V. Alexiades, PDE LECTURE NOTES
CHAPTER I

FIRST ORDER PDEs

1. INTRODUCTION

1.A. 1st order PDE
The general 1st order PDE for the unknown u(z,y, ... , 2) has the form

F(z,y,...,2, Ug,Uy,... ,u;) =0.

Such equations arise in Hamilton-Jacobi theory (calculus of variations), particle mechanics, geometrical
optics. We saw that conservation laws produce PDEs of the form (actually systems usually)

ug + %a(m, t, u) = b(x, t, u)
which are generically referred to as “conservation law form” (even if a is not the flux of u).

The theory of 1st order PDEs is essentially complete (contrary to the situation for any other general
class of PDEs), due to the fact that they can be reduced to solving systems of ODEs. It is a local
theory (just like ODE theory) and very geometrical, unlike the rest of PDE theory.

We may think of the solution u(x,y,... ,2) as a (hyper)surface, to be constructed, called an integral
surface. We expect many solutions, a family of surfaces depending on an arbitrary function, not just
on an arbitrary constant as for ODEs. How do we select an individual integral surface out of such a
large family of surfaces? For an ODE, the general solution is a family of curves and we select one by
requiring that it passes through a given “initial” point. Here the general solution is a family of surfaces,
so naturally we can pick one by making it pass through a given “initial” curve T'y.

The Cauchy Problem for a 1st order PDE is the problem of finding a solution (integral) surface of
the PDE which also passes through a given “initial” curve T'y.

1.B. Wave propagation

A wave is a disturbance propagating in time through a medium, carrying energy, e.g. electromagnetic
waves, sound waves, water waves, seismic waves. Matter is not necessarily convected with the wave, it
is the disturbance carrying energy that propagates.

Mathematical model of a wave: u(z,t) = F(z — ct)

undistorted wave traveling to the right with speed ¢ > 0, (or to the left if ¢ < 0).

What equation does u(z,t) satisfy?

ug+F' - (=c), uz =F'" = wu;+cu, =0 1st order linear PDE

The linear advection equation u; + cu, = 0 has general solution u(z,t) = F(z — ct), with F(-) an
arbitrary functions of one variable.

If we knew the initial shape of the wave: u(z,0) = fo(z) , —oo < 2 < oo then F(z) = fo(z) Vz and
therefore the solution of the Initial Value Problem, or Cauchy Problem

( ){ut+cuw:O, —xo<zr<oo, t>0
u(z,0) = folz) , —0 <z < 00

would be u(z,t) = fo(x — ct), provided fo C C'(R).

Indeed, along = — ct = const. we have 9% (z(t),t) = 3¢ 4z 4 % — ¢y, 4 4, = 0 by the PDE.

The lines ¢ — ¢t = const. are called the characteristic curves or simply characteristics of the
PDE u¢ + cu, = 0.
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2 I. FIRST ORDER PDE’S
Note that the direction of the characteristics is (dz,dt) = (¢,1) and
ut + cugy = (¢,1) - (ug,ut) = (¢, 1) - grad u

is the directional derivative in this direction. So the PDE says that u does not change in the direction
of the characteristics! This tells us how to solve the PDE:

Given uy + cu, = 0 or (¢,1) - (ug,us) = 0 = characteristic direction is (dz,dt) = (¢,1) = % = ¢ =
c=z =ct+ &, & = arbitrary constant, and then along such a characteristic curve: ‘fi—’; = uz‘é—f +u; =0
is an ODE = u = k(&) = u(z,t) = k(z —ct), k(-) arbitrary. This is the method of characteristics by

which the PDE is reduced to an ODE along each characteristic. That’s how we solve 1st order PDEs.

Sinusoidal or Fourier waves
Periodic waves are of great interest and usefulness:

u(z,t) = Asin(kz — wt) or more conveniently u(z,t) = Aelkz=wt)

A = amplitude

k = wave number = number of oscillations in 27 units of space at fixed time.

w = angular frequency = number of oscillations in 27 units of time at fixed z

p= %’T = period(in time), 7% = % = v = frequency = number of oscillations per unit time.

A = 2T = wavelength, £ = number of oscillations per unit length
Note that u = Ae*(@=%?) is a wave traveling to the right with speed ¢ = ¥ = phase velocity =

k
velocity of a fixed point on the wave.

