Homework 1

Problems in 1.6.

4. We need to establish the relations

$$
\sigma\left(\left\{A_{1}, \cdots, A_{n}\right\}\right) \subset \sigma\left(\left\{B_{1}, \cdots, B_{n}\right\}\right) \text { and } \sigma\left(\left\{A_{1}, \cdots, A_{n}\right\}\right) \supset \sigma\left(\left\{B_{1}, \cdots, B_{n}\right\}\right)
$$

Set $A_{0}=\phi$. By the fact the A_{1}, \cdots, A_{n} are disjoint, $A_{k}=B_{k} \backslash B_{k-1} \in \sigma\left(\left\{B_{1}, \cdots, B_{n}\right\}\right)$ $(k=1, \cdots n)$. Or, $\left\{A_{1}, \cdots, A_{n}\right\} \subset \sigma\left(\left\{B_{1}, \cdots, B_{n}\right\}\right)$. Since $\sigma\left(\left\{A_{1}, \cdots, A_{n}\right\}\right)$ is the smallest σ-algebra that takes $\left\{A_{1}, \cdots, A_{n}\right\}$ as its sub-class. So we must have

$$
\sigma\left(\left\{A_{1}, \cdots, A_{n}\right\}\right) \subset \sigma\left(\left\{B_{1}, \cdots, B_{n}\right\}\right)
$$

Another direction can be established in a similar way.
5. (a). Indeed, we can prove that for any $\epsilon>0$ there is a subsequence $\left\{n_{k}\right\}$ such that

$$
P\left(\bigcap_{k=1}^{\infty} A_{n_{k}}\right) \geq 1-\epsilon
$$

By assumption, for each $k \geq 1$, there is n_{k} such that

$$
P\left(A_{n_{k}}\right) \geq 1-\frac{1}{2^{k}} \epsilon
$$

Clearly, we can make $n_{k}<n_{k+1}$ for any $k \geq 1$. By Morgan's law,

$$
P\left(\left\{\bigcap_{k=1}^{\infty} A_{n_{k}}\right\}^{c}\right)=P\left(\bigcup_{k=1}^{\infty} A_{n_{k}}^{c}\right) \leq \sum_{k=1}^{\infty} P\left(A_{n_{k}}\right) \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}} \epsilon=\epsilon
$$

(b). Assume that $\left\{A_{n}\right\} \subset \mathcal{F}$ be an independent sequence with $P\left(A_{n}\right)=\alpha>0$ (you may think A_{n} is the event of "success in game n " in a Bernoulli trial). Then for any n_{k},

$$
P\left(\bigcap_{k=1}^{\infty} A_{n_{k}}\right)=\prod_{k=1}^{\infty} P\left(A_{n_{k}}\right)=0
$$

(c). By continuity theorem (Theorem 3.1, p.11)

$$
P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \geq \alpha
$$

(d). By Morgan's law

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=1-P\left(\bigcap_{n=1}^{\infty} A_{n}^{c}\right)
$$

Notice A_{n}^{c} is non-increasing with

$$
P\left(A_{n}^{c}\right)=1-P\left(A_{n}\right) \geq 1-\alpha
$$

Applying the conclusion of Part (c) to the sequence $\left\{A_{n}^{c}\right\}$,

$$
P\left(\bigcap_{n=1}^{\infty} A_{n}^{c}\right) \geq 1-\alpha
$$

So we have

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \alpha
$$

11. By Morgan's law and independence,
$P\left(\bigcup_{k=1}^{n} A_{k}\right)=1-P\left(\left\{\bigcup_{k=1}^{n} A_{k}\right\}^{c}\right)=1-P\left(\bigcap_{k=1}^{n} A_{k}^{c}\right)=1-\prod_{k=1}^{n} P\left(A_{k}^{c}\right)=1-\prod_{k=1}^{n}\left(1-P\left(A_{k}\right)\right)$
12. By the inequality $e^{-x} \geq 1-x(x>0)$ and the identity from Problem 11,

$$
P\left(\bigcup_{k=1}^{n} A_{k}\right)=1-\prod_{k=1}^{n}\left(1-P\left(A_{k}\right)\right) \geq 1-\prod_{k=1}^{n} \exp \left\{-P\left(A_{k}\right)\right\}=1-\exp \left\{-\sum_{k=1}^{n} P\left(A_{k}\right)\right\}
$$

Assume that

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty
$$

By continuity theorem

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=P\left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} A_{k}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{k=1}^{n} A_{k}\right) \geq 1-\lim _{n \rightarrow \infty} \exp \left\{-\sum_{k=1}^{n} P\left(A_{k}\right)\right\}=1
$$

13. The problem is to prove

$$
\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m} \neq \phi
$$

All we need is to show

$$
\lambda\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}\right) \geq \eta>0
$$

Indeed, by continuity

$$
\lambda\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}\right)=\lim _{n \rightarrow \infty} \lambda\left(\bigcup_{m=n}^{\infty} A_{m}\right)
$$

So the conlusion follows from the relation

$$
\lambda\left(\bigcup_{m=n}^{\infty} A_{m}\right) \geq \lambda\left(A_{n}\right) \geq \eta
$$

