
 Math 151-2 INTRODUCTION TO MATLAB
 L. J. Gross - August 1995

This is a very basic introduction to the elements of MATLAB that will be used in the early part of this
course. A much more complete description is available for purchase (The Student Edition of
MATLAB for MS-DOS or the version for Windows), however as part of this course you may install
either of these versions on a computer you use, as long as you sign an agreement that you will delete
it at the end of the course. To get a copy, bring an appropriate number of high density DOS-formatted
diskettes (one for DOS version, 4 for the Windows version) to the Math Lab and the assistants there
will aid you in getting a copy. You must take along a signed agreement form, obtained from your
instructor, to get this. Note that we cannot supply a Macintosh version of MATLAB. There is also
extensive documentation on MATLAB available through the UTK MathArchives site at
http://archives.math.utk.edu/matlab.html/ or see the tutorial located at
http://www.math.utah.edu/lab/ms/matlab/matlab.html/

MATLAB is a mathematics package that allows you to easily solve many of the quantitative problems
that arise in the life sciences. This document briefly describes some of the key elements in using
MATLAB to (i) do descriptive statistics; (ii) matrix algebra; (iii) probability, and (iv) discrete
difference equations. These are all topics that will be covered in detail in the course and this document
is designed to just aid you in solving problems in these areas using MATLAB. Note that the files
referred to here as .m files are all available in the Mathematics Lab in directory
W:\MATH\MATH151\MFILES
A brief description of these files is given at the end of this document.

DESCRIPTIVE STATISTICS, REGRESSION, and CURVE FITTING:
Handling lists of data:
In many laboratory and field experiments, you collect lists of data associated with measurements of
experimental outcomes. Typically, the ordering of the data matters in that it makes a difference as
to what measurement is made first, second, etc. For example, if you are measuring leaf lengths and
widths, you would want to maintain the order in which you collected the data so that you know what
length to associate with what width. We do this mathematically by putting the data in a list in which
the order matters - we call such a list a "vector". Suppose we have the following data:
 Student number: 1 2 3 4 5 6
 grade : 60 80 100 90 70 10
In MATLAB you type:
 SNUMBER=[1 2 3 4 5 6]
and MATLAB will then print out:
SNUMBER =
 1 2 3 4 5 6
then you type:
 SGRADE=[60 80 100 90 70 10]
and MATLAB will print out:

SGRADE =
 60 80 100 90 70 10
Then the vector SNUMBER contains the number of each student and the vector SGRADE contains
the grade of the corresponding student. We can then use a variety of MATLAB commands to make
calculations from these data. For example, if we want to find the arithmetic mean value of the above
grades then all we have to do is type:
 m=mean(SGRADE)
and MATLAB will print out:
m =
 68.3333
If we want to find the standard deviation of the grades then we type:
 sdev=std(SGRADE)
and MATLAB will print out:
sdev =
 31.8852

NOTE: MATLAB is case sensitive (i.e small or capital letters make a difference - so be careful). Note
as well that certain names in MATLAB are reserved for its use - so you would not want to name
a variable "mean" or "std" - the program will not allow this.

In both the above cases, MATLAB has now assigned the above numerical values to the variables m
and sdev, and you can use MATLAB to make any standard calculations using these - for example to
square m and subtract 3 times sdev type:
 m^2 - 3*sdev
and MATLAB will print out:
ans =
 4.5738e+03
You can use all the standard mathematical operators: + - * / ^

We have learned so far how to set up our data in vectors on MATLAB and how to do some simple
statistics commands. Now we are going to see how we can do a linear regression using our data.
Another example: Here are some data of length and width of Acer saccharum leaves
 Length: 57 95 61 110 85 80 78 112 87 112
 Width : 70 105 78 120 99 89 99 125 105 123
let us store our data in vectors :
 L=[57 95 61 110 85 80 78 112 87 112]
 W=[70 105 78 120 99 89 99 125 105 123]
If we want the histogram of the length we type in:
 hist(L) and hit the return key and you will see the following histogram.

To plot these points, with length on the horizontal axis and width on the vertical axis, using a + symbol
for each of the data points we type in:
 plot(L,W,’+’) then hit enter and you will see the following graph:

50 60 70 80 90 100 110 120
70

80

90

100

110

120

130

50
�

60
�

70
�

80
�

90
�

100 110 120
0

�

0.5
�

1

1.5

2

2.5
�

3
�

Let us do a linear regression for the above data. We first calculate the regression coefficients:
 C=polyfit(L,W,1) hit the return key and you will see
C =
 0.9162 20.9460
This means that MATLAB has created a vector C=[0.9162 20.9460] with the first number in C being
the slope and the second number in C being the y-intercept of the regression line. To graph the above
line we need to find at least two values for the polynomial P(L)=0.9162*L+20.9460 corresponding to
any two values of L. Here P(L) is the equation of the line with slope and y-intercept given by C.
Let us for example choose the following two values of L: 57 112 and let us store them in a vector in
MATLAB:
 LTEMP=[57 112]
Then to find the values of P(L) that correspond to those numbers we use the following command:
 Y=polyval(C,LTEMP)
then type in:
 plot(LTEMP,Y,L,W,’+’) hit enter and you will see the following graph.

