
C H A P T E R 2

PROBLEMS WITH EXPLICIT SOLUTIONS

The formulation of Stefan Problems as models of basic phase-change
processes was presented in §1.2. Under certain restrictions on the parameters and
data such problems admit explicit solutions in closed form. These simplest
possible, explicitly solvable Stefan problems form the backbone of our
understanding of all phase-change models and serve as the only means of
validating approximate and numerical solutions of more complicated problems.

Unfortunately, closed-form explicit solutions (all of which are of similarity
type) may be found only under the following very restrictive conditions:
1-dimensional, semi-infinite geometry, uniform initial temperature, constant
imposed temperature (at the boundary), and thermophysical properties constant in
each phase.

Within these confines we present a succession of models of increasingly
complicated phase-change processes.

We begin with the simplest possible models, the classical 1-phase Stefan
problem ( §2.1), and 2-phase Stefan Problem ( §2.2), modeling the most basic
aspects of a phase-change process (as discussed in §1.2). We present the Neumann
similarity solution and familiarize the reader with some of the information it
conveys.

Next ( §2.3 ) we relax the assumption of constant density by allowing the
densities of solid and liquid to be different (but each still a constant), thus bringing
density change effects into the picture. We study the effect of volume expansion
(no voids), and of shrinkage (causing formation of a void near the wall). In each
case we formulate explicitly solvable thermal models (neglecting all mechanical
effects) and examine the effect of density change on the Neumann solution. More
precise models, which include mechanical effects but don’t admit explicit
solutions, are derived from first principles in the last subsection.

In §2.4 we introduce supercooling, thus relaxing the assumption that the phase-
change occurs at the melt temperature Tm. We discuss the thermodynamics of
phase-coexistence and derive the Laplace-Young, Clausius-Clapeyron and Gibbs-
Thomson relations from first principles. The classical Mullins-Sekerka
morphological stability analysis is also presented.

In §2.5 we discuss binary alloy solidification, coupling heat conduction and
solute diffusion. We present the classical model of Rubinstein and its explicit
solution, as well as various other models of freezing over an extended temperature
range.

The introduction of each new physical phenomenon in the simplest possible
setting (dictated by the desire to have explicit solutions available) helps us
understand the phenomenon more easily and see its effects on the solution.
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Similarity solutions in cylindrical and spherical geometries for special
problems are the subject of §2.6. Finally, in §2.7 we present a contrived (artificial)
multi- dimensional phase-change problem whose explicit solution may serve as
benchmark for 2 or 3 dimensional numerical codes. Such a debugging tool
becomes necessary because no explicitly solvable phase-change problem exists in
2 or 3 dimensions.

Each phase-change process involving melting has a counterpart involving
freezing. For consistency throughout our discussions we will be treating the case
of melting, unless we are specifically interested in a solidification process (as in
§2.5). The parallel developments for freezing will be mostly left as exercises for
the reader in the PROBLEMS, but the changes needed to turn the solution of the
one to the other will be indicated in the text.

2.1. THE ONE-PHASE STEFAN PROBLEM

2.1.A Introduction

The simplest explicitly solvable phase-change problem is the 1-phase Stefan
Problem (§1.2.F) with constant imposed temperature and constant thermophysical
properties. Its solution is the classical Neumann similarity solution [CARSLAW-
JAEGER], [RUBINSTEIN] involving the error function. As prototype example
we treat the melting problem leaving the case of freezing for the reader to examine
via the Problems.

The term ‘‘one-phase’’ refers to only one of the phases (liquid) being ‘‘active’’,
the other phase staying at the melt temperature Tm (§1.2.F). Thus the physical
situation is the following:

PHYSICAL PROBLEM: Melting of a (semi-infinite) slab, 0 ≤ x < ∞, initially
solid at the melt temperature, Tm, by imposing a constant temperature
TL > Tm on the face x = 0. Thermophysical parameters: ρ , cL,
kL, L, α L = kL / ρcL, all constant.

