
V.Alexiades and A.D. Solomon
Mathematical Modeling of Melting and Freezing Processes
Hemisphere, Washington DC, 1993; ISBN 1-56032-125-3

C H A P T E R 4

NUMERICAL METHODS
THE ENTHALPY FORMULATION

As we have repeatedly remarked, explicit and approximate solutions are
obtainable only for simple problems and only in one space dimension. As most
realistic phase-change processes do not neatly fall in this category, the
mathematical problems modeling such processes may only be attacked
numerically.

A mathematical model of a physical process may be thought of as a simulation
of the process, i.e. an imitation using mathematical tools. In the same spirit as a
laboratory-scale experiment of an industrial process is an imitation of the process
by the means and capabilities of the laboratory, a numerical (computer) simulation
is an imitation of the process by the means and capabilities of the computer.

Digital computers are capable of representing only a finite number of rational
(finite decimal) numbers and therefore can only deal with discrete approximations
of continuum concepts such as time and length. Moreover, memory sizes are also
finite and small, thus restricting the amount of data that can be processed. Such
limited capabilities of computers impose certain limitations and restrictions on the
numerical simulation of a physical process. Thus, the physical region must be
approximated by a small number of "control volumes," time may vary only in
discrete steps, and idealized mathematical concepts, such as derivatives, integrals
and limits must be re-approximated by finite-differences, sums and approximate
values.

In §4.1 we explain how such discrete approximations are set up (via finite-
differences) for the simplest case of heat conduction without phase change. After
a brief discussion of front-tracking methods in §4.2, we then quickly turn to the
most general and versatile method available for the numerical simulation of phase-
change processes, the so-called enthalpy method. Its numerical implementation
is presented in §4.3. The mathematical ideas underlying weak formulations of
PDE problems, and the mathematical formulation on which the enthalpy method is
based are presented in §4.4. Finally, in §4.5 we establish existence of the weak
solution and convergence of the enthalpy scheme to the weak solution.

180

4.1 NUMERICAL HEAT TRANSFER 181

4.1. NUMERICAL HEAT TRANSFER

4.1.A Introduction

Simulation of a system means imitation of the system by a convenient
replacement or ‘‘stand-in,’’ whose performance can be studied in detail. The
motivation is to use an inexpensive ‘‘stand-in’’ to tell us what we want to know
about the original system. The simulation might consist of a field trial in place of
the actual unmonitored process, a laboratory experiment in place of a field trial, or
a pencil-and-paper mathematical model in place of the laboratory experiment.

A numerical, or computer, simulation is one in which the ‘‘stand-in’’ for the
system is a computer code, whose runs simulate the system’s performance. If the
processes taking place are time-dependent, then the computer code must
accordingly tell us what is going on with the progress of time. Such a code is
often referred to as a ‘‘marching’’ code, with the implication being ‘‘with
increasing time.’’

The computer simulation of a time-dependent process rests upon a discretized
version of a mathematical model of the actual physical process. Thus, continuous
quantities, such as energy and temperature, are replaced by their values at discrete
points. Time itself is discretized, and the marching process takes place through
discrete time steps. Just as the individual frames of a movie must be taken at close
enough times, the time steps for a computer simulation must be small enough for
us not to lose the impression of continuity.

The truly dramatic advances in digital computer technology achieved over the
last 30 years have already elevated Numerical Simulation to the status of a third
scientific method, complementing the two traditional methods of Theory and
Experiment. Increasingly complicated processes may be realistically simulated
numerically, often more effectively and at lower cost than actual experiments,
enabling us to better predict, understand and control them. Thus, numerical
simulation is fast becoming an indispensable tool in technological discovery and
development and a strong driving force in the quantification and mathematization
of science and technology. An excellent overview of Numerical Heat Transfer
may be found in the Handbook [MINKOWYCZ et al].

There are four basic steps involved in the development of a computer
simulation of a physical process:

1. Determination of the physical problem. Decide which physical phenomena
are important enough to be taken into account, which physical variables
define the system, what are the inputs (data), and what is to be found.

2. Formulation and analysis of the mathematical model. ‘‘Translate’’ the
physical problem into a precise mathematical problem, identify the data and
the unknowns, and convince ourselves that the resulting mathematical
problem is well-posed or, at least, that it ‘‘makes sense’’.

182 CHAPTER 4

3. Discretization of the problem. Approximate the problem by a discrete one,
i.e. replace all ‘‘continuous’’ entities by corresponding ‘‘discrete’’ ones, and
construct a numerical algorithm for its solution.

4. Development and implementation of algorithms in a computer code.
Develop algorithms and code embodying them. Check them out and validate
the resulting programs.

Consider, for example, heat transfer in a body occupying a region Ω in space. In
Step 1, we must decide if heat is transferred by conduction, convection, or
radiation; if a phase-change is involved; if temperature alone suffices to describe
the thermal state; if the process is transient or steady-state; what are the initial and
boundary conditions, etc. In a ‘‘real-life’’ situation, many of these decisions may
not be as simple as they sound, and various simplifying physical assumptions may
be required in order to formulate a ‘‘reasonable’’ problem (c.f. §1.2). Step 2 is
achieved when we determine the equations expressing the physical laws and
conditions identified in Step 1. Several examples of this process were presented in
CHAPTER 2. When the resulting mathematical problem is not amenable to
analytical treatment, Step 3 becomes necessary, at which time the problem is
approximated by a discrete one and algorithms are devised to compute its solution.
At Step 4, we write computer programs implementing the algorithms in some
convenient computer language, e.g., FORTRAN, and apply them to some simple
problems with known solutions (benchmark problems), in order to check that the
simulation performs as expected. Clearly, this is an inter-disciplinary endeavor,
requiring knowledge from several fields: the scientific discipline pertaining to the
process under study, mathematics, numerical analysis, and computer science.

In this section we are concerned with Step 3, for the case of a simple heat-
transfer process. Thus, we assume that a well-posed mathematical model of heat-
transfer in a region has been formulated, and we discuss its discretization and the
construction of effective numerical algorithms for its solution.

Discretization begins with the subdivision of the (spatial) region into ‘‘small’’
subregions (control volumes), by an imposed spatial grid. The term ‘‘small’’ is
relative: heat transfer in the ground around a pipe may involve a region tens of
feet long; then ‘‘small’’ may be inches or feet. On the other hand, for heat transfer
in the pipe itself, ‘‘small’’ may be a tenth or a hundredth of an inch. Tw o factors
help to determine the size of the control volume. On the one hand, it should be
small enough to capture essential variations in the computed quantities and to
permit us to represent average or typical values as point values. Thus, large
temperature gradients require small control volumes, and conversely, small
gradients can be captured even by relatively large control volumes. On the other
hand, the expense of the resulting numerical computation is the primary limiting
factor in how fine a mesh one may use. If unlimited time on a Cray
Supercomputer is available to run the code, then the mesh may be a hundred or a
thousand times finer than if the code is to be run on a personal computer !

Control volumes are thought of as regions in which ‘‘local equilibrium’’ is
achieved at a time scale considerably shorter than the computational time step;

4.1 NUMERICAL HEAT TRANSFER 183

hence, the value of a field quantity at a nodal point at the center of a control
volume may be thought of as representing the average of the quantity over the
volume.

Having chosen an ‘‘appropriate’’ spatial grid, we simulate heat transfer by
updating the state of the discrete system through discrete time increments ∆t > 0,
using discrete versions of the conservation laws.

There are several actors and inter-related objectives in this play. We want the
numerical scheme to be

i) consistent, meaning that the discrete equations used in the scheme tend to the
correct conservation laws as the spatial and temporal grid sizes tend to zero;

ii) convergent, meaning that the approximations that it provides to the solutions
of the (continuum) conservation laws, actually tend to these solutions as the
spatial and temporal grid sizes tend to zero;

iii) stable, meaning that the computed values at each time-step are relatively
insensitive to unavoidable input and roundoff errors;

iv) effective, meaning that the scheme achieves the above objectives with
minimal computational expense, so that its use in the desired context is
affordable.

Certainly, whether or not these objectives can be achieved depends on the
discretization method as well as on the method used to solve the discrete equations
(and even on the coding itself). The Art and Science of Numerical Computation
provides us with several tools and guidelines, and the great advances in
computational power and methodology during the last few years already allow us
to realistically simulate fairly complicated processes. A useful principle to keep in
mind is that simulation is imitation and as such it should try to follow the physical
laws as closely as possible.

There are several approaches to the discretization of conservation laws: finite
differences, finite elements, collocation, and spectral methods. Excellent surveys
are given in [ALLEN-HERRERA-PINDER] [MINKOWYCZ et al]; see also
[LAPIDUS-PINDER], [DUCHATEAU-ZACHMANN], [SEWELL]. The method
that is by far the simplest, easiest to understand and implement, most amenable to
direct physical interpretation, and still most widely used is that of finite-
differences, especially when derived via control-volume discretizations. This is
the method that we shall use in this book.