If we need to fit a higher degree polynomial to our data we change the number 1 to the degree of the
polynomial we need - in general the command is polyfit(L,W,n) where n is the degree of the
polynomial. For example, to fit a quadratic equation to a set of points, you would use polyfit(L,W,2).

Saving data in MATLAB:
Before quiting MATLAB make sure that you save the data you need for future use. For example

50
�

60 70 80
	

90

100 110 120
70
�

80
	

90

100

110

120

130

suppose we want to save the data L and W. Then place a floppy in the drive a: and type in the
following:
 save a:math151.dat L W
then hit enter. This will save our data in a file called math151.dat on a floppy, then to quit MATLAB
type in:
 quit
In the future when you start MATLAB again, if you need to use the data L , W that are stored in the
file math151.dat you need to load this file first. To do that place your floppy that contains the data from
last time in drive a: and type in the following:
 load a:math151.dat
then hit enter. To see L or W you just type in L or W and hit enter, then you will see the data in L or
W. Note that if the computer you are using has a b: drive you are using for the floppy, replace a: above
with b: At any time you can see what variables MATLAB has stored by typing who

Using .m files:
MATLAB allows you to save sets of commands so that you don’t have to retype them if you want to
apply the commands to several different data sets. For example, you may want to look at histograms
of leaf length and width using leaf data from several different species of trees. The sets of MATLAB
commands are saved as files with a .m extension, and may be executed when you are in MATLAB by
just typing the name of the file, without including the .m Many of the .m files used in this course are
in the the Mathematics Lab in directory w:\math\math151\mfiles
For example, the below file is called lesson1.m - to use it you would first load in a file of leaf length
and width data that you have saved on a floppy by typing:
 load a:leafstat.dat
and then to run the program that is also on your floppy you type:
 !a:
 lesson1
where lesson1.m is the below file saved on your floppy.
Alternatively, in the Math Lab you can type
 !cd w:\math\math151\mfiles
 lesson1

%Lesson 1 - Math 151
%First read in leaf length and width data from a file
%which contains the data in the variables l and w
% load a:leafstat.dat
%if the file is on a floppy in the a: drive
%Then read in a command file that is
%this file of commands for MATLAB which you have
%saved in a file called lesson1.m on your floppy.
%First tell MATLAB to use the a: drive
% !a:
%then tell it to run lesson1

% lesson1
%If the file lesson1.m is not on your floppy but
%rather is on the Math Lab computer, use instead
% !cd w:\math\math151\mfiles
%and then type lesson1
%
who,pause
!c:
plot(l,w,’+w’)
title(’l versus w’),pause
hist(l)
title(’l’),pause
hist(w)
title(’w’),pause
meanl=mean(l),meanw=mean(w),pause
plot(l,w,’+w’,mean(l),mean(w),’or’)
title(’l versus w with mean’),pause
stdl=std(l),stdw=std(w),pause

The above program does the following after you have loaded in the file of leaf data. It pauses after each
action and waits until you hit the return key.:
Plot the data
Show a histogram of l
Show a histogram of w
Compute the means of l and w
Plot the means of l and w as a point along with the data
Compute the standard deviations of l and w

MATRICES IN MATLAB:
Defining a Matrix:
By now everybody has at least entered once a set of data into MATLAB. In a similar way we can
define a set of data that has more than one row which we call a matrix. You can think of a matrix
as just a table of numbers, in which the position of a number in the table does matter.
Example: suppose we have the following matrix

 to define this matrix in MATLAB type in:
 M=[2 1;3 4]
(make sure that each row except the last ends up with a ;) then hit return and you will see the following:
 M= 2 1
 3 4

M =
h i
2 1
3 4

Suppose you want to form another matrix :

 then we type in:
 B=[1 3 2;1 5 0]
(notice again that each row but the last ends up with a ;) hit the return key and you will see the
following:
 B= 1 3 2
 1 5 0

Saving Your Matrix:
Suppose we had to quit MATLAB and go home but we want to use the above matrices later. First
insert a floppy in drive a: and type in the following
 save a:filename M B
for example:
 save a:test M B
then hit return and your matrices M and B will be saved on your floppy in the file called test. The next
time you need to use these matrices you start MATLAB and you insert your floppy in a: and type in:
 load a:test
hit return and this will load your file test into MATLAB. To actually see one of the above two matrices
(for example to see M) type in:
 M
hit return and you will see the following:
M= 2 1
 3 4

