^{\beta}$ and by Hölder inequality

$$
1=E X^{2}=E X^{\alpha} X^{\beta} \leq\left\{E|X|^{p \alpha}\right\}^{1 / p}\left\{E|X|^{q \beta}\right\}^{1 / q}
$$

We make $p \alpha=2 m, q \beta=1, \alpha+\beta=2$ and $p^{-1}+q^{-1}=1$. Solve this system we have

$$
\alpha=\frac{2 m}{2 m-1}, \quad \beta=\frac{2 m-2}{2 m-1}, \quad p=2 m-1 \quad \text { and } \quad q=\frac{2 m-1}{2 m-2}
$$

So we have

$$
1 \leq\left\{E X^{2 m}\right\}^{\frac{1}{2 m-1}}\{E|X|\}^{\frac{2 m-2}{2 m-1}}
$$

Or,

$$
E|X| \geq \frac{1}{\sqrt[2 m-2]{E X^{2 m}}}
$$

5. By Cauchy-Schwartz inequality

$$
E X=E X 1_{\{X<\lambda E X\}}+E X 1_{\{X \geq \lambda E X\}} \leq \lambda E X+\left\{E X^{2}\right\}^{1 / 2}\{P\{X \geq \lambda E X\}\}^{1 / 2}
$$

This leads to

$$
P\{X \geq \lambda E X\} \geq(1-\lambda)^{2} \frac{(E X)^{2}}{E X^{2}}
$$

7 (a). Let $\theta \geq 0$ be a constant.

$$
\begin{aligned}
& P\{X-E X \geq x\}=P\{(X-E X)+\theta \geq x+\theta\} \\
& \quad \leq P\left\{((X-E X)+\theta)^{2} \geq(x+\theta)^{2}\right\} \leq \frac{1}{(x+\theta)^{2}} E((X-E X)+\theta)^{2}
\end{aligned}
$$

where the last step follows from Markov inequality. Notice that

$$
E((X-E X)+\theta)^{2}=E(X-E X)^{2}+2 \theta E(X-E X)+\theta^{2}=\sigma^{2}+\theta^{2}
$$

So we have

$$
P\{X-E X \geq x\} \leq \frac{\sigma^{2}+\theta^{2}}{(x+\theta)^{2}}
$$

Taking $\theta=\sigma^{2} / x$ to minimize the right hand side

$$
P\{X-E X \geq x\} \leq \frac{\sigma^{2}}{x^{2}+\sigma^{2}}
$$

Further,

$$
P\{|X-E X| \geq x\}=P\{X-E X \geq x\}+P\{-(X-E X) \geq x\}
$$

The first term is bounded by $\frac{\sigma^{2}}{x^{2}+\sigma^{2}}$. Replace X by $-X$ in the first inequality,

$$
P\{-(X-E X) \geq x\} \leq \frac{\sigma^{2}}{x^{2}+\sigma^{2}}
$$

In summary,

$$
P\{|X-E X| \geq x\} \leq \frac{2 \sigma^{2}}{x^{2}+\sigma^{2}}
$$

Section 5.14

5. By the assumption $\sup \{x ; F(x)<1\}=\infty$ we have $p_{t}>0$ for all $t>0$. Set $Y_{t}=p_{t} \tau(t)$. Need to show

$$
\lim _{t \rightarrow \infty} F_{Y_{t}}(x)=1-e^{-x} \quad x>0
$$

Let $x>0$ be fixed. Notice that $\tau(t)$ takes positive integer values

$$
\begin{aligned}
& F_{Y_{t}}(x)=P\left\{\tau(t) \leq p_{t}^{-1} x\right\}=P\left\{\tau(t) \leq\left[p_{t}^{-1} x\right]\right\}=P\left\{\max _{1 \leq k \leq\left[p_{t}^{-1} x\right]} X_{k}>t\right\} \\
& =1-P\left\{\max _{1 \leq k \leq\left[p_{t}^{-1} x\right]} X_{k} \leq t\right\}=1-(P\{X \leq t\})^{\left[p_{t}^{-1} x\right]}=1-\left(1-p_{t}\right)^{\left[p_{t}^{-1} x\right]}
\end{aligned}
$$

Notice that $p_{t} \rightarrow 0^{+}$as $t \rightarrow \infty$. So our assertion follows from the fact that

$$
\lim _{t \rightarrow \infty}\left(1-p_{t}\right)^{\left[p_{t}^{-1} x\right]}=e^{-x}
$$

11. By 0-1 law $P\left\{X_{n}\right.$ converges $\}=0$ or 1 . We use argument by contradiction: Assume X_{n} a.s. converges. By 0-1 law again, the limit must be a deterministic constant
$C \in \mathbf{R}$, i.e., $X_{n} \xrightarrow{\text { a.s. }} C$. By the second Borel-Cantelli lemma (Theorem 18.2, p.97) and independence,

$$
\sum_{n=1}^{\infty} P\left\{\left|X_{n}-C\right| \geq \epsilon\right\}<\infty \quad \forall \epsilon>0
$$

Or,

$$
\sum_{n=1}^{\infty} P\left\{\left|X_{1}-C\right| \geq \epsilon\right\}<\infty \quad \forall \epsilon>0
$$

So we must have that $P\left\{\left|X_{1}-C\right| \geq \epsilon\right\}=0$ for every $\epsilon>0$. Hence

$$
P\left\{X_{1} \neq C\right\}=P\left(\bigcup_{k=1}^{n}\left\{\left|X_{1}-C\right| \geq k^{-1}\right\}\right) \leq \sum_{k=1}^{\infty} P\left\{\left|X_{1}-C\right| \geq k^{-1}\right\}=0
$$

That is, $X_{1}=C$ a.s. This contradicts the non-degeneracy assumption.