The physical realization of this problem is an insulated pipe, filled with a PCM,
and exposed at one face to a heat source, while its length is so great that the second
face is not reached by the melting front during the life of the experiment (Figure
2.1.1). The experiment begins with the material initially solid and at its melt
temperature. The nearby face temperature is raised as quickly as possible to the
value TL and maintained at that value for all time. This may be done by pumping
a heat exchange fluid at temperature TL at very high mass flow rate across the
face. The mathematical model of this process leads, as in §1.2, to the following:

MATHEMATICAL PROBLEM (1-phase Stefan Problem for a slab melting
from the left) :
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Figure 2.1.1. Physical realization of the One-Phase Stefan Problem.
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Figure 2.1.2. Space-time diagram for the One-Phase Stefan Problem.

Find T (x, t) and X(t) such that (Figure 2.1.2)

(1)Tt = α LTxx , 0 < x < X(t) , t > 0  (liquid)

(2a)T (X(t), t) = Tm , t ≥ 0

(2b)ρ LX′(t) = − kLTx(X(t), t) , t > 0

(3)X(0) = 0 ,  (material initially completely solid)

(4)T (0, t) = TL > Tm , t > 0

The corresponding problem for a slab freezing from the left due to a tempera-
ture TS < Tm being imposed at x = 0 is formally obtained by replacing every sub-
script L by S and the latent heat L by −L in (2b).
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2.1.B The Neumann Solution

We introduce the similarity variable

(5)ξ =
x

√⎯ t
,

and seek the solution in the form

(6)T (x, t) = F(ξ) ,

with F(ξ) an unknown function. Accordingly it is natural that we would seek the
interface location X(t) to be proportional to √⎯ t , searching therefore for a constant
A for which

(7)X(t) = A√⎯ ⎯ t .

Substituting into (1) and integrating we obtain

F(ξ) = B

ξ

0
∫ e

−
s2

4α L ds + C = B√⎯ ⎯⎯⎯π α L erf(
ξ

2√⎯ ⎯⎯α L
) + C (8)

for B , C constants, where

erf(z) =
2

√⎯ ⎯π

z

0
∫ e− s2

ds (9)

denotes the error function [ABRAMOWITZ-STEGUN] (see §1.2, also (28-35)
below). Conditions (4) and (2a) yield

(10)C = TL and B =
Tm − TL

√⎯ ⎯⎯⎯π α L erf(A/2√⎯ ⎯⎯α L )

Set

λ =
A

2√⎯ ⎯⎯α L
, ∆TL = TL − Tm , (11)

and

StStL =
cL∆TL

L
= Stefan Number . (12)

Then the Stefan condition (2b) leads to an equation for λ :

λeλ2
erf(λ) =

kL

ρ L

∆TL

√⎯ ⎯π α L
=

cL∆TL

√⎯ ⎯π L
=

StStL

√⎯ ⎯π
. (13)

Hence it is more convenient to express the solution in terms of λ . From (5-7, 11),

(14)X(t) = 2λ√⎯ ⎯⎯⎯α L t,
and from (5-8,10)

T (x, t) = TL − ∆TL

erf(
x

2√⎯ ⎯⎯⎯α L t
)

erf(λ)
, (15)

with λ a root of the transcendental equation
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(16)λeλ2
erf(λ) = StStL / √⎯ ⎯π .

It is easily shown (PROBLEM 2) that the quantity f (λ) = λeλ2
erfλ is a strictly

increasing function of λ ≥ 0 , f (0) = 0 ,
λ → ∞
lim f (λ) = + ∞ , and therefore the graph

of y = f (λ) intersects any horizontal line y = StStL /√⎯ ⎯π exactly once. In other words,
for each value of StStL > 0, there exists a unique root, λ , of equation (16), Figure
2.1.3. Once λ is found by solving the transcendental equation (16), the solution of
the Stefan Problem is given by (14-15). This is the classical Neumann solution to
the Stefan Problem (after F. Neumann).

Note that the uniqueness of the root λ implies the uniqueness of the similarity
solution, i.e. that (14-15) is the only solution of the form (6-7). Is this the only
possible solution of (1-4)? The answer is Yes. The Stefan problem is a well-posed
mathematical problem (§1.2.C,§4.5 ), so it admits only one solution. Uniqueness
of the solution follows from the much more general uniqueness of a weak solution
presented in §4.4 .