2. THE CAUCHY PROBLEM FOR SEMILINEAR 1ST ORDER PDEs
IN 2 VARIABLES

2.A. The Problem

We seek a solution (integral) surface ¥ : z = u(z,y) satisfying
(1) a(z,y)u, + b(z,y)uy = c(z,y,u) in QCR2
and passing through a given curve I'g, which may be represented parametrically as
(2) To: z=u2x0(s), y=uyo(s), z=1uo(s), s € I=interval of R
with (zo(s), yo(s)) € Q, s € I, so we want u(z,y) to satisfy

3) u(Zo(8), Yo(s)) = 20(s), s € I.

(1),(2),(3) constitute the Cauchy Problem for the PDE (1).

At this point we don’t know how smooth the data a(z,y), b(z,y), c(z,y,2), xzo(s), yo(s), 20(s)
should be, so we assume them smooth enough for whatever we do to be valid! Since however v is to be
C! in 0, the curve I'y should be C!, so we assume g, 9o, 20 € C1(I).

Note that (1) says (a, b, ¢) - (ug, uy, —1) =0, and the vector (uz, uy, —1) is normal to the surface
¥ :z=u(z,y), so (1) says ¥ must be, at each point, tangent to the ”characteristic direction” (a, b, c).
We try to contruct the integral surface ¥ as union of curves having the characteristic direction (a, b, c)
at each point, starting from the given initial curve I'y which is to lie on X.
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2.B. Method of characteristics

Note that auy +buy = (a,b) - Vu = directional derivative of u(x,y) in the direction of the vector (a, b).
Since the tangent vector to a curve on the zy plane is (dz,dy), a curve with direction (dz,dy) = (a,b)

i dy _ b(zy) de _ _d
will have slope 32 = a(ﬁ,‘Z), or a(;y) = b(z!’ly)‘

Definition: A curve I' (on the xy-plane) is called a characteristic of the PDE au, + bu, = c if it has
direction (a,b), i.e. if

dy _ b(z,y) de _ dy
(4) A~ a(@y) " a@y)  b@y)

Written parametrically, in terms of some arbitrary parameter 7, a characteristic

FI . { T = X(T)
y=Y(7)
of au, + buy = c satisfies
X — o(X,Y
w) (o)
Along a characteristic I, the PDE gives
du _ Ou dX  Ou 9Y

— (X Y = — — a A = T = X; Y; X,Y )
d’l'( (m),Y (7)) 9 dr + 3y or aug + buy = ¢( u( )
so the PDE reduces to an ODE: % = c(z,y, u(z,y)).

Now let’s look at it backwards. If the system of ODEs

9z = a(x,y)
(5) 3y = b(z,y)
2 = ¢(z,y,u)

can be solved for z, y, u, we find a curve
r=X(r), y=Y(r), u=U()
in zyu-space, which by construction will have the characteristic direction (a, b, ¢).

Definition: A curve I in zyu-space with characteristic direction, i.e. a solution of (4), or equivalently,
of

dv.  dy  du —dr
©) ) Wy dmyw

is called an integral curve of the PDE au, + bu, = c.

Clearly, a surface that is a union of integral curves will be an integral surface because at each point
it will be tangent to the tangent of an integral curve which has characteristic direction!

Example: Solve the (linear) PDE: zu, + yuy = au, a # 0 const.

The ODE system is %’3 = %y = %“. The characteristics are: dz—m =% o Iny = Iny—Ink, k =

arbitrary constant = y = kx; k = arbitrary constant that parametrizes the family of characteristics.
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Along a characteristic we have dz—w = % = u = f-z%, f = arbitrary constant, but different for each
characteristic, so f = f(k) = f (£) . So the general solution is

u(z,y) = f (%) @ f(-) any C' function.

For each f(-), we have an integral surface.

Example:
up+2tuy, =0, €R, t>0
Solve the IVP 2
u(z,0) =€~
Characteristics: % = ‘;—f = dr = 2tdt = x = t> + k, k = arbitrary constant. Along these ”5—’; =

0 = u(z,t) = f = const. = f(k). The characteristic through (z,t) starts at (z,0) = (k,0) where
u(k,0) = e %", so u(z,t) = u(z,0) = e ¥ = e @) is the (unique) integral surface.

Note that because we knew the initial curve: T'g : (2,0, e‘m2), z € R, we were able to find the unique
integral surface through this curve.

2.C. Solvability of the Cauchy Problem

Given an initial C! curve, parametrized by some s € I C R,
(2) To:z==x0(s), y=uyo(s), z==2(s), se€l
we want to find an integral surface X : z = u(z,y) passing through T'g, i.e. satisfying
3) u(zo(s), yo(s)) = 20(s), se€l.

