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Low Precision Floating-Point Formats:
The Wild West of Computer
Arithmetic
By Srikara Pranesh

Floating-point arithmetic is fundamental to scientific computing and lies at the heart of almost all

numerical computations. The 1985 IEEE standard 754 for floating-point arithmetic marked the end

of a turbulent period in scientific computing, during which vendors had their own implementations

of floating-point arithmetic. All hardware vendors gradually adopted the IEEE standard of single

and double precisions.

Until recently, the landscape of floating-point arithmetic—following employment of the IEEE

standard—largely remained the same. However, hardware continually advanced to achieve higher

performance, and numerical libraries evolved to efficiently use the hardware. Jack Dongarra and

his colleagues [4] demonstrated this progression for singular value decomposition and deduced

that communication is far more expensive than computation. Therefore, algorithms that minimize

communication at the expense of increased computation are the norm; numerical libraries like

PLASMA [5] are based on this philosophy. One thing that remained consistent during all of these

developments was the floating-point formats, and this was about to change.

The 2008 revision of the IEEE 754 standard introduced half precision (or fp16) as a storage format.

This was meant to reduce the cost of data movement, as it is cheaper to move 16 bits of data than

32 or 64 bits. However, once half precision was deemed sufficient for deep learning applications,

researchers began using fp16 for computation, with a natural extension of the arithmetic rules.

Half precision is now available on the NVIDIA P100 (2016) and V100 (2017) graphics processing

units (GPUs), as well as the AMD Radeon Instinct MI25 GPU (2017). Although fp16 offers massive

speedups, the maximum value it can represent is approximately 65,500, thus making overflow

very likely. To address this issue, Google proposed an alternative half-precision format called the

bfloat16. Properties of fp16 and bfloat16 are displayed in Table 1.

Table 1. Parameters for bfloat16, fp16 arithmetic, to three significant figures: unit roundoff , smallest positive

(subnormal) number , smallest normalized positive number , and largest finite number . Intel’s bfloat16
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specification does not support subnormal numbers.

The range of bfloat16—the format currently used in Google tensor processing units (TPUs)—is

similar to single precision but has a lower precision than fp16. Intel will support bfloat16 in its

upcoming Nervana Neural Network Processor and Cooper Lake processors. To further accelerate

deep learning applications, an eight-bit floating-point format is also under consideration [12].

Additionally, researchers are contemplating nonstandard rounding modes—such as stochastic

rounding—to enhance computational accuracy with these low-precision formats [9]. Another

interesting technological innovation is the block-fused multiply-add unit, which can perform

in a single clock cycle with one rounding error for some specific value of . This feature is already

available in the tensor cores of NVIDIA V100 (where ). The Summit machine at Oak Ridge

National Laboratory (ORNL), which leads the latest Top500 lists, comprises 27,000 V100s and has

achieved an exaop performance using the tensor cores. Furthermore, 133 systems in the June

2019 Top 500 list employ accelerators, over 73 percent of which use GPUs that support

fp16. Multiprecision computing units called matrix units (MXU), which operate on

 matrices, are present in Google TPUs as well. However, Google TPUs are not

commercially accessible, and details of MXU computation are not publicly available.

With regard to future machines, the Japanese Fugaku exascale machine will be based on the

A64FX ARM processor with fp16 support. The Frontier exascale machine—to be installed at

ORNL—will use AMD GPUs, which support fp16. In short, GPUs and low-precision formats are here

to stay and have transformed the friendly neighbourhood of floating-point arithmetic into the Wild

West. Development of algorithms that can exploit these new floating-point formats is therefore of

great interest.

In the field of numerical linear algebra, Erin Carson and Nicholas Higham have proposed an

algorithm for the solution of a linear system of equations that is given in double precision using

fp16 [2]. They perform lower-upper (LU) factorization in fp16 and solve the update equation of

iterative refinement via the generalized minimal residual method (GMRES), with the low-precision

LU factors as preconditioners. A speedup of up to four over-highly-optimised libraries using the

tensor cores of NVIDIA V100 has been demonstrated [6]. The algorithm achieved a performance

of 445 petaflops—almost three times that of an optimised double-precision solver—when solving

a dense linear system of 10 million equations at scale on the Summit machine.

Several matrices appearing in actual applications have entries that exceed the overflow limit of

fp16. For example, many metals’ modulus of elasticity is . To address this issue,

researchers have proposed a scaling algorithm with application to the solution of a linear system

[8]. Even with the enormous computing power already available, it is still impossible to run very

high-fidelity simulation models in climate studies, which can predict the extent of the effects of

C + A × B, A, B, C ∈ Rn×n (1)

n

n = 4

128 × 128

O( )109
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global warming [10]. Therefore, scientists are contemplating multiprecision ideas to solve climate

models of higher fidelity [3]. To enhance the speed of Monte Carlo simulations, researchers are

considering representing the samples in low precision, with applications in Ising models [13] and

finance [1].

Higham wrote about the challenges and potential benefits of multiprecision algorithms in a

previous issue of SIAM News [7]. The two years since his article have seen further changes in the

landscape of floating-point arithmetic because of architectural advancements like tensor cores. In

2005, Herb Sutter announced the advent of multicore architectures and proclaimed that “the free

lunch is over” [11]. The onset of hardware that supports low precision marks the end of yet another

free lunch, as new algorithms—rather than software optimisation—are the key to extracting

benefits from such hardware.
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