Homework 1

Problems in 1.6.

4. We need to establish the relations

$$\sigma(\{A_1, \cdots, A_n\}) \subset \sigma(\{B_1, \cdots, B_n\}) \text{ and } \sigma(\{A_1, \cdots, A_n\}) \supset \sigma(\{B_1, \cdots, B_n\})$$

Set $A_0 = \phi$. By the fact the A_1, \dots, A_n are disjoint, $A_k = B_k \setminus B_{k-1} \in \sigma(\{B_1, \dots, B_n\})$ $(k = 1, \dots, n)$. Or, $\{A_1, \dots, A_n\} \subset \sigma(\{B_1, \dots, B_n\})$. Since $\sigma(\{A_1, \dots, A_n\})$ is the smallest σ -algebra that takes $\{A_1, \dots, A_n\}$ as its sub-class. So we must have

$$\sigma(\{A_1,\cdots,A_n\}) \subset \sigma(\{B_1,\cdots,B_n\})$$

Another direction can be established in a similar way.

5. (a). Indeed, we can prove that for any $\epsilon > 0$ there is a subsequence $\{n_k\}$ such that

$$P\Big(\bigcap_{k=1}^{\infty} A_{n_k}\Big) \ge 1 - \epsilon$$

By assumption, for each $k \ge 1$, there is n_k such that

$$P(A_{n_k}) \ge 1 - \frac{1}{2^k} \epsilon$$

Clearly, we can make $n_k < n_{k+1}$ for any $k \ge 1$. By Morgan's law,

$$P\left(\left\{\bigcap_{k=1}^{\infty} A_{n_k}\right\}^c\right) = P\left(\bigcup_{k=1}^{\infty} A_{n_k}^c\right) \le \sum_{k=1}^{\infty} P(A_{n_k}) \le \sum_{k=1}^{\infty} \frac{1}{2^k}\epsilon = \epsilon$$

(b). Assume that $\{A_n\} \subset \mathcal{F}$ be an independent sequence with $P(A_n) = \alpha > 0$ (you may think A_n is the event of "success in game n" in a Bernoulli trial). Then for any n_k ,

$$P\Big(\bigcap_{k=1}^{\infty} A_{n_k}\Big) = \prod_{k=1}^{\infty} P(A_{n_k}) = 0$$

(c). By continuity theorem (Theorem 3.1, p.11)

$$P\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} P(A_n) \ge \alpha$$

(d). By Morgan's law

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = 1 - P\Big(\bigcap_{n=1}^{\infty} A_n^c\Big)$$

Notice ${\cal A}_n^c$ is non-increasing with

$$P(A_n^c) = 1 - P(A_n) \ge 1 - \alpha$$

Applying the conclusion of Part (c) to the sequence $\{A_n^c\}$,

$$P\Big(\bigcap_{n=1}^{\infty} A_n^c\Big) \ge 1 - \alpha$$

So we have

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) \le \alpha$$

11. By Morgan's law and independence,

$$P\left(\bigcup_{k=1}^{n} A_{k}\right) = 1 - P\left(\left\{\bigcup_{k=1}^{n} A_{k}\right\}^{c}\right) = 1 - P\left(\bigcap_{k=1}^{n} A_{k}^{c}\right) = 1 - \prod_{k=1}^{n} P(A_{k}^{c}) = 1 - \prod_{k=1}^{n} \left(1 - P(A_{k})\right)$$

12. By the inequality $e^{-x} \ge 1 - x$ (x > 0) and the identity from Problem 11,

$$P\Big(\bigcup_{k=1}^{n} A_k\Big) = 1 - \prod_{k=1}^{n} \left(1 - P(A_k)\right) \ge 1 - \prod_{k=1}^{n} \exp\left\{-P(A_k)\right\} = 1 - \exp\left\{-\sum_{k=1}^{n} P(A_k)\right\}$$

Assume that

$$\sum_{n=1}^{\infty} P(A_n) = \infty$$

By continuity theorem

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = P\Big(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} A_k\Big) = \lim_{n \to \infty} P\Big(\bigcup_{k=1}^{n} A_k\Big) \ge 1 - \lim_{n \to \infty} \exp\Big\{-\sum_{k=1}^{n} P(A_k)\Big\} = 1$$

13. The problem is to prove

$$\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_m\neq\phi$$

All we need is to show

$$\lambda\bigg(\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_m\bigg) \ge \eta > 0$$

Indeed, by continuity

$$\lambda \bigg(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m\bigg) = \lim_{n \to \infty} \lambda \bigg(\bigcup_{m=n}^{\infty} A_m\bigg)$$

So the conlusion follows from the relation

$$\lambda\bigg(\bigcup_{m=n}^{\infty} A_m\bigg) \ge \lambda(A_n) \ge \eta$$