
Homework 1

Problems in 1.6.

4. We need to establish the relations

σ
(
{A1, · · · , An}

)
⊂ σ

(
{B1, · · · , Bn}

)
and σ

(
{A1, · · · , An}

)
⊃ σ

(
{B1, · · · , Bn}

)
Set A0 = φ. By the fact the A1, · · · , An are disjoint, Ak = Bk \ Bk−1 ∈ σ

(
{B1, · · · , Bn}

)
(k = 1, · · ·n). Or, {A1, · · · , An} ⊂ σ

(
{B1, · · · , Bn}

)
. Since σ

(
{A1, · · · , An}

)
is the smallest

σ-algebra that takes {A1, · · · , An} as its sub-class. So we must have

σ
(
{A1, · · · , An}

)
⊂ σ

(
{B1, · · · , Bn}

)
Another direction can be established in a similar way.

5. (a). Indeed, we can prove that for any ε > 0 there is a subsequence {nk} such that

P
( ∞⋂

k=1

Ank

)
≥ 1− ε

By assumption, for each k ≥ 1, there is nk such that

P (Ank
) ≥ 1− 1

2k
ε

Clearly, we can make nk < nk+1 for any k ≥ 1. By Morgan’s law,

P
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}c)
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)
≤
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∞∑
k=1

1

2k
ε = ε

(b). Assume that {An} ⊂ F be an independent sequence with P (An) = α > 0 (you
may think An is the event of “success in game n” in a Bernoulli trial). Then for any nk,

P
( ∞⋂

k=1

Ank

)
=
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P (Ank
) = 0

(c). By continuity theorem (Theorem 3.1, p.11)

P
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An

)
= lim
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P (An) ≥ α

(d). By Morgan’s law

P
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)
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n

)



Notice Ac
n is non-increasing with

P (Ac
n) = 1− P (An) ≥ 1− α

Applying the conclusion of Part (c) to the sequence {Ac
n},
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)
≥ 1− α

So we have

P
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)
≤ α

11. By Morgan’s law and independence,

P
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)
12. By the inequality e−x ≥ 1− x (x > 0) and the identity from Problem 11,
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Assume that
∞∑

n=1

P (An) =∞

By continuity theorem
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13. The problem is to prove
∞⋂

n=1

∞⋃
m=n

Am 6= φ

All we need is to show

λ

( ∞⋂
n=1

∞⋃
m=n

Am

)
≥ η > 0

Indeed, by continuity
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So the conlusion follows from the relation
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)
≥ λ(An) ≥ η