In order to introduce and explain the basic methodology, we begin with the
simplest process of heat conduction in a finite slab. As a model problem we treat
the following

PHYSICAL PROBLEM: Consider a finite slab, 0 ≤ x ≤ l, with known initial
temperature distribution, Tinit(x). Starting at time t = 0, the slab is heated
convectively at x = 0 (with ambient temperature T∞(t) and heat transfer
coefficient h), while the back face x = l is kept insulated. We exclude the
presence of any volumetric heat sources (see §4.1.G). We want to predict the

184 CHAPTER 4

T (x, 0) = Tinit(x)0 l x

t

ρcTt = (k T x)x− k T x(0, t) =
h[T∞ − T (0, t)] − k T x = 0

Figure 4.1.1. Model heat transfer problem.

ev olution of the temperature field over time. The mathematical formulation is the
following.

MATHEMATICAL PROBLEM: Find T (x, t) such that (Figure 4.1.1)

(1a)ρcTt = (kT x)x , 0 < x < l, t > 0

(1b)T (x, 0) = Tinit(x), 0 ≤ x ≤ l

(1c)−kT x(0, t) = h [T∞(t) − T (0, t)], − kT x(l, t) = 0, t > 0

The specific heat, c, thermal conductivity k and heat-transfer coefficient, h, may be
known, temperature dependent functions.

4.1.B Control volume discretization of the conservation law

We partition the region of interest into M subregions, called control volumes,
V1, V2, . . . , VM . With each subregion V j we associate a node x j , a point inside
V j . We let ∆V j = volume of V j , and Aij = A ji = surface area of the face common
to Vi and V j . For the slab of length l and (constant) cross-sectional area A, we
have simply

(2a)∆V j = A . ∆x j and Aij ≡ A, i, j = 1, . . . , M ,

where ∆x j = length of the jth subinterval, containing node x j . If we choose to
locate nodes at the midpoints of intervals, then the endpoints of the jth subinterval
are (Figure 4.1.2)

(2b)
x j−1⁄2 = x j −

∆x j

2
and x j+1⁄2 = x j +

∆x j

2
, j = 1, . . . , M , with x1⁄2 = 0, xM+1⁄2 = l.

x
x1 xMx jx j−1 x j+1

0 lx j−1⁄2 x j+1⁄2

Figure 4.1.2. Nodes and faces of the spatial mesh.

4.1 NUMERICAL HEAT TRANSFER 185

In particular, if the partition is uniform, then ∆x j = ∆x = l/M , the nodes x j are
equidistant and

(2c)x1⁄2 = 0, x j−1⁄2 = (j − 1)∆x, j = 1, . . . , M , xM+1⁄2 = M∆x = l .

For various other common 1- and 2-dimensional meshes see PROBLEMS 3-6.
Let ∆tn > 0 be time increments and define the discrete time-steps

(2d)t0 = 0 , t1 = ∆t0 , . . . , tn + 1 = tn + ∆tn , . . . , n = 0, 1, 2,

If ∆tn = ∆t for all n, then : tn = n∆t, n = 0, 1, 2,
With T (x, t) denoting the exact solution of (1), T (x j , tn) represents its value at

node x j at time tn, and its numerical approximation will be denoted by

(3a)T n
j ≈ T (x j , tn), j = 1, . . . , M , n = 0, 1,

We reg ard T n
j as also an approximation to the mean temperature of V j at time tn,

see PROBLEM 8. In addition, we introduce approximations to the boundary tem-
peratures

(3b)T n
0 ≈ T (0, tn) and T n

M+1 ≈ T (l, tn), n = 0, 1,

From the initial condition (1b),

(4)T 0
j : = Tinit(x j), j = 1, . . . , M ,

is known; for n = 0, 1, . . . , we want to define an algorithm for determining the
values T n+1

j at the next time-step, when we know the values T n
j at the current

time-step.

Discrete heat balance

Finite-difference discretizations of the heat equation (1) may be derived in var-
ious ways (see [LAPIDUS-PINDER], [PAT ANKAR], [MINKOWYCZ et al]). We
prefer the one that has direct physical meaning, the discrete heat balance, that
originally formed the basis for the conservation law (1) itself (§1.2). Thus, we
think of (1) in its primitive form :

(5)Et + qx = 0 ,
with

(6)
E = thermal energy density per unit volume =

T

Tref

∫ ρc(T)dT ≈ ρc[T − Tref],

Tref being some convenient reference temperature, and

(7)q = heat flux = − kT x (Fourier′s law).

Note that we may use either the volumetric enthalpy E (per unit volume), or the
specific enthalpy e (per unit mass), E = ρe. Integrating (5) over the control vol-
ume V j (Figure 4.1.3), and over the time interval [tn , tn + ∆tn], we find

186 CHAPTER 4

jV

0 l
x

tn+1

tn

x1 x j xM

t

x j−1 x j+1

Figure 4.1.3. Space - time grid.

tn+1

tn

∫ ∂
∂ t





A

x j+1⁄2

x j−1⁄2

∫ E(x , t) dx




dt = −
tn+1

tn

∫ A

x j+1⁄2

x j−1⁄2

∫ qx(x , t) dx dt. (8a)

Dividing out the constant cross-sectional area A and integrating the derivatives
yields

x j+1⁄2

x j−1⁄2

∫ E(x , t) dx |t = tn+1

t = tn

=
tn+1

tn

∫ [q(x j−1⁄2 , t) − q(x j+1⁄2 , t)] dt . (8b)

Assuming V j is small enough for E(x j , t) to be approximately the mean energy
(density) inside V j , i.e. assuming E is approximately uniform in V j we have

x j+1⁄2

x j−1⁄2

∫ E(x , t) dx ≈ E(x j , t) ∆x j ,

and (8) becomes

[E(x j , tn+1) − E(x j , tn)] ∆x j =
tn+1

tn

∫ [q(x j−1⁄2 , t) − q(x j+1⁄2 , t)] dt . (9)

This simply expresses the heat balance in V j during (tn , tn+1), namely, the gain of
heat during this time is equal to the amount of heat entering the volume (from the
left), minus the heat leaving it (at the right, per unit cross-sectional area).

Next, we assume that the time-increment ∆tn may be so brief that during the
time (tn , tn+1) the fluxes are approximately constant and arbitrarily close to their
values at any intermediate time in this interval. Let

(10)tn+θ : = tn + θ ∆tn = (1 − θ)tn + θ tn+1 ,

be some intermediate time with 0 ≤ θ ≤ 1. The usual choices are θ = 0, 1⁄2 or 1,
and these will be discussed later. We can then approximate (9) by

4.1 NUMERICAL HEAT TRANSFER 187

(11)[E(x j , tn+1) − E(x j , tn)] ∆x j = ∆tn [q(x j−1⁄2 , tn+θ) − q(x j+1⁄2 , tn+θ)] ,
j = 1, . . . , M ,

which constitutes a complete discretization of the conservation law (5). To obtain
a numerical scheme, we introduce the discrete approximations

En
j ≈ E(x j , tn) , qn+θ

j±1⁄2 ≈ q(x j±1⁄2 , tn +θ ∆tn), 0 ≤ θ ≤ 1 ,

and write (11) as

(12)En+1
j − En

j =
∆tn

∆x j
[qn+θ

j−1⁄2 − qn+θ
j+1⁄2], j = 1, . . . , M , n = 0, 1, . . .

This is the discretization of the energy conservation law that will be extended to
phase change processes as the ‘‘enthalpy method’’ in §4.3. The thermal state of
the control volume V j at the time tn is completely determined by the enthalpy En

j .
Relation (12) provides us with the means for updating that thermal state to the next
discrete time tn+1.

Let us now discuss the choice of the parameter θ . For θ = 0 the fluxes are eval-
uated at the old time, tn, and (12) constitutes an explicit determination of the
enthalpy approximation En+1 of E at the advanced time step tn+1 in terms of the
state of the material at tn :

explicit scheme: En+1
j = En

j +
∆tn

∆x j
[qn

j−1⁄2 − qn
j+1⁄2] , j = 1, . . . , M , (13)

n = 0, 1,
For θ = 1 we hav e the

fully implicit scheme: En+1
j = En

j +
∆tn

∆x j
[qn+1

j−1⁄2 − qn+1
j+1⁄2] , j = 1, . . . , M ,

(14)
n = 0, 1,

For 0 < θ < 1, the scheme is also implicit, using intermediate values of the flux
which we define as

qn+θ : = (1 − θ) qn + θ qn+1.

The most common choice is θ = 1⁄2, in which case the resulting numerical method
is known as the Crank − Nicolson scheme, about which more will be said later.

Discrete fluxes

These schemes require approximations of the fluxes across the faces located at
x j−1⁄2 and x j+1⁄2. Let us consider interior control-volume faces first; the boundary
cases will be discussed in §4.1.C. The conductive flux is given by

(15)q = − kT x ≈ − k
∆T

∆x
.

Since the temperature is represented discretely by nodal values T j , we may use
first-order finite differences to approximate q discretely. Thus,

188 CHAPTER 4

T1

T2

T3

qa = qb

∆xb∆xa

Figure 4.1.4. Steady-state profile.

(16)q j−1⁄2 = − k j−1⁄2

T j − T j−1

x j − x j−1
, j = 2, . . . , M ,

is the amount of heat flowing from V j−1 into V j across a unit cross-sectional area
per unit time. But what does k j−1⁄2 represent? Generally, the conductivity is not
constant but a function of location (when V j−1, V j consist of different materials,
e.g. a wall and a phase change material or liquid and solid phases of the same
material), and of temperature, k = k(x, T). So, in general, the flux must represent
heat flow through media of different conductivities, k j−1 for V j−1 and k j for V j ,
and we need to assign, in a consistent manner, an effective conductivity k j−1⁄2. A
reasonable definition of effective conductivity for a layered structure is obtained as
follows.