2.1.C Dimensionless form

We observe in (16) that the value of the root λ and hence also the solution,
depends on a single dimensionless parameter, the Stefan Number, defined in (12).
This is better brought out by undimensionalizing the problem itself. We introduce
the dimensionless length and time variables,

(17)ζ =
x

x̂̂
, Fo =

α L

x̂̂2 t = Fourier Number,

where x̂̂ is any convenient length scale (note that there is no ‘‘natural’’ length in
this problem), and the dimensionless interface and temperature

(18)Σ(Fo) =
X(t)

x̂̂
, u(ζ , Fo) =

T (x, t) − Tm

∆TL
,

where ∆TL = TL − Tm as in (11). Then the Stefan Problem (1-4) takes the form
(PROBLEM 6)

(19)uFo = uζ ζ , 0 < ζ < Σ(Fo) , Fo > 0

(20)u(Σ(Fo), Fo) = 0 , Fo > 0

(21)Σ′(Fo) = − StStL
. uζ (Σ(Fo), Fo) , Fo > 0

(22)Σ(0) = 0

(23)u(0, Fo) = 1 , Fo > 0,

containing a single parameter, the Stefan number (12). For alternative dimension-
less forms see §3.1.

The Neumann similarity solution of the dimensionless problem (19-23) is
given by (PROBLEM 7)
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(24)Σ(Fo) = 2λ√⎯ ⎯⎯Fo , Fo ≥ 0 ,

u(ζ , Fo) = 1 −
erf(

ζ
2√⎯ ⎯⎯Fo

)

erf λ
, 0 ≤ ζ ≤ Σ(Fo) , Fo ≥ 0, (25)

with λ the root of the same transcendental equation

(26)λeλ2
erf λ =

StStL

√⎯ ⎯π
.

2.1.D The root λ versus the Stefan Number

As the only parameter present in the problem (19-23), the Stefan number StStL

completely characterizes the melting process. We may think of it as representing
the ratio of the ‘‘sensible heat’’, cL∆TL to the latent heat L. That this is indeed a
correct interpretation will be shown in §2.2.G. Note that for a freezing process we
define the Stefan number by

StStS =
cS(Tm − TS)

L
.

To gain perspective, let us compute StSt for some materials in typical phase-
change processes.

EXAMPLE 1 : Ice and Water. Ice and water are the solid and liquid phases of the
same material (H2O). Under ordinary conditions the temperature of ice is less
than the value Tm = 273. 15 K (0°C); upon warming, ice melts at this tempera-
ture with a latent heat L = 333. 4 kJ /kg, and water is found at temperatures
above Tm. Its specific heat is cL = 4. 1868 kJ /kg K . Due to the low value of the
ratio cL/L, the Stefan Number for melting of ice is typically no more than 1;
e.g. with TL = 37°C (body temperature), we have StStL = 0. 46.

In freezing of water, the specific heat of ice varies strongly with tempera-
ture (see (1) §1.2), typically in the range of 1. ≤ cS ≤ 2. 09, which results in
ev en smaller Stefan numbers. For example, in a food freezing process, we may
have TS = − 20°C; taking cS = 2 as representative value, we find
StStS = cS(Tm − TS)/L ≈ 0. 12.

EXAMPLE 2 : Copper. For copper Tm = 13 56. 2 K and L = 20 4. 9  kJ/kg. Suppose
that copper, initially at the temperature 1470 K, cools down to Tm and solidi-
fies; for liquid copper the average specific heat is cL = . 51 kJ/kg K, hence we
have StSt = . 28. Suppose that the process includes cooling to room temperature;
for this temperature range a representative value of the specific heat is cS = . 45
kJ/kg K; thus the temperature drop ∆T in the Stefan number is approximately
1200 K and StSt = 2. 64.
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EXAMPLE 3 : Melting of a Paraffin Wax. Paraffin waxes have high latent heat.
A typical paraffin wax is N- Octadecane for which c = 2. 16 kJ/kg K, L = 243
kJ/kg and the melting temperature Tm = 301.2 K. Over a range of tempera-
ture ∆T = 100K , StSt = . 89. Like water, paraffin waxes generally have low Ste-
fan numbers associated with their melting and solidification.

