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The Race to Compute High-order Gauss-
Legendre Quadrature

By Alex Townsend

A typical quadrature rule is the approximation of
a definite integral by a finite sum of the form
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where 1,...,Z, and w1, ..., W, denote the
quadrature nodes and weights, respectively.
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In 1814 Gauss [3] described a particularly
ingenious choice for the nodes and weights that

is optimal in the sense that for each n it exactly integrates polynomials of degree 2n—1 orless. It
can be shown that no other quadrature rule with n nodes can do as well or better. Today, we call

this Gauss-Legendre quadrature because of pioneering work of Jacobi showing that the nodes
/
are the zeros of the degree-n Legendre polynomial P, (z) and wy, = 2(1-z2) '[P, (zx)| 2.

There is a catch. For large n there is no explicit closed-form expression for the Gauss-Legendre
nodes or weights. And Gauss knew this. To demonstrate it practically, he calculated (by hand!) the
nodes and weights to 16 digits for n = 7. Ever since, and especially since the advent of the
modern computer, there has been an unofficial race to compute the nodes and weights for larger
and larger n to more and more digits. It’s a race that the famous Golub-Welsch algorithm never
led. Ignace Bogaert of Ghent University emerged recently with a new, winning algorithm. Here is a
race report. (See Figure 1.)
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Figure 1. The 100-year race for high-order Gauss -L.egendre guadrature. A dot represents published
work, \ocated by the publication year and the \argest Gauss -Legendre rule reported therein. A red dot

indicales a paper based on variants of the Golub ~Nelsch algorithm. The dot for Golub and Welsch (1969)
is circled. For a \ist of the papers used, see hitp://math.mit.edu/~ajl GaussQuadrature/.

Hand calculations led the way for over a century. Tallquist (1905), Moors (1905), Nystrom (1930),
and Bayly (1938) used fountain pens and dogged determination to calculate the quadrature nodes
forn < 12. Eventually, presumably with a small army of human calculators, Lowan, Davids, and
Levenson (1942) tabulated the nodes and weights for 1 < n < 16 for the Mathematical Tables
Project.

A decade later computers were beginning to dominate tedious hand calculations, and large
tabulations of nodes and weights were profitably published. The most popular algorithm for

computing Gauss nodes was the Newton-Raphson method for finding the roots of Pn(:r:) with a

three-term recurrence used to evaluate P,, and P,/L . Huge strides were made. Gawlik (1958) briefly
led with n = 64 before Davis and Rabinowitz (1958) got n = 96, and finally Stroud and Secrest
(1966) achieved n = 512. This was the golden age for Gauss-Legendre quadrature.

By the 1960s orthogonal algorithms for eigenproblems were hot off the press and Gene Golub

was becoming famous. The Golub-Welsch algorithm [5]—featuring both QR and Golub--was
momentous. It quickly overshadowed the earlier (1963) result of Rutishauser. Contrary to popular

belief, however, the Golub-Welsch algorithm is not, and never was, the state-of-the-art algorithm

for computing Gauss-Legendre quadrature rules in terms of accuracy and speed. Yet, by elegantly
bringing together eigenproblems and Gauss quadrature, it radically changed how the world
computed integrals. Before 1969, a few would compute quadratures by carefully extracting the
tabulated values from Stroud and Secrest (1966) and calculating (1). After 1969, all were
computing Gauss nodes and weights for themselves. Tabulations were already falling out of favor

across the computational sciences; the Golub-Welsch algorithm made it so for Gauss nodes and
weights as well. This makes 1969 a year to remember for more than just the moon landing.
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In the years that followed, only a handful of experts noticed improvements to the details of the
Newton-Raphson approach produced by Lether (1978), Yakimiw (1996), Petras (1999), and
Swarztrauber (2003). While the Golub-Welsch algorithm was computing a few hundred nodes and
weights, the Newton-Raphson approach was computing thousands. Many, still unaware of the

developments after 1969, have concluded that Gauss-Legendre quadrature is not computationally
feasible for large n. Attention has shifted to adaptive and piecewise quadrature schemes.

In 2007 Glaser, Lui, and Rokhlin described a ground-breaking algorithm that can compute a million
quadrature nodes in a handful of seconds [4]. Accolades should have followed, but the algorithm
failed to awaken much interest. A few years later Bogaert, Michiels, and Fostier [2] and Hale and

Townsend [6] showed that the Newton-Raphson method for finding the roots of P, (z) with

careful evaluation of P,, and P,’L by asymptotic formulas could be just as fast and more accurate
than anything the world had seen before.* The golden age had returned. Figure 2 shows the
quadrature error (see equad in [6] for the exact definition) and the timings for five historically
important algorithms. It was after careful numerical comparisons like these that the race was fully
appreciated.
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Figure 2. Quadrature error (left) and computational time (right) for Gauss “Legendre nodes and weights
compuied by the Golub “WNelsch algorithm 5] (GIV), Newion -Raphson with three-term recurrence

(REC), Newton -Raphson with asymptotic formulas {6} (HT), the Glaser L ui-Rokhlin algorithm {4 (GLRY,
and Bogaert's formulas [1) (Bogaert). The timings given here are for implementations in different
programming \anguages and cannot e used for direct comparisons.

The epilogue was written by Bogaert a few months ago [1]. He derived explicit asymptotic
formulas for the Gauss-Legendre nodes and weights that are accurate to 16 digits for any

n > 20. Using his formulas, | just computed one billion and two Gauss-Legendre nodes and
weights on my laptop. This is a world record! So large is this rule that nodes that are near

neighbors of *1 are identical to 15 decimal places. It now takes less than a millisecond to
compute athousand nodes and less than atenth of a second to compute a million.
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Ignace Bogaert is the winner of the 100-year race. Bravo!

It was a fun race with a deserving winner. We are now searching for applications that require
thousands of nodes and weights. Our algorithms are poised for use. If you have an application in
mind, please email ajt@mit.edu.

One million Gauss-Legendre nodes and weights--no problem. But how will we use them?
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