Consider steady-state heat conduction (T xx = 0) through two adjacent layers
of thicknesses ∆xa, ∆xb and conductivities ka, kb. Then the temperature profiles
are straight lines (Figure 4.1.4) and at the common wall the flux from the left must
equal the flux from the right:

− ka
T2 − T1

∆xa
= q = − kb

T3 − T2

∆xb
.

Solving the first equality for T2 − T1, the second for T3 − T2 and adding we obtain

T3 − T1 = − q (
∆xa

ka
+

∆xb

kb
).

Hence, the flux across the common wall is

q = −
T3 − T1

∆xa

ka
+

∆xb

kb

.

We refer to the ratio of length to conductivity as the thermal resistance. Hence,

the relationship between flux q and resistance R is q = −
∆T

R
where the tempera-

ture drop ∆T is often referred to as the thermal driving force.

4.1 NUMERICAL HEAT TRANSFER 189

It should be noted that the common definition of thermal resistance is
length of resistance path

(crosssectional area) (conductivity)
,

making the formula

heat flow rate = qA = − k
∆T

∆x
A = −

∆T

∆x / Ak
= −

∆T

R
correct. However, when the cross sectional area A is constant and ∆V = A∆x, the
A divides out in the discretization of the conservation law:

∆E =
∆t

∆V
[[qA]]−

+ =
∆t

A∆x
[[q]]−

+ A =
∆t

∆x
[[q]]−

+ ,

so we only need an expression for the flux and not the flow rate. Hence, for
1-dimensional Cartesian geometry, it is more convenient to take as resistance the

quantity
∆x

k
instead of the standard

∆x

Ak
(See also §4.1.F).

From the above analysis we see that the effective overall resistance of the com-
posite layer is R = Ra + Rb . Hence it is not the conductivities that add up but the
resistances of the two layers, in this serial arrangement. We conclude that the total
flux through a composite layer equals the overall temperature drop divided by the
sum of the resistances of the layers.

With this in mind, we set (Figure 4.1.5)

(17)
R j−1⁄2 =

1⁄2∆x j−1

k j−1
+

1⁄2∆x j

kj
= resistance of the path [x j−1, x j]

and express the interior fluxes, (16), as

(18)q j−1⁄2 = −
T j − T j−1

R j−1⁄2
, j = 2, . . . , M .

In particular, if ∆x j±1 = ∆x j = ∆x and k j±1 = k j = k then their common resis-
tance is

R =
∆x

2
(
1

k
+

1

k
) =

∆x

k
,

as expected.

x j−1 x j

1⁄2∆x j

kj

R j−1⁄2

1⁄2∆x j−1

k j−1

x j−1⁄2

Figure 4.1.5. Resistances of adjacent control volumes.

190 CHAPTER 4

Discrete heat equation

Substituting the flux expression (18) into the discrete heat balance (12) we
obtain

En+1
j = En

j +
∆tn

∆x j
[

T n+θ
j+1 − T n+θ

j

R j+1⁄2
−

T n+θ
j − T n+θ

j−1

R j−1⁄2
]

(19)= En
j +

∆tn

∆x j
[

1

R j−1⁄2
T n+θ

j−1 − (
1

R j−1⁄2
+

1

R j+1⁄2
)T n+θ

j +
1

R j+1⁄2
T n+θ

j+1] .

In particular, if ∆x j = ∆x, and k j = k, then R j±1⁄2 =
∆x

k
and (19) becomes

En+1
j = En

j +
k∆tn

∆x2
[T n+θ

j−1 − 2T n+θ
j + T n+θ

j+1] ; (20)

the bracketed expression is, of course, the standard centered finite-difference dis-
cretization of T xx .

For plain heat conduction, the energy is simply the sensible heat, (6), which,
when the specific heat is independent of temperature, becomes

En
j ≈ E(x j , tn) = ρc j[T n

j − Tref] .

This can be used to eliminate En
j , and thus (12) takes the form

(21)T n+1
j = T n

j +
∆tn

ρc j∆x j
[qn+θ

j−1⁄2 − qn+θ
j+1⁄2] , j = 1, . . . , M , n = 0, 1, 2, . . .

with 0 ≤ θ ≤ 1 to be chosen. This is often a convenient discretization, the fluxes
being given by (18) for interior faces, and as described in §4.1.C for the boundary
faces. Alternatively, the fluxes may be eliminated completely, using (18), to obtain

T n+1
j = T n

j +
∆tn

ρc j∆x j
[

1

R j−1⁄2
T n+θ

j−1 − (
1

R j−1⁄2
+

1

R j+1⁄2
) T n+θ

j +
1

R j+1⁄2
T n+θ

j+1] ,
(22)

j = 1, . . . , M ; n = 0, 1, 2,

which is a complete discretization of the heat conduction equation (1) in terms of
temperatures only, with T n+θ

0 and T n+θ
M+1 determined by the boundary conditions.

In particular, for a uniform grid, ∆x j = ∆x, uniform time steps, ∆tn = ∆t and
constant thermophysical properties (α = k/ρc) we hav e

(23)T n+1
j = T n

j +
α ∆t

∆x2
[T n+θ

j−1 − 2T n+θ
j + T n+θ

j+1] , j = 1, . . . , M ; n = 0, 1, 2,

For θ = 0, this is the usual explicit discretization of the heat equation, Tt = α T xx ,
obtained by forward Euler discretization of Tt and centered differencing of T xx .
For any 0 < θ ≤ 1, the discretization is implicit. Their pros and cons are discussed
in §4.1.E and §4.1.F.

4.1 NUMERICAL HEAT TRANSFER 191

4.1.C Discretization of boundary conditions

For equations (12) (or (19) or (22)) to constitute a closed system allowing the
state of the system to be advanced from tn to tn+1, values are needed for the bound-
ary fluxes q1⁄2 and qM+1⁄2, representing the fluxes through the walls x = 0 and x = l
(or, values for T0 and TM+1). We discuss the treatment of boundary conditions at
x = 0, the treatment at x = l being completely analogous. The concept of ther-
mal resistance makes the treatment of boundary conditions simple.

Case I. Imposed temperature: T (0, t) = T0(t)

Here the wall temperature is specified, so the value of T n
0 is known at each time

tn,

(24)T n
0 = T0(tn), n = 0, 1, 2, . . .

Then from (18), the boundary flux is

(25)
qn

1⁄2 = −
T n

1 − T n
0

R1⁄2
, with R1⁄2 =

1⁄2∆x1

k1
.

Case II. Imposed Flux: − kT x(0, t) = q0(t)

Here the boundary flux is specified, so

(26)qn
1⁄2 = q0(tn), n = 0, 1, 2,

Then, the surface temperature T n
0 is obtained from −

T n
1 − T n

0

R1⁄2
= q0(tn), whence

(27)T n
0 = T n

1 + R1⁄2q0(tn), with R1⁄2 =
1⁄2∆x1

k1
.

Case III. Convective Flux: − kT x(0, t) = h[T∞(t) − T (0, t)]

Setting T n
∞ : = T∞(tn), and employing the standard discretization

(28)
qn

1⁄2 = −
T n

1 − T n
0

R1⁄2
, R1⁄2 =

1⁄2∆x1

k1
,

of the conductive flux − kT x(0, t), we see that the boundary condition requires

−
T n

1 − T n
0

R1⁄2
= h[T n

∞ − T n
0], from which T n

0 is expressed as a weighted average of

T n
∞ and T n

1 :
(29)

T n
0 =

T n
1 + hR1⁄2T

n
∞

1 + hR1⁄2
.

Substituting this value of T n
0 into (28), we find

192 CHAPTER 4

(30)
qn

1⁄2 = −
T n

1 − T n
∞

1 / h + R1⁄2
.

Comparison with (28) reveals that the ambient temperature, T n
∞, can play the role

of the face temperature T n
0 provided the conductive resistance, R1⁄2, is replaced by

the total effective resistance
1

h
+ R1⁄2, (the sum of the convective and conductive

resistances).
As usual, the imposed temperature case, (25), corresponds to h → ∞ in (29),

(30).

4.1.D The discrete problem

Having derived discretizations of both the partial differential equation and the
boundary conditions, we can now present algorithms for finding the unknown
nodal temperatures T n+1

1 , T n+1
2 , . . . , T n+1

M , at time tn+1, from their values at the old
time tn for our model heat conduction problem (1). Indeed, combining (4), (30),
(26) but applied to x = l, and (21), (18), (17), the updating equations for the
T n+1

j ’s are as follows:

(31a)initial values: T 0
j = Tinit(x j), j = 1, . . . , M ,

(31b)
boundary condition at x = 0 : qn+θ

1⁄2 = −
T n+θ

1 − T n+θ
∞

1

h
+ R1⁄2

, R1⁄2 =
1⁄2∆x

k1
,

(31c)boundary condition at x = l : qn+θ
M+1⁄2 = 0 ,

(31d)interior values: T n+1
j = T n

j +
∆tn

ρc j∆x j




qn+θ
j−1⁄2 − qn+θ

j+1⁄2



, j = 1, . . . , M ,

where

(31e)
qn+θ

j−1⁄2 = −
T n+θ

j − T n+θ
j−1

R j−1⁄2
with R j−1⁄2 =

1⁄2∆x j−1

k j−1
+

1⁄2∆x j

kj
, j = 2, . . . , M ,

and
(31f)T n+θ = (1 − θ)T n + θ T n+1 , 0 ≤ θ ≤ 1.

