Homework 2 (Chapter 2)

Exercises in Chpater 2

1.3. Need to show $\sigma(X)=\sigma\left(X^{-1}((-\infty, x]) ; \quad x \in \mathbf{R}\right)$ The direction of

$$
\sigma(X) \supset \sigma\left(X^{-1}((-\infty, x]) ; \quad x \in \mathbf{R}\right)
$$

is obvious. Need to show the opposite

$$
\sigma(X) \subset \sigma\left(X^{-1}((-\infty, x]) ; \quad x \in \mathbf{R}\right)
$$

Define

$$
\mathcal{E}=\left\{B \subset \mathbf{R} ; \quad X^{-1}(B) \in \sigma\left(X^{-1}((-\infty, x]) ; x \in \mathbf{R}\right)\right\}
$$

All we need is

$$
\mathcal{R} \subset \mathcal{E}
$$

Indeed,

$$
\{(-\infty, x] ; \quad x \in \mathbf{R}\} \subset \mathcal{E}
$$

Next, one can prove that \mathcal{E} is a σ-algebra on \mathbf{R}. Hence

$$
\mathcal{R}=\sigma\{(-\infty, x] ; \quad x \in \mathbf{R}\} \subset \mathcal{E}
$$

Problems in 2.20
2. We fist prove that

$$
\lim _{n \rightarrow \infty} P\{|X| \geq n\}=0
$$

Indeed,

$$
\bigcap_{n=1}^{\infty}\{|X| \geq n\}=\{|X|=\infty\}
$$

Hence

$$
P\left(\bigcap_{n=1}^{\infty}\{|X| \geq n\}\right)=P\{|X|=\infty\}=0
$$

By continuity theorem

$$
\lim _{n \rightarrow \infty} P\{|X| \geq n\}=P\left(\bigcap_{n=1}^{\infty}\{|X| \geq n\}\right)=0
$$

Therefore, there is a integer $N \geq 1$ such that

$$
P\{|X| \geq N\}<\epsilon
$$

Set

$$
X_{\epsilon}=X 1_{\{|X|<N\}}
$$

We have $\left|X_{\epsilon}\right| \leq N$ and

$$
P\left\{X \neq X_{\epsilon}\right\} \leq P\{|X| \geq N\}<\epsilon
$$

4. (a) Since $F(x)-F(x-0)=P\{X=x\}$ for any $x \in \mathbf{R} . P\{X=x\}=0$ whenever $x \notin J_{f}$. In addition

$$
P\{x-h<X \leq x+h\}=F(x+h)-F(x-h) .
$$

Therefore, all we need is to show that for any decresing sequence h_{n} with $h_{n} \rightarrow 0(n \rightarrow \infty)$

$$
\lim _{n \rightarrow \infty} P\left\{x-h_{n}<X \leq x+h_{n}\right\}=P\{X=x\} \quad \forall x \in \mathbf{R}
$$

Indeed,

$$
\bigcap_{n=1}^{\infty}\left\{x-h_{n}<X \leq x+h_{n}\right\}=\{X=x\}
$$

and $\left\{x-h_{n}<X \leq x+h_{n}\right\}$ is a non-increasing sequence. By continuity theorem,

$$
\lim _{n \rightarrow \infty} P\left\{x-h_{n}<X \leq x+h_{n}\right\}=P\left(\bigcap_{n=1}^{\infty}\left\{x-h_{n}<X \leq x+h_{n}\right\}\right)=P\{X=x\}
$$

5 .Notice that X takes integer values.

$$
P(n<X \leq n+m)=\sum_{k=n+1}^{n+m} P(X=k)
$$

Therefore, by Fubini's theorem

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} P(n<X \leq n+m)=\sum_{n=-\infty}^{\infty} \sum_{k=n+1}^{n+m} P(X=k)=\sum_{k=-\infty}^{\infty} \sum_{n=k-m}^{k-1} P(X=k) \\
& =\sum_{k=-\infty}^{\infty} P(X=k) \sum_{n=k-m}^{k-1} 1=m \sum_{k=-\infty}^{\infty} P(X=k)==m
\end{aligned}
$$

8. Assume that

$$
\sum_{n=1}^{\infty} P\left(X_{n}>A\right)=\infty \quad \forall A>0
$$

By Problem 12, p.24,

$$
P\left(\sup _{n \geq 1} X_{n}>A\right)=P\left(\bigcup_{n=1}^{\infty}\left\{X_{n}>A\right\}\right)=1 \quad \forall A>0
$$

Therefore,

$$
P\left(\sup _{n \geq 1} X_{n}=\infty\right)=P\left(\bigcap_{k=1}^{\infty}\left\{\sup _{n \geq 1} X_{n}>k\right\}\right)=1-P\left(\bigcup_{k=1}^{\infty}\left\{\sup _{n \geq 1} X_{n} \leq k\right\}\right)
$$

By sub-additivity,

$$
P\left(\bigcup_{k=1}^{\infty}\left\{\sup _{n \geq 1} X_{n} \leq k\right\}\right) \leq \sum_{k=1}^{\infty} P\left\{\sup _{n \geq 1} X_{n} \leq k\right\}=0
$$

We have

$$
\sup _{n \geq 1} X_{n}=\infty \quad \text { a.s. }
$$

Assume that

$$
\sum_{n=1}^{\infty} P\left(X_{n}>A\right)<\infty \quad \text { for some } A>0
$$

To prove that

$$
\sup _{n \geq 1} X_{n}<\infty \quad \text { a.s. }
$$

All we need is to show

$$
\limsup _{n \rightarrow \infty} X_{n}<\infty \quad \text { a.s. }
$$

Notice that for any $A>0$,

$$
\left\{\limsup _{n \rightarrow \infty} X_{n}>A\right\}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty}\left\{X_{m}>A\right\}
$$

By continuity theorem,

$$
P\left\{\limsup _{n \rightarrow \infty} X_{n}>A\right\}=P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty}\left\{X_{m}>A\right\}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{m=n}^{\infty}\left\{X_{m}>A\right\}\right)
$$

By sub-additivity

$$
P\left(\bigcup_{m=n}^{\infty}\left\{X_{m}>A\right\}\right) \leq \sum_{m=n}^{\infty} P\left\{X_{m}>A\right\} \longrightarrow 0 \quad(n \rightarrow \infty)
$$

for any $A>0$ that make the series converge. In summary, there is a constant $A>0$ such that

$$
P\left\{\limsup _{n \rightarrow \infty} X_{n}>A\right\}=0
$$

Or

$$
\limsup _{n \rightarrow \infty} X_{n} \leq A<\infty \quad \text { a.s. }
$$