Matrix Operations:
Most algebraic operations work on matrices in MATLAB just as they do on scalar quantities (e.g.
single numbers). Type in:
 C=M+M
then hit enter and you will see the following:
C=4 2
 6 8
which is obtained by adding each element of M to itself. The same thing can be achieved by multiply-
ing each element of M by 2, this can be done by typing in the following:
 C=2*M
then hit enter you will see the same thing as above. To do matrix multiplication, type
 D=M*B
hit enter and you will see that D contains the multiplication of M with B i.e:
D= 3 11 4
 7 29 6
similarly if we type in :

B =
h i
1 3 2
1 5 0

 E=M-C
then E will contain the subtraction of each element of C from the corresponding element of M:
E= -2 -1
 -3 -4

Finding Eigenvalues and Eigenvectors of a Matrix:
To find the eigenvalues and eigenvectors of the matrix M we type in the following:
 [evec,eval]=eig(M)
hit return and you will see the following:
evec= -0.7071 -0.3162
 0.7071 -0.9487

eval= 1 0
 0 5
where each column of evec is an eigenvector of M and each diagonal element of eval is an eigenvalue
of M. (Note: the names evec and eval are optional - you can choose any names you like instead of
these).

Creating a .m file:
Instead of typing everything in MATLAB as we did above we could have created the following file in
any editor which does exactly what we did above:

!c:
M=[2 1;3 4]
B=[1 3 2;1 5 0]
save a:test M B % make sure you have floppy in drive a:
C=M+M
C=2*M
D=M*B
E=M-C
[evec,eval]=eig(M)

then save the above file as filename.m, for example go.m Then when you are in MATLAB and your
floppy is in drive a: type in:
!a:
go
when you hit enter you will see all the above commands being executed.
Note: if your drive is called b: switch all a: above with b:

Help:
Help is available on any command of MATLAB and it is very useful, for example if you type in:
 help eig

and hit return you will see all explanations you need on how to use the eig command. So if you are not
sure on how to use a command in MATLAB use the help command for a brief explanation.

Note: Suppose A is an n x m matrix. How can we extract a column or a row form A and store it in a
vector x?
example: let A= 1 0 5 4
 2 8 8 9
 1 0 1 9
Suppose we want a vector x to contain the second row of A, then type in:
 x=A(2,:)
hit enter and you will see:
x= 2 8 8 9
if we want x to contain the second column type in :
 x=A(:,2)
hit return you will see:
x= 0 8 0
The above command might be used when you have a matrix of data and say each column represents
the grades of a test for each student - thus the rows correspond to different students and the columns
correspond to different tests. If you want the mean for the class of only the first test then you will need
the data in the first column only, so you’ll need to use the above command to put the first column in a
vector. Similarly, you could put the first row of the matrix in a vector, and the mean of it would give
that students average on all exams.

USING MATLAB TO CALCULATE PROBABILITIES BY SIMULATION:
You can use MATLAB to simulate coin tosses, dice tosses, card games, and so on through the use of
its built-in function rand. The function rand numerically generates random numbers coming from one
of several distributions.The simplest one is a uniform distribution - you can think of this as tossing a
dart at a line segment from 0 to 1, with the dart being equally likely to hit any point in the interval [0,1].
This is easy to use to simulate coin tosses by setting the probability of getting a head to be p, calling
the function rand, and if rand gives a number less than p, a head is said to occur, while if rand gives a
number greater than p then a tail is said to occur. An exactly similar method applies to tossing a single
die. In this case the cut-off values (for a fair die) would be 1/6, 2/6, ...,5/6. This method of simulating
probabilistic events is often called Monte-Carlo simulation.

NOTE: Calling rand(1,1) will return a single psuedo-random number between 0 and 1.

EXAMPLE: MATLAB code to simulate n tosses of a die, with probability of getting Heads on a single
toss = p.