The solvability of this system for the choices θ = 0 , 0 < θ ≤ 1, is discussed
in the following subsections.

Note that neither the spatial steps ∆x j nor the time steps ∆tn need be uniform.
A finer mesh may be needed near boundaries, or wherever steep gradients are
expected, to resolve rapid variations, etc. However, unless there is specific reason
to use non-uniform spatial grids, uniform ones are preferred because they are

4.1 NUMERICAL HEAT TRANSFER 193

simpler and they yield better accuracy. Moreover, if the heat transfer coefficient is
not constant but a function of t , T∞(t) and T (0, t) as in the radiation boundary
condition (§1.2), then in (31b) h is actually

(32a)hn+θ = h(tn+θ , T∞(tn+θ) , T n+θ
0) ,

where, by (29),

T n+θ
0 =

T n+θ
1 +

hn+θ ∆x1

2k1
T n+θ

∞

1 +
h n+θ ∆x1

2k1

, (32b)

making the system highly nonlinear if θ > 0. Similarly, if the specific heat and/or
conductivity are functions of location and temperature, then c j , and k j actually
change with time because of the temperature change, and must be evaluated at
t = tn+θ . The resulting nonlinear system must be solved by some iterative method
(see §4.1.F).

Discretization replaces a Partial Differential Equation, PDE[u] = 0, by a
Finite-Difference Equation, FDE[U n

j] = 0. The amount by which the exact solu-
tion u of the PDE fails to satisfy the FDE is called the

local truncation error: ten
j : = FDE[u(x j , tm)] .

Since PDE[u(x j , tn)] = 0, the truncation error may be viewed as the difference
between FDE and PDE applied to u(x j , tn). The discretization is consistent if
ten

j → 0 as ∆x, ∆t → 0, which signifies that the FDE is indeed an approximation
to the given PDE (instead of to some other PDE); see PROBLEM 14. On the
other hand, the distance between the continuous and discrete solutions is measured
by the

local discretization error: den
j : = U n

j − u(x j , tn) .

The method is convergent if den
j → 0 as ∆x, ∆t → 0, which signifies that the

discrete solution does indeed approximate the exact solution, see PROBLEM 15.
Note that U n

j denotes the exact solution of the FDE. The actual computed solu-
tion Ũ̃

n
j , howev er, may be contaminated by roundoff errors ren

j = Ũ̃
n
j − U n

j .
These may be introduced at any point in the computation (because of unavoidable
rounding of data or computed values). Such errors then propagate to subsequent
time-steps and to neighboring points. Even though a single rounding error is typi-
cally negligibly small, the concern is that it may grow so fast as it propagates that
substantial accuracy in the computed solution is lost (see §4.1.E and PROBLEM
16). The best we can hope for is that the numerical scheme does not amplify
errors so that they grow faster than the exact solution of the FDE. In particular, if
the exact solution does not grow, then errors should not be amplified. In this case
the numerical method is called stable. Clearly, the actual (local) error in the
numerical solution is the sum den

j + ren
j = Ũ̃

n
j − u(x j , tn). In a convergent

method, we can reduce den
j by taking smaller ∆x, ∆t but then ren

j increases

194 CHAPTER 4

(see PROBLEM 21); hence, in practice, there is always an error in the computed
results.

For any 0 ≤ θ ≤ 1, (31) is a consistent scheme with ten
j = O(∆t + ∆x2), see

PROBLEM 14. Stability is discussed in §4.1.E, F and convergence follows from
the ([ISAACSON-KELLER], [LAPIDUS-PINDER])

Lax Equivalence Theorem: A consistent finite-difference method for a well-
posed (linear) problem is convergent if and only if it is stable.

Also see PROBLEM 15.

4.1.E Explicit time updating

Choosing θ = 0 in (31), the fluxes are evaluated at the old time tn and therefore
they are completely known. This amounts to assuming that the values of the fluxes
do not change appreciably during the time interval [tn , tn+1], so that the process at
time tn+1 is still driven by the fluxes at time tn. The time discretization is then the
standard forward Euler discretization, and the new values, T n+1

j , are obtained
directly, simply by evaluating the right-hand sides.

Written in terms of temperatures only, the explicit scheme consists of (PROB-
LEM 13)

(33a)T 0
j = Tinit(x j), j = 1, . . . , M ,

T n
0 =

T n
1 + h R1⁄2T

n
∞

1 + h R1⁄2
, where R1⁄2 =

∆x1

2k1
, (33b)

T n
M+1 = T n

M − 0 . RM+1⁄2, where RM+1⁄2 =
∆xM

2kM
(33c)

(since qM+1⁄2 = 0 in our example problem), and

(33d)
T n+1

j = T n
j +

∆tn

ρc j∆x j





1

R j−1⁄2
T n

j−1 − (
1

R j−1⁄2
+

1

R j+1⁄2
)T n

j +
1

R j+1⁄2
T n

j+1





, j = 1, . . . , M

with

R j+1⁄2 =
∆x j

2kj
+

∆x j+1

2k j+1
, j = 1, 2, 3, . . . , M − 1 , and

(33e)
R j−1⁄2 =

∆x j−1

2k j−1
+

∆x j

2k j
, j = 2, 3, . . . , M .

The local truncation error is of order ∆t in time and ∆x2 in space ([SMITH],
[LAPIDUS-PINDER], [SEWELL], PROBLEM 14). Clearly, if the thermal con-
ductivity and specific heat are constants, k j ≡ k, c j ≡ c, and the mesh is uni-
form, ∆x j ≡ ∆x, then R j+1⁄2 = R j−1⁄2 ≡ ∆x/k, so setting

(34)µ =
α ∆t

∆x2
, α =

k

ρc
,

4.1 NUMERICAL HEAT TRANSFER 195

we see that (33d) simplifies to (c.f. (23))

(35)T n+1
j = T n

j + µ [T n
j−1 − 2T n

j + T n
j+1], j = 2, . . . , M ,

for the internal nodes (j = M is also included here since T n
M+1 = T n

M by (33c)).
Boundary nodes are discussed later.

The extreme simplicity and convenience of the explicit scheme however is par-
tially offset by the necessity of restricting the time step size to ensure the numeri-
cal stability of the scheme. This is easiest to explain in the simplest case of (35),
which may be re-written as

(36)T n+1
j = (1 − 2µ) T n

j + µ (T n
j−1 + T n

j+1), j = 2, . . . , M .

The condition for stability is that 1 − 2µ ≥ 0, known as the

Courant − Friedrichs − Lewy (CFL) Condition: ∆t ≤
1

2

∆x2

α
, (37)

after its discoverers [COURANT-FRIEDRICHS-LEWY]. It guarantees that the
exact solution of the numerical scheme will obey a Maximum Principle, as does
the solution of the Heat Equation itself, namely that

min {T n
j−1, T n

j , T n
j+1} ≤ T n+1

j ≤ max {T n
j−1, T n

j , T n
j+1} .

Indeed, if condition (37) is violated, then (36) can produce physically unrealistic
values, for example, a negative T n+1

j from positive T n
j−1, T n

j , T n
j+1. The numerical

consequence is that errors would grow exponentially with n. Indeed, if errors are
introduced at any time, from whatever source (say, roundoff), then (36) will
compute contaminated values, T̃˜ n

j = T n
j + en

j , instead of the desired values T n
j in

later steps; since both the T n
j ’s and the T̃˜ n

j ’s satisfy (36), the errors en
j also do:

(38)en+1
j = (1 − 2µ) en

j + µ [en
j−1 + en

j+1] , j = 2, . . . , M ;

as a simple illustration, assuming e0
j = (−1) je, we find

e1
j = (1 − 4µ)e0

j , e2
j = (1 − 4µ)2e0

j , . . . , en
j = (1 − 4µ)ne0

j ,

whence the error amplification factor is 1 − 4µ at each step; it follows that, unless

|1 − 4µ | ≤ 1, i.e. 0 ≤ µ ≤
1

2
, the errors will be amplified exponentially fast and

will destroy the computation after a few steps ! On the other hand, the requirement
that ∆t be greater than the relaxation time τ = ∆x2/π 2α (PROBLEM 11) provides
a lower bound µ > 1/π 2.

