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1974] MATHEMATICAL NOTES 51

Finally we note that a group can satisfy both chain conditions on normal subgroups
and have infinitely many normal subgroups.

THEOREM 4. A group G satisfying both chain conditions on normal subgroups
has infinitely many normal subgroups if and only if there is a normal subgroup N
of G, a group H and a simple H-module A with Auty(A) infinite such that G /N is
an extension of A x A by H inducing the given operation of H on A.

An example of such a group is provided by the semidirect product of
R® @ R® by SO, where R?is Euclidean 3-space and SO, is its group of rotations.

A. W. HALgs: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES,

CALIFORNIA 90024.
R. J. NUNKE: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON

98109.

AUTOMORPHISMS OF p-ADIC NUMBER FIELDS
C. G. WAGNER

In 1933 F. K. Schmidt [4, p. 3] proved a theorem which characterizes those
fields which are complete with respect to at least two non-trivial inequivalent ab-
solute values. A corollary of Schmidt’s theorem states that a field complete with
respect to a discrete absolute value is not complete with respect to an absolute
value inequivalent to the original. An application of this corollary is the following
standard proof of the fact that the identity map is the only automorphism of the
field Q, of p-adic numbers: Let g be an automorphism of @, with p-adic absolute
value ||,, and define an absolute value | |, on @, by |a|, = |g='(@)|, for allxe Q,.
Then Q, is complete with respect to | |,, | |, and | |, agree on @, and ||, = |g(®)
forallae Q,. Since | |, and | |, are equivalent, they agree on Q,,, and so |« |, = | ()
for all xe Q,,. Hence g is continuous and is, thus, the identity map.
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It may be of interest to note that there is an alternative ‘‘elementary’’ proof
that any automorphism of Q, is continuous, based on the fact that such an auto-
morphism must preserve the units of Q,. That this is the case is an obvious conse-
quence of the following algebraic characterization of the units.

THEOREM. Let € Q,. Then |oc|l, = 1 if and only if « has an m-th root in Q,
for all positive integers m prime to p(p—1).

Proof. Sufficiency. Immediate from the fact that the range of | |, is the discrete
set {0,p":neZ}.

Necessity. Since Ioc]p =1, o =ag+ap+ a,p?+ -+, where 0 £ q; < p and
ao # 0. Consider the polynomial f(x) = x™ — a. Since (m,p—1) =1, it follows
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from a well-known fact about power congruences [3, p. 95] that there exists a natural
number a such that 0 <a < p and a" = a,(mod p). Hence | f(a) | » <1 and, since
(m,p) =1 and O0<a<p, |f’(a)|p = |ma'”_1|p = 1. Thus by Newton’s method
[2, p. 52] we may construct a sequence in Q, which converges to a root of f(x).
We remark that Ax and Kochen have proved a more general version of the
preceding theorem as part of their study of formally p-adic fields [1, p. 633].

I wish to thank the referee for calling Schmidt’s paper to my attention.

References

1. J. Ax and S. Kochen, Diophantine problems over local fields, II, Amer. J. Math., 87 (1965)

631-648.
2. G. Bachman, Introduction to p-adic Numbers and Valuation Theory, Academic Press, New

York, 1964.
3. C. Long, Elementary Introduction to Number Theory, Heath, Boston, 1965.
4. F. K. Schmidt, Mehrfach perfekte Korper, Math. Ann., 108 (1933) 1-25.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916.

A POINCARE TYPE COINCIDENCE THEOREM

SIMEON REICH

Let B denote the unit ball of a finite-dimensional Euclidean space E. According
to Brouwer’s fixed point theorem a continuous g: B — B has a fixed point. Let S
denote the boundary of B. Recall that two functions f and g which map a set X
into another set Y are said to have a coincidence if there exists a point x € X such
that f(x) = g(x). Schirmer [3] has established the following interesting coincidence
theorem:

THEOREM 1. Let f and g map B continuously into itself, and suppose that
f(S) = S. Iff| S:S — S is not nullhomotopic, then f and g have a coincidence.

This proposition formally includes Brouwer’s theorem because the identity map
on S is not nullhomotopic. Of course, Brouwer’s theorem is an immediate conse-
quence of this (highly non-trivial) fact [1, p. 341].

Schirmer’s proof is somewhat complicated. In this note we present a very simple
proof of an extension of Theorem 1. It seems to be difficult to obtain this extension
by adapting Schirmer’s arguments. In the sequel, if 0 # x € E, then the point x/ | X |,
which belongs to S, will be denoted by p(x).

THEOREM 2. Let f and g map B continuously into E, and suppose that
f(S) = S. Iff| S:S — S is not nullhomotopic and g(y) # mf(y) for all yeS
and m > 1, then f and g have a coincidence.
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