%coints.m
% This MATLAB code simulates n tosses of a coin with probability p
% of getting a Head and 1-p of getting a Tail. You are prompted to supply
% the probability p and the number of tosses. At the end, output will

% be the number of Heads and Number of Tails which occurred, stored
% in a vector out.
%
!c:
n=input(’how many times to toss the coin: ’)
p=input(’probability of heads on a single toss: ’)
% nh will count the number of heads, nt the number of tails
nh=0;
nt=0;
x=[]
for i=1:n
a=rand(1,1);
if a <= p
 nh=nh+1;
 x=[x 1];
else
 nt=nt+1;
 x=[x 0];
end;
end;
per=nh/n;
out=[nh nt];
disp(’number and percentage of Heads is’)
nh,per,pause
disp(’number and percentage of Tails is’)
nt,1.-per,pause
hist(x,2)
title(’histogram of H (1) and T (0)’),pause

DIFFERENCE EQUATIONS IN MATLAB:
Difference equations are used to analyze situations in which the variables of interest (such as
population size) are observed at regular, fixed time intervals, such as every month, year, generation,
etc. The general first-order difference equation is x(n+1) = f(x(n)) where x(n) gives the population size
at generation n, n is an integer, and the function f specifies how the population size next generation
depends upon the current population size. You will see in this course the properties of simple linear
difference equations, but in general, if the function f is non-linear, there is no way to get an explicit
solution - that is there is no way to get a formula that tells you what x(n) is for any given n. Rather,
what you have to do in most cases is use a computer to calculate x(n+1) and then repeat this again and
again - this is called iteration and MATLAB does it very easily. An example is given below for the
case of the discrete logistic equation:

%Logistic.m - this MATLAB file solves the

%discrete logistic equation x(i+1)=r*x(i)*(1-x(i))
%and the users is prompted to read in the value
% of r to use as well as the initial value
% x0 which must be in (0,1)
% and the time interval over which to run the
% simulation.
!c:
s=1;
while s>0;
r=input(’input growth rate r: ’)
x0=input(’input initial population x0: ’)
n=input(’end of time interval b: ’)
x=zeros(n+1,1);
t=zeros(n+1,1);
x(1)=x0;
for i=1:n
t(i)=i-1;
x(i+1)=r*x(i)*(1-x(i));
end
t(n+1)=n;
plot(t,x,t,x,’o’),pause
s=input(’Do you want to stop - if so enter 0’)
end

Here the line
 for i=1:n
tells MATLAB to iterate the equation n times.

THE FILES IN W:\MATH\MATH151\MFILES:
These files are to aid you in doing problems in this course. The below list is a brief description of what
each .m file does:
lesson1.m Plots leaf length and width histograms from data in l and w as well as graphs length vs.

 width
lesson2.m Compares plots of leaf length and width and regressions of these for two different data

sets: l and w vs. l3 and w3 stored in file leafstat.dat
lesson3.m Using data on fat intake and artherosclerosis death rate in Norway, computes the

 regression line and correlation coefficient
lesson3b.m Using data in correlat.mat this illustrates difference in linear regression when graphing x

against y rather than y against x.
lesson3c.m Using data in semilog.dat this illustrates the ability to do a linear regression on a semilog

plot
lesson3d.m Using data in loglog.dat this illustrates the ability to do a linear regression on a loglog plot

lesson4.m Using data in co2dat.sh which gives Maona Loa atmospheric CO2 concentration annual
averages from 1970-1990, this computes linear regression and estimates CO2 in years
2000 and 2100.

co2plot.m Using data in co2datmo.dat which gives Maona Loa atmospheric CO2 concentration
monthly data from 1965-1970, this just shows plot to illustrate heartbeat of the planet.

lesson5.m This illustrates eigenvalues and eigenvectors arising from a population projection model.
It compares growth rate as measured by the eigenvalue to that from projecting the population
forward 10 and 20 time periods.

binomial.m Simulates a binomial distribution corresponding to coin tosses and compares theoretical
mean and variance to that simulated.

coints.m Simulates n tosses of a coin with probability p of getting a Head and 1-p of getting a Tail
ordersta.m Simulates tosses of a coin with probability p of getting a Head and 1-p of getting a Tail and

counts the time until the kth Head occurs. That is, this computes the kth order statistics.
urn.m Simulates an urn with two-types of balls (1 and 2) and the rules are: choose a ball, replace

the ball with itself and one other of the same type, repeat process. A Polya-urn scheme.
levelcrs.m Simulates tosses of a coin with probability p of getting a Head and 1-p of getting a Tail and

counts the time until either the kth Head occurs or the mth Tail. A level- crossing problem.
level2.m Simulates tosses of a coin with probability p of getting a Head and 1-p of getting a Tail and

determines the fraction of experiments in which k heads occur before m tails occur. Another
 level crossing example.

exponen.m Solves the discrete logistic equation x(i+1)=a*x(i)+b
analog.m Solves the discrete analog of the continuous logistic growth model x(i+1)=r*x(i)/(1+x(i))
logistic.m Solves the discrete logistic equation x(i+1)=r*x(i)*(1-x(i))
selectio.m Simulates selection in a one locus two allele model, with random mating, infinite popula

tion size, no mutation
secdiff.m Solves general homogeneous second order difference equations of the form

 a x(n+1) + b x(n) + c x(n-1) = 0