More generally, in the von Neumann stability analysis approach, errors are
represented by Fourier expansions and amplification factors of typical Fourier
terms are determined, which leads to (37) as the condition for no-growth in the
propagated errors, see [ALLEN-HERRERA-PINDER, p. 86, p. 206], [LAPIDUS-
PINDER, p. 170]. Another approach to numerical stability is the ‘‘matrix

196 CHAPTER 4

method’’ [LAPIDUS-PINDER, p. 179].
A simple and effective way to guarantee stability is the ‘‘positive-coefficient

rule’’: when T n+1
j is written as a linear combination of its neighbors

T n
j−1, T n

j , T n
j+1 (see (33d)), the coefficients must all be positive; this has been

shown to be sufficient for stability by [FORSYTHE-WASOW], (see [PAT ANKAR]
for a discussion). Thus, in the more general case of (33d), stability at internal
nodes is guaranteed by

∆tn ≤
2≤ j≤M−1

min
ρc j∆x j

1

R j−1⁄2
+

1

R j+1⁄2

or simply ∆tn ≤
1

2

∆x2
min

α max
, (39)

where ∆xmin = min ∆x j and α max = max α j .
We now consider boundary nodes for each type of boundary conditions. It is

easy to see (PROBLEM 17) that if T n
0 = T0(tn) is imposed at x = 0, then the coef-

ficient of T n
1 in (33d) for j = 1 is 1 −

∆tn

ρc1∆x1
(

1

R1⁄2
+

1

R1+1⁄2
), whose positivity is

guaranteed by choosing

∆tn ≤
1

3

∆x2

α
. (40a)

Note that this restricts the time-step even more than (39). On the contrary, if the
flux qn

1⁄2 = q0(tn) is prescribed at x = 0, then the coefficient of T n
1 is

1 −
∆tn

ρc1∆x1 R1+1⁄2
, whence it suffices to choose

∆tn ≤
∆x2

α
(40b)

which will automatically hold under (39). Finally, the convective boundary condi-
tion case leads to the restriction

∆tn ≤
1 + h

∆x

2k

1 + 3h
∆x

2k

. ∆x2

α
, (40c)

for which (40a) is sufficient.
We see that it suffices to restrict the time-step according to (PROBLEM 18)

∆tn <
1

3

∆x2
min

α max

for imposed temperature

or convective boundary conditions,
(41)

or

∆tn <
1

2

∆x2
min

α max
for imposed flux boundary conditions . (42)

We hav e replaced ≤ with < as a precaution, against roundoff.
Such restrictions on the time-step size may be rather severe, making computa-

tions with an explicit scheme expensive. When the material properties vary with
temperature, ∆tn needs to be re-adjusted (re-computed) before a new

4.1 NUMERICAL HEAT TRANSFER 197

time-step is taken. In such a case it is good programming practice not to let ∆t
become smaller than a pre-set minimum; for if it does, no practical time-advancing
will be observed and computation will be wasted; instead, halt the computation
and carefully examine what has caused the time step size to become so small.

Note also that (41) may be significantly more restrictive than (42) which is all
that is required at internal nodes. Fortunately, there is a simple way of avoiding
(41) entirely: for the boundary node(s) only, use the fully implicit discretization.
For example, if T n

0 = T0(tn) is imposed at x = 0, (also, see PROBLEM 20), then
the implicit discretization at the boundary node (j = 1, θ = 1 in (31d), assuming
uniform ∆x and constant k for simplicity) is

(43)(1 + 3µ)T n+1
1 = T n

1 + µ[2T n+1
0 + T n+1

2] ;

with ∆tn as in (42), we update the internal nodes T n+1
2 , T n+1

3 , . . . , explicitly,
T n+1

0 = T0(tn+1) is giv en, and therefore we can find T n+1
1 from (43).

4.1.F Implicit time updating

Choosing the parameter θ to be greater than zero in (31) results in a system of
simultaneous equations for the unknowns T n+1

1 , T n+1
2 , . . . , T n+1

M , which must be
solved, usually by some iterative method. The advantage of implicit schemes over
explicit ones is their possible unconditional stability dependent on the choice of θ .
The price to be paid is having to solve a system of equations, instead of just evalu-
ations; we shall discuss some commonly used methods below.

The common choices for the value of θ are 1⁄2 and 1. Choosing θ = 1, the
fluxes are computed at the latest time, tn+1, and the scheme is referred to as fully
implicit. It results from the backward Euler time discretization and its local error
is again of order ∆t in time and ∆x2 in space. In this regard, the Crank-Nicolson
scheme, resulting from taking θ = 1⁄2 in (31) is preferable. The fluxes, qn+1⁄2 at the
mid-point of the time-interval [tn , tn+1] are taken as the averages of the values at
tn and tn+1. This amounts to employing a centered-difference formula for the time
derivative, resulting in a local error of order ∆t2 in time and ∆x2 in space.

Written entirely in terms of temperatures, the implicit scheme for any
0 < θ ≤ 1 takes the form

−
θ ∆tn

ρc j∆x j

T n+1
j−1

R j−1⁄2
+




1 +

θ ∆tn

ρc j∆x j
(

1

R j−1⁄2
+

1

R j+1⁄2
)



T n+1

j −
θ ∆tn

ρc j∆x j

T n+1
j+1

R j+1⁄2
(44a)

=
(1 − θ)∆tn

ρc j∆x j

T n
j−1

R j−1⁄2
+




1 −

(1 − θ)∆tn

ρc j∆x j
(

1

R j−1⁄2
+

1

R j+1⁄2
)



T n

j +
(1 − θ)∆tn

ρc j∆x j

T n
j+1

R j+1⁄2
,

j = 1, . . . , M ,

while the boundary conditions (31b, c) contribute the equations

198 CHAPTER 4

(44b)
T n+1

0 =
T n+1

1 + hR1⁄2T
n+1
∞

1 + hR1⁄2
, T n+1

M+1 = T n+1
M − 0 . RM+1⁄2 .

These constitute a linear system of M + 2 equations for the M + 2 unknowns
T n+1

0 , T n+1
1 , . . . , T n+1

M , T n+1
M+1.

Let us examine this system in the simplest case of uniform
∆tn = ∆t , ∆x j = ∆x, and constant c j = c and k j = k. Then, setting

(45)µ =
∆t

ρc∆x

1

R j±1⁄2
=

k∆t

ρc∆x2
=

α ∆t

∆x2
,

the system consists of the M + 2 equations

(46a)(1 +
h∆x

2k
)T n+1

0 − T n+1
1 =

h∆x

2k
T n+1

∞ ,

(46b)−θ µT n+1
j−1 + (1 + 2θ µ)T n+1

j − θ µT n+1
j+1 =

(1 − θ)µT n
j−1 + [1 − 2(1 − θ)µ]T n

j + (1 − θ)µT n
j+1

(46c)−T n+1
M + T n+1

M+1 = 0 . ∆x

2k

The last equation simply says T n+1
M+1 = T n+1

M , so we omit it, and write the
remaining M + 1 equations for the unknowns T n+1

0 , T n+1
1 , . . . , T n+1

M in matrix
form:












(1 +
h∆x

2k
)

−θ µ

0
. . .

0

0

−1

(1 + 2θ µ)

−θ µ

0
. . .

. . .

0

−θ µ

(1 + 2θ µ)
. . .

. . .

. . .

. . .

. . .

. . .

. . .

−θ µ

0

. . .

. . .

. . .

. . .

(1 + 2θ µ)

−θ µ

0

0

0

0

−θ µ

(1 + 2θ µ)





















T n+1
0

T n+1
1
. . .

. . .

T n+1
M−1

T n+1
M










=












h∆x

2k
T n+1

∞
(1 − θ)µT n

0 + [1 − 2(1 − θ)µ]T n
1 + (1 − θ)µT n

2

. . .

. . .

(1 − θ)µT n
M−2 + [1 − 2(1 − θ)µ]T n

M−1 + (1 − θ)µT n
M

(1 − θ)µT n
M−1 + [1 − (1 − θ)µ]T n

M












(47)

The coefficient matrix has several important properties. It is tridiagonal and
strictly diagonally dominant, meaning that the magnitude of each diagonal entry

4.1 NUMERICAL HEAT TRANSFER 199

is greater than the sum of the absolute values of the off-diagonal entries,
|1 + 2θ µ | > | − θ µ | + | − θ µ |. Moreover, multiplying the first equation by θ µ
makes the coefficient matrix symmetric. It is known, (see, for example,
[SEWELL]) that such a matrix is positive-definite and the elements of its inverse
are all positive. It follows that the linear system always has a unique solution,
which may be obtained by the very efficient tridiagonal algorithm (a variant of
Gaussian elimination, see [PRESS et al], [MINKOWYCZ et al], [SEWELL]).

In more general cases, the tridiagonal system (47) may be solved by the Gauss-
Seidel iterative method or, more efficiently, by the SOR iterative method
([YOUNG-GREGORY], [LAPIDUS-PINDER], [SEWELL]). We shall discuss
these later for phase change problems (see §4.3)

The advantage of implicit schemes lies in their improved stability properties.
Indeed, the scheme (46) with 1⁄2 ≤ θ ≤ 1 is known to be unconditionally stable
[ISAACSON-KELLER], thus imposing no restriction on the time-step. Yet in
practice, the Crank-Nicolson scheme (θ = 1⁄2) may exhibit oscillations for large
time-steps (see [PAT ANKAR] for a discussion). In fact, the ‘‘positive coefficient
rule’’ mentioned earlier, when applied to (46), requires 1 − 2(1 − θ)µ ≥ 0, i.e.,

µ ≤
1

2(1 − θ)
, (48)

which imposes a restriction on the time step for any 0 ≤ θ < 1. Only the fully
implicit scheme (θ = 1) is truly unconditionally stable in this stronger sense!