The Cauchy data provide us with starting points on ¥ for the integral curves, i.e. we now have
”initial” conditions for the ODE system that generates the integral curves:

g_f =a(z,y) , z(0,8) = mo(s)
- % =b(z,y) |, y(0,s) = yo(s)
g_:f =c(z,y,u) , u(0,5) = 20(s)

for each s € I (just a parameter for this system).
ODE theory tells us: If

a, be CHQ), 0! = a neighborhood of I‘GZ igg (s) sel
¢ € C! in a neighborhood Q of Ty
then (7) has unique solution
() z=X(r,8), y=Y(r,5), u=U(r,s)
wlhich is C]1 in some neighborhood of 7 = 0, s € I. [see Petrovsky p.96: ODE, justify why solution is
C* Vsell.

Now, if we eliminate 7,s in (8), i.e. if we can express 7, s in terms of z,y then we’ll get u(z,y) =
U(T(z,y), S(z,y)), the solution to our Cauchy Problem. When can we do this? i.e. when can we solve

{x:XhQ

®) y=Y(r9)

for 7,5 to find 7 = T'(z,y), s = S(z,y)?
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By the Implicit Function Theorem, this can be done in a neighborhood of some point if the Jacobian

X, Y,

(10) I=Y v

# 0 at that point.

Let’s be more precise here. Let sy be any point in I. Since X,Y are C! in a neighborhood of (0, o),
by the Implicit Function.(9) has a solution

(11) T:T(SE,y), S:S(x;y)
which is C! in a neighborhood of (2 (s0), yo(s0)) and satisfies
(12) 0 ="T(z0(s0), Y0(50)), 0 =5S(zo(s), yo(s))-

provided
(13) Jo =

But
Jo = X;Ys — XY, |T=0 = a(x07y0)y(l)(5) - b(xO;yO)xé(S)

8§=380

so Jo # 0 means
dy() daf()
a(xoayo)—ds |S:307'é b(xoayo)—ds |s:50

or
dxo dyo

a(zo, o) # b(zo0,Y0)

which means I'yy should not be characteristic! We conclude:

at s = sg,

Theorem. If the projection
z = xzo(s
T : { 0(s) , sel
Y = yo(s)
of the initial curve Ty on the zy-plane is not characteristic at a point s = sg € I, then the Cauchy
Problem (1),(2) is solvable in a neighborhood of the point P(zo(s0), yo(s0), 20(50))-

- — 2
Example: Solve the (CP){ LUy — YUy = U

u(z,1) = h(x)
Here Tg: x =35, y =1, z = h(s), and the characteristics are i—w = % = zy = k = arbitrary constant,
o)
! ! ! Tr=s
Jo:ayo=b$0=:c-0—(—y)-1=+y=17é0:>f‘0:{ .
y =
is nowhere characteristic. Solve the ODEs
d
—m=m=>x=k167; z(0)=s=>z=X(1,8) =s¢” =>s5= z
dr Yy
dy ., .
E=—y#y=k26 sy =1=y=Y(rs)=e "=>17=-lny
du N 1 h(s)
i T+k3’u() (s) = Ulrs) 1—7-h(s)

n(
1+g(%)lny

is the unique solution, for y > 0.

< |8
S~—

= u(z,y) =U (—ln Y, g) =
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What happens if Jo = 0 on I'f, i.e. if T is characteristic? Well, either the initial curve Ty itself is an
integral curve or it is not. When T'g is an integral curve then taking as initial curve any curve I'* such
that J # 0 and '™ intersects I'g, we can find an integral surface, therefore infinitely many solutions.

When TI'y is not an integral curve (but I'jj is characteristic) then there is no solution through I’y at
all.

All of the above can be done with minimal changes even for the quasilinear case, so we can state

Theorem. Solvability of the Cauchy Problem for Quasilinear 1st order PDE in 2 variables.

B u passes through Tg : x = x20(s), ¥y = yo(s), 2 = ue(s), s € I.
If dzo(s) dyo (s) then unique solution.
a(Zo, Yo, u0) * b(Zo, Yo, uo)
If dao(s) = dyo (s) = duo(s) then infinitely many solutions.
a(To,Yo,u0)  b(To,Yo0,u0)  c(To, Yo, Uo)
If do (s) = dyo(5) duo (s) then no solution.

a(zo, Yo, vo) b(z0,Y0, o) c(0,Y0, uo)