4.1.G Heat conduction in 2 or 3 dimensions

All of the previous developments generalize naturally to 2 or 3 space dimen-
sions. We shall outline the treatment for a 3-dimensional analogue of the model
heat conduction problem (1).

For simplicity, we consider a box, Ω : 0 ≤ x ≤ l1 , 0 ≤ y ≤ l2 , 0 ≤ z ≤ l3, ini-
tially at temperature Tinit(x

→
). The face x = 0 is heated convectively, from a source

at ambient temperature T∞(t), the face y = 0 is kept at a fixed temperature T fixed

(for variety!) and the other faces are insulated (Figure 4.1.6). The parameters
ρ , c , k will be assumed to be constant.

MATHEMATICAL PROBLEM : Find T (x
→

, t) = T (x, y, z, t) such that

(49a)ρcTt = ∇ . (k∇T) in Ω , t > 0 ,

(49b)T (x
→

, 0) = Tinit(x
→

), x
→∈Ω ,

(49c)− kT x |x=0 = h [T∞(t) − T (0, y, z, t)] , T (x, 0, z, t) = T fixed ,

(49d)− kT x |x=l1
= − kT y |y=l2

= − kTz |z=0
= − kTz |z=l3

= 0 .

200 CHAPTER 4

heating
convectivez

x

T fixed

l1

l3

y
l2

Figure 4.1.6. Melting of a box.

We subdivide [0 , l1] into M1 subintervals, [0 , l2] into M2 subintervals and
[0 , l3] into M3 subintervals. For simplicity we take uniform grids in each direc-
tion, so that

∆x =
l1

M1
, ∆y =

l2

M2
, ∆z =

l3

M3
,

and ∆V = ∆x∆y∆z. Thus, the box Ω is subdivided into M1 M2 M3 boxes Vijk of
uniform volume ∆V with centers (xi , y j , zk) and bounding surface ∂Vijk .
Approximations to the temperature T (xi , y j , zk , tn) will be denoted by T n

ijk , and
to the energy density E(xi , y j , zk , tn) by En

ijk , considered as mean values over
Vijk . Integrating the conservation law

(50)Et + ∇ . q
→ = 0

over the control volume Vijk and [tn , tn+1] , we obtain similarly to (6)-(12), the
discrete conservation law

E n+1
ijk − E n

ijk = −
∆t

∆Vijk ∂Vij k

∫ q
→ n+θ . N

→
dS

(51)=
∆t

∆Vijk
[q n+θ

i−1⁄2 j k
. A i−1⁄2 j k − q n+θ

i+1⁄2 j k
. A i+1⁄2 j k + q n+θ

i j−1⁄2 k
. A i j−1⁄2 k

− q n+θ
i j+1⁄2 k

. A i j+1⁄2 k + q n+θ
i j k−1⁄2

. A i j k−1⁄2 − q n+θ
i j k+1⁄2

. A i j k+1⁄2]

for i = 1, . . . , M1 , j = 1, . . . , M2 , k = 1, . . . , M3 and 0 ≤ θ ≤ 1 ,

the A’s denoting the areas of the corresponding faces.
In the rectangular geometry chosen, the areas of pairs of opposite faces are the

same and ∆V = ∆x∆y∆z, so (51) simplifies to

E n+θ
ijk = E n

ijk +
∆t

∆x
[q n+θ

i−1⁄2 j k − q n+θ
i+1⁄2 j k] +

∆t

∆y
[q n+θ

i j−1⁄2 k − q n+θ
i j+1⁄2 k]

(52)+
∆t

∆z
[q n+θ

i j k−1⁄2 − q n+θ
i j k+1⁄2] .

4.1 NUMERICAL HEAT TRANSFER 201

In general, however, some pairs of opposite faces may have different areas (e.g.
in the radial direction for the case of cylindrical geometry) and the above simplifi-
cation will be unfeasible. In such a case, we need to express the heat flow rate,
q . A and not just the flux (§4.1.B) in terms of temperature gradients, and use of
the standard resistance becomes more convenient. So, in general, we define

(53)R̃̃ i−1⁄2 j k =
1

Ai−1⁄2j k
(

1⁄2∆xi−1

ki−1j k
+

1⁄2∆xi

ki jk
) ≡

1

Ai−1⁄2 j k

. Ri−1⁄2 j k ,

and similarly for R̃̃ i+1⁄2 j k , R̃̃ i j−1⁄2 k , etc, so that the heat flow rate may be
expressed as

(54)
(qA) n+θ

i−1⁄2 j k = −
T n+θ

i j k − T n+θ
i−1 j k

R̃̃ i−1⁄2j k

, etc .

In the simpler case of (52), we have

(55)
q n+θ

i−1⁄2 j k =
(qA) n+θ

i−1⁄2 j k

Ai−1⁄2j k
= −

T n+θ
ijk − T n+θ

i−1 j k

∆y∆zR̃̃ i−1⁄2j k

= −
T n+θ

ijk − T n+θ
i−1 j k

∆x

2
(

1

ki−1 j k
+

1

kijk
)

, etc .

The boundary conditions are discretized as in the 1-dimensional case (§4.1.C).
For example, the convective flux boundary condition on the face x = 0 becomes

(56)
(qA) n+θ

1−1⁄2 j k = −
T n+θ

1 jk − T n+θ
∞

1

h A1⁄2j k
+ R̃̃ 1⁄2j k

≡ −
T n+θ

1 jk − T n+θ
∞

(
1

h
+ R1⁄2 j k)

1

A1⁄2j k

with R1⁄2 j k =
1⁄2∆x

k1jk
; the imposed temperature on the face y = 0 becomes

(qA) n+θ
i 1−1⁄2 k = −

T n+θ
i1k − T fixed

R̃̃ i 1⁄2k

≡ −
T n+θ

i1k − T fixed

1

A i 1⁄2k
R i 1⁄2k

with R i 1⁄2 k =
1⁄2∆y

ki1k
; (57)

and the zero flux on the face x = l1 becomes

(58)(qA) n+θ
M1+1⁄2 j k = 0.

For the heat conduction process we are examining here, the energy is simply the
sensible heat measured relative to some convenient Tref :

(59)Eijk = ρcijk[Tijk − Tref].

When everything is expressed in terms of the temperatures, the equation for T n+1
ijk

involves the temperatures of the 6 adjacent nodes. Choosing θ = 0 (explicit
scheme), these neighboring temperatures will be at time tn and thus known. The
stability condition becomes

202 CHAPTER 4

∆tn <
min(∆x 2

i , ∆y 2
j , ∆z 2

k)

6 . max α ijk
, (60)

often making computations lenghty and prohibitively expensive.
In the implicit case (θ = 1⁄2 or 1), the resulting linear system will be hepta-

diagonal and diagonally- dominant, so again it may be solved efficiently, espe-
cially if the ADI method is used to reduce the system to three tridiagonal ones, see
[ALLEN-HERRERA-PINDER], [LAPIDUS-PINDER].

Cylindrical and spherical geometries are examined in PROBLEMS 5, 6, 25,
26, 28, 29.

4.1.H Internal heat source

The presence of an internal (volumetric) heat source adds a term in the energy
conservation law (§1.2) , which, instead of (50) will read

(61)Et + ∇ . q
→ = f .

The source term f (x
→

, t) is the power density, representing the amount of energy
delivered at location x

→
at time t per unit volume per unit time (so it may be in units

of J / s cm3 = Watts/cm3).
Its integration over Vijk and [tn , tn+1] contributes the additional term

1

∆Vijk

tn+1

tn

∫
Vij k

∫ f (x
→

, t) dVdt (62)

in (51). It should be noted that this integral should not be discretized by the low
order approximations used for the derivative terms because large errors may ensue.
The integration in (62) should be performed analytically whenever possible, or
high order numerical integration methods should be employed. The result may be
represented as S(∆Vijk , ∆tn), and its discrete approximation as Sn

ijk . With this
term added, the numerical scheme remains the same in all other aspects. In partic-
ular, the stability condition, (60), for the explicit scheme is not altered.

In some processes the power density, f , may also depend on temperature,
f (x

→
, t , T (x

→
, t)), making its treatment difficult. Direct integration of (62) is now

impossible and the low order discretization of T is imposed on this term as well.
Its mean value approximation,

∆tn

∆Vijk
∆Vijk f (xijk , tn+θ , T n+θ

ijk)

may introduce large errors, unless the time step ∆tn is taken to be small. Some
expedient ways for handling nonlinear source terms are suggested by
[PAT ANKAR].

4.1 NUMERICAL HEAT TRANSFER 203

4.1.I Some programming suggestions

In implementing the schemes described above there are some steps that can be
taken to enhance the utility, efficiency and maintainability of the code. Let us
describe some points related to the construction, output, debugging and validation
of a code, for the benefit of inexperienced programmers.

For clarity, readability, and adaptability, it is a good idea to place the control
logic of the algorithm into the MAIN PROGRAM and code the various tasks as
subroutines, e.g. INPUT, MESH, START, FLUX, PDE, OUTPUT, which will be
called by MAIN. An example of such a structure is shown in Table 4.1.1 below,
as it would pertain to the explicit scheme applied to a slab with imposed tempera-
tures at its ends. Comments and explanations of what is done are very helpful. In
coding the algorithm, care should be taken to avoid unnecessary or inefficient com-
putation. For example, expressions should be arranged so as to minimize loss of
significant digits; polynomials should be evaluated in nested form; wherever an
expression is used several times, evaluate it once and then use its value; ‘‘if ’’ state-
ments, and especially subroutine calls are relatively expensive, so their use should
be minimized; frequent output slows down execution, so unnecessary output
should be avoided. The longer the runs one plans to make, the more attention
should be paid to such simple programming issues.

The computation begins by calling Subroutine INPUT, which reads in the
data file, for example:

read tmax, maxsteps, dtout
read l, M ! l = slab length, M = number of nodes
read ρ , c, k ! material properties
read Tinit , T0, Tl ! initial and boundary temperatures

where tmax = desired duration of the simulation,
maxsteps = maximum number of time-steps to be allowed

for the entire computation,
dtout = desired time-interval for output.

The time-stepping will be monitored both by the actual time and by the number of
time-steps taken , nsteps (see Table 4.1.1), and will end when time > tmax or
nsteps > maxsteps, the latter as a precaution just in case the time-step dt gets to
be too small (or even neg ative!) for any reason.

After the data have been read in, Subroutine MESH sets up the mesh structure
(defines locations of nodes x(i), control-volume faces, areas, etc.), and deter-
mines the appropriate time-step ∆t. At each time step, time will be advanced by
∆t.

In order to obtain output at precisely the desired time intervals, we introduce
the variable tout = output time, which will be advanced only after each output
step; before each tout is reached we temporarily reduce ∆t, if necessary, so that
time + ∆t equals tout; then ∆t is restored to its permanent value. (see Table
4.1.1).

204 CHAPTER 4

Table 4.1.1 Example of a driver code

c HEAT.f : Heat conduction in a slab with imposed temperatures
c 7-17-91 : entered and debugged basic code
c------- Notation ----------

(explanation of symbols used and their meaning)
c***************************

Program HEAT
(common blocks)

c---------- Initialize ----------
call INPUT
call MESH

dtperm = dt
tout = max(dtout, dt)

time = 0.
call START

c---------- Begin time-stepping --------
100 continue

time = time + dt
nsteps = nsteps + 1
if(time .gt. tmax .OR. nsteps .gt. maxsteps) go to 1000
call FLUX
call PDE
if (time .eq. tout) then

call OUTPUT
dt = dtperm
tout = tout + max(tout, dt)

else if (time + dt .gt. tout) then
dt = tout − time

end if
go to 100

c---------- end of time-stepping ----------
1000 continue

(write any exiting information, such as time)
stop
end

Subroutine START initializes variables to their values at time = 0. Then each
time-step consists of calling FLUX, which computes resistances and heat-flow-
rates, and PDE, which solves the PDE.

Subroutine OUTPUT writes out the current values of the quantities of inter-
est, such as temperature. It is usually desirable to have output at certain specified
locations (where thermocouples may be located, for example), but it is generally
overly complex to attempt to arrange the mesh in such a way that all these output
locations coincide with computational nodes; instead, one may extract values at

4.1 NUMERICAL HEAT TRANSFER 205

the desired locations via interpolation of the nodal values.
To debug the code, one usually starts with short-time runs on a very coarse

mesh, say with M = 10 nodes, and observes the behavior of the solution as vari-
ous parameters are varied, watching out for any non-physical behavior, for exam-
ple violation of the Maximum Principle. A crucial and necessary check is pro-
vided by an energy-balance check from time-step to time-step: the total energy of

the system at time tn is En
total =

M

i=1
Σ En

i ∆Vi , so the energy gain during

[tn , tn + ∆tn], is En+1
total − En

total ; this must equal the energy input from the

boundaries,

tn+∆tn

tn

∫
∂Ω
∫ q

→ . N
→

dS, i.e. the sum of the boundary flow-rates times ∆tn,

(PROBLEM 12).
The final step in preparing a code is to validate it by running one or more

benchmark problems on it with known solutions, and comparing the computed and
exact solutions. One may start with a coarse mesh, and successively double the
number of nodes (halving the mesh width ∆x) to verify that various measures of
the error (e.g.

1 ≤ j ≤ m
max |T n

j − T (x j , tn)| at a fixed tn, or

0 ≤ tn ≤ tmax

max (
1 ≤ j ≤ M
max |T n

j − T (x j , tn)|)) decrease as M increases. For the algorithms

described earlier, one expects to see errors of order O(∆x2), which is the order of
the discretization error, at least for M’s up to about 100 (in single precision); for
larger M however, roundoff error takes over and the accuracy actually deterio-
rates, see PROBLEM 21.

Tw o- and three-dimensional simulations can easily tax the capabilities of even
‘‘large’’ mainframe computers, so vector or/and parallel ‘‘super-computing’’
becomes necessary. Then one must use various programming ‘‘tricks’’ to take
advantage of the special features of such machines. For example, to aid vectoriza-
tion one may unfold 2- or 3-dimensional arrays into 1-dimensional long vectors
using ‘‘red-black ordering’’, and replace ‘‘if ’’ statements with logical (boolean)
equivalents inside DO loops, [WILLIAMS-WILSON], [ORTEGA-VOIGT]. Par-
allelism for transient problems may be achieved by ‘‘domain-decomposition’’
methods at a basic level [DRAKE-NARANG]. These new computing technolo-
gies, which are currently under intense development, have brought about a re-
examination of the various serial algorithms to see which methods are best suited
to the various machine architectures and classes of problems.

PROBLEMS

PROBLEM 1. Write a brief essay on the simulation of a thermal process, address-
ing the possible reasons for preparing it, the roles that it is to serve, the kinds
of information available to it, the type of output it is to provide, the importance
or lack of importance of computational speed and the accuracy that it is to

206 CHAPTER 4

have. Specific points that you might address are simulations in various con-
texts, including laboratory scale studies, industrial size studies, and real time
control.

PROBLEM 2. For the model heat conduction problem of §4.1.A, describe quali-
tatively how you expect the temperature to evolve in time. In particular, what
is the expected appearance of temperature-time curves at preassigned thermo-
couple locations at the faces of the slab and at, say, two interior points? If a
fluxmeter were attached at each of the faces, what flux-time curves would you
expect to see?

PROBLEM 3. Set up a 1-dimensional radial mesh for axially symmetric heat
transfer in a hollow cylinder Rin ≤ r ≤ Rout of unit height. That is, subdivide
the interval [Rin, Rout] into M subintervals and determine the nodes ri ,
faces ri−1⁄2, radial ‘‘areas’’ Ai−1⁄2 = 2π ri−1⁄2, and control ‘‘volumes’’
∆Vi = π r2

i+1⁄2 − π r2
i−1⁄2 = 2π ri∆ri . For further developments see PROB. 9, 22.

PROBLEM 4. Set up a 1-dimensional radial mesh for spherically symmetric heat
transfer in a solid sphere 0 ≤ r ≤ Rout , by subdividing [0, Rout] into M
subintervals, [Here Ai−1⁄2 = 4π r2

i−1⁄2, ∆Vi = (4 / 3)π (r3
i+1⁄2 − r3

i−1⁄2)]. See PROB-
LEMS 10, 23.

PROBLEM 5. Set up a 2-dimensional (r, z) mesh for axially symmetric heat
transfer in a hollow cylinder Rin ≤ r ≤ Rout , 0 ≤ z ≤ Z , by subdividing
[Rin, Rout] into Mr subintervals and [0, Z] into MZ subintervals. Deter-
mine the nodes (ri , z j), faces ri−1⁄2, z j−1⁄2, areas of radial faces Ai−1⁄2 j , of
axial faces Ai j−1⁄2, and control volumes ∆Vij . See PROBLEMS 25, 28.

PROBLEM 6. Set up a 2-dimensional (r, θ) mesh for axially symmetric heat
transfer in a sphere 0 ≤ r ≤ Rout , by subdividing [0, Rout] into Mr subinter-
vals and [0, π] into Mθ sectors (the right-half sphere suffices, so let
x = r sinθ , z = r cosθ , with θ the azimouthal angle measured off the positive
z-axis). Determine the nodes (ri , θ j), faces ri−1⁄2, θ j−1⁄2, areas of radial faces

Ai−1⁄2 j = 2π

θ j+1⁄2

θ j−1⁄2

∫
ri+1⁄2

ri−1⁄2

∫ x r dr dθ , of angular faces Ai j−1⁄2 = 2π
ri+1⁄2

ri−1⁄2

∫ x dr, and

control volumes ∆Vij = 2π

θ j+1⁄2

θ j−1⁄2

∫
r j+1⁄2

ri−1⁄2

∫ x r dr dθ .

[Check: Ai−1⁄2 j = 2π r2
i−1⁄2(cosθ j−1⁄2 − cosθ j+1⁄2), Aij−1⁄2 = π (r2

i+1⁄2 − r2
i−1⁄2) sinθ j−1⁄2,

∆Vij = (2π /3) (r3
i+1⁄2 − r3

i−1⁄2) (cosθ j−1⁄2 − cosθ j+1⁄2)]. See PROBLEMS 26, 29.

PROBLEM 7. Discuss the factors that would lead you to use non-uniform spatial
and time subdivisions. In particular, what would you do if results are desired
at definite times (e.g. in accordance with the readings of some recording
device), and under conditions where high temperature gradients are present in
certain locations. Under what conditions would the latter actually occur?

4.1 NUMERICAL HEAT TRANSFER 207

PROBLEM 8. Using the Taylor expansion, show that for the centered-nodes mesh
(2b) the error in the approximation of the mean value by the nodal value is
O(∆x3

j).

PROBLEM 9. Derive the discrete heat balance, analogous to (11), or (12), for axi-
ally symmetric heat conduction in a cylinder of unit height, using the mesh
constructed in PROBLEM 3.

PROBLEM 10. Derive the discrete heat balance for spherically symmetric heat
conduction in a sphere, using the mesh of PROBLEM 4.

PROBLEM 11. The time increment ∆t used in a time-stepping scheme should be
so large that local equilibrium obtains in a control volume during this time, i.e.
∆t should be larger than the relaxation time τ of the heat conduction process.
This is the time required for the temperature to relax to its equilibrium (steady-
state) value T∞, relative to its initial distance from the steady state; the con-
venient and commonly used definition of the relaxation time τ is (e.g. see

[PINSKY]) : 


T (x, τ) − T∞ / T (x, 0) − T∞



= 1 / e or, equivalently,

1 / τ : =
t → ∞
lim (1 / t) ln | T (x, t) − T∞ |.

Consider a control volume 0 ≤ x ≤ ∆x of width ∆x. Using the fact that the
solution of the heat equation with vanishing boundary values (hence T∞ = 0
here) is given by T (x, t) = exp(− π 2α t / ∆x2) sin(π x / ∆x) , show that the
relaxation time is τ = ∆x2 / π 2α . Then, the requirement ∆t > τ combined
with the CFL condition restrict the ratio µ = α ∆t / ∆x2 to be
1 / π 2 < µ < 1 / 2 .

PROBLEM 12. Prove that with all choices of θ the numerical scheme (12) obeys
a global heat balance identically.

PROBLEM 13. Choose θ = 0 in (31) to derive the explicit scheme (33).

PROBLEM 14. For the simplest explicit scheme (35), we have PDE[T] ≡

Tt − α T xx and FDE[T n
j] ≡

T n+1
j − T n

j

∆t
− α

T n
j−1 − 2T n

j + T n
j+1

∆x2
, see §4.1.D.

Using Taylor expansions show that the local truncation error is given by

ten
j =

∆t

2
Ttt(x j , tn) − α

∆x2

12
T xxxx(x j , tn) + O(∆t2 + ∆x4) = O(∆t + ∆x2)

provided Ttt and T xxxx are bounded. Hence the scheme is consistent. Next,
using Ttt = α (T xx)t = α (Tt)xx = α 2T xxxx , show that the choice
µ = α ∆t / ∆x2 = 1 / 6 reduces this error to O(∆x4).

PROBLEM 15. Show that if µ ≤ 1⁄2 in (35) then the local discretization error sat-
isfies ||den+1|| ≤ ||den || + ∆t . (A∆t + B∆x2), where ||den || =

1≤ j≤M
max |den

j |,

A = max |Ttt /2|, B = max |α T xxxx /12|. Deduce that ||den || ≤ n∆t(A∆t + B∆x2),
and since n∆t ≤ tmax conclude that ||den || = O(∆t + ∆x2), thus establishing

208 CHAPTER 4

convergence of the scheme directly.

PROBLEM 16. (a) Show that if the CFL condition holds for (36) , then the error
at any n > 0 due to initial roundoff error ε 0

j is bounded by that initial error.
(b) Roundoff error may be introduced at every point that a computation is per-
formed. Thus ev en if the CFL condition is met for (36) error is introduced not
only at the initial step n = 0 but at every time step. What is its cumulative
effect? Can it grow exponentially?

PROBLEM 17. (a) Derive the stability condition (40a) for imposed temperature
at x = 0. (b) Derive the stability condition (40b) for imposed flux at x = 0.
(c) Derive the stability condition (40c) for the convective boundary condition at
x = 0, and show that (40a) is sufficient for it.

PROBLEM 18. Combine (39) and (40) to establish (41-42).

PROBLEM 19. Analyze carefully the effect of using the discretization (43) for the
first interior node. In particular, what happens if errors originate both at the
initial line and at the boundary j = 1 ? What if no error originates at the
boundary line?

PROBLEM 20. Find the counterpart to the implicit equation (43) for convective
and flux boundary conditions.

PROBLEM 21. (a) Implement the explicit scheme (33) in a computer code (see
§4.1.I for helpful suggestions) for the simple case (35) of uniform mesh and
constant properties. To debug and validate your code, take h = 0 (whence the
boundary conditions are T x(0, t) = T x(l, t) = 0) and Tinit(x) = 100 cos(π x/ l),
in which case the exact solution is T (x, t) = exp(− π 2α t / l2 . 100 cos(π x / x),
0≤ x ≤ l, t ≥ 0. For simplicity, choose l = 1, α = 0. 1, M = 10 and compare
the numerical and exact solutions up to time tmax = 1.
(b) Examine convergence by making runs with M = 10, 20, 40, 80, 160 nodes
(remember to adjust ∆t so that µ = 1⁄2) and looking at the maximum error

0≤tn≤tmax

max (
1≤ j≤M
max |T n

j − T (x j , tn)|). Does it behave like O(∆x2)? For which M

do you get the least error? For that M , make a run in double precision. Does
the error reduce further?
(c) Examine the effects of instability by fixing M = 20 and making runs with
µ = α ∆t / ∆x2 = 0.4, 0.5, 0.501, 0.6, 1.0. Discuss what you observe.
(d) According to PROBLEM 14, the choice µ = 1/6 improves the error to
O(∆x4). Test this by repeating (6) but with µ = 1/6 now. Compare with the
results from (6).

PROBLEM 22. For axially symmetric heat conduction in a hollow cylinder of
unit height (PROBLEMS 3 and 9) with convective boundary condition at
r = Rin and imposed temperature at r = Rout : (a) set up the general
(0 ≤ θ ≤ 1) algorithm (analogous to (31)); (b) find the stability conditions
(analogous to (39, 40, 48)); (c) in the implicit case (0 < θ ≤ 1), write down
the tridiagonal system (analogous to (47)).

4.1 NUMERICAL HEAT TRANSFER 209

PROBLEM 23. Do the same for spherically symmetric heat conduction in a
sphere (PROBLEMS 4 and 10) with imposed temperature at r = Rout . In par-
ticular, examine carefully the discretization and stability restriction at the most
internal node [0, r1+1⁄2]. Note that the natural boundary condition at r = 0 is
q1⁄2 = 0.

PROBLEM 24. Repeat PROBLEM 23 for the cases of imposed flux and of a con-
vective boundary condition at r = Rout .

PROBLEM 25. Derive the discrete heat balance (see §4.1.G), for 2-dimensional
(r, z), axially symmetric heat conduction in a cylinder, using the mesh of
PROBLEM 5.

PROBLEM 26. Derive the discrete heat balance for 2-dimensional (r, θ), axially
symmetric heat conduction in a sphere using the mesh of PROBLEM 6.

PROBLEM 27. Set up a 3-dimensional (r, θ , z) mesh for heat conduction in a
hollow cylinder Rin ≤ r ≤ Rout , 0 ≤ θ < 2π , 0 ≤ z ≤ Z , with Mr × Mθ × Mz

nodes, and derive the discrete heat balance.

PROBLEM 28. For the process of PROBLEM 25, with convective boundary con-
dition at r = Rin, imposed flux at r = Rout , and insulated axial faces
(z = 0, z = Z) : (a) set up the computational algorithm for 0 ≤ θ ≤ 1; (b)
find the stability conditions at internal and boundary nodes.

PROBLEM 29. Repeat, for the process of PROBLEM 26.

PROBLEM 30. Consider the initial-boundary value problem for the heat equation,
Tt = T xx , a < x < b , t > 0, with T (x, 0) = C cos(γ0 x), a < x < b, and
T (a, t) = A sin(α0t), T (b, t) = B sin(β0t), where γ0 , α0 , β0 are real numbers.
Discuss how you would decide upon the size of the spatial and temporal mesh
sizes to be used in calculating the solution to this problem.

PROBLEM 31. What would be your method for simulating heat transfer in a
material whose thermal diffusivity varies by an order of magnitude or more
over the range of temperatures encountered?

PROBLEM 32. (a) Discretize the heat equation Tt = α T xx using the centered-
difference (T n+1

j − T n−1
j) / 2∆t for Tt and the standard centered-difference

(T n
j−1 − 2T n

j + T n
j+1) / ∆x2 for T xx . Show that this scheme is unstable for any

µ > 0 !!! (b) In the previous scheme replace the central-term −2T n
j by

−(T n−1
j + T n+1

j) to obtain the Dufort-Frankel method ([LAPIDUS-PINDER],
[DUCHATEAU-ZACHMANN]). Show that if the ratio µ1 : = ∆t / ∆x is held
fixed as ∆x, ∆t → 0 then the method is consistent with the hyperbolic PDE
Tt + α µ1Ttt = α T xx and not with the heat equation.