EXAMPLE 4 : Melting of Silicon-Dioxide from Room Temperature. Silica (sili-
con dioxide) is a material with a high specific heat In fact, over a range of tem-
peratures from room temperature to its melting point at Tm = 1996 K the aver-
age specific heat is c = 1. 12 kJ/kg K, while its latent heat is L = 158. 3 kJ/kg.
Hence for a melting process from room temperature (298 K), StSt = 12.

These examples point to the following rule of thumb. For certain families of non-
metallic solids such as waxes, StSt is small; hence, the bulk of heat stored or
released from them is latent heat. For metals StSt is of the order 1-10 and so the
effect of sensible heat is at least as large as that of latent heat. For other materials
such as silicates StSt may be very large; the sensible heat will then dominate the
heat transfer process. Of course StSt depends on the temperature drop ∆T experi-
enced by the material during the heat transfer process (PROBLEM 14).

In general, the size of StSt will determine the suitability of a particular method
for analyzing a given heat transfer process. For large StSt the process will essen-
tially be one of pure conduction to which a variety of existing techniques are appli-
cable. For small StSt the conduction heat transfer process will be dominated by the
phase change.

Given a melting or freezing process, hence a Stefan number StSt, the transcen-
dental equation

(26)λeλ2
erf λ = StSt/√⎯ ⎯π

is easily solvable by the Newton-Raphson iterative method [PRESS et al] using as
initial ‘‘guess’’ the value √⎯ ⎯⎯⎯StSt/2. The latter is the approximate solution to (26)
when StSt ≈ 0, as we shall show in §2.1.F. Figure 2.1.3 displays the values of the
root λ for each StSt in the range 0 ≤ StSt ≤ 5, found by the Newton-Raphson method.

For the convenience of the reader and easy reference we list here the basic
properties of the error function [ABRAMOWITZ-STEGUN]

(27)
erf(z) =

2

√⎯ ⎯π

z

0
∫ e− s2

ds

(28)erf(0) = 0 ,  erf(∞) = 1 ,

(29)erf(−z) = erf(z)

(30)d

dz
erf(z) =

2

√⎯ ⎯π
e−z2

> 0 ,

(31)
erf(z) =

2

√⎯ ⎯π
(z −

z3

3.1! +
z5

5.2! −
z7

7.3! + . . .),
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Figure 2.1.3. The root λ of (26) vs the Stefan Number.

erf(z) ≈ 1 −
e−z2

z√⎯ ⎯π
(1 −

1

2z2
+ . . .) as z → ∞, (32)

(33)complementary error function : erfc(z) = 1 − erf(z) .

Extensive tables of values appear in [ABRAMOWITZ-STEGUN], but many For-
tran libraries contain erf(z). A useful analytical approximation to the error func-
tion is given by the following relation:

erf z =

⎧
⎪
⎨
⎪
⎩

1. 128z ,

−0. 0198 + z(1 . 2911 − 0. 426 2z) ,

0. 881 4 + 0. 058 4z ,

1 ,

0 ≤ z ≤ 0. 15

0. 15 ≤ z ≤ 1. 5

1. 5 ≤ z ≤ 2

2 ≤ z

(34)

In the same spirit, an effective approximation to the root λ of (26) is given by
the expression

(35)λ ≈ 0. 706 √⎯ ⎯StSt {1 − 0. 21 (0. 5642.StSt )0. 93−0.15StSt } .

This relation has less than a 1% relative error for 0 < StSt < 0.83, a relative error
below 5% for 0.83 < StSt < 4. 28 and below 10% for StSt < 4.86.

2.1.E Example: Melting a slab of ice

A slab of ice is 10 cm thick. It is initially solid and at its melt temperature of
0°C. One face of the slab is insulated while from the initial moment t = 0 of our
experiment, the other will be set at the warm temperature of 25 ° C and maintained
at this value for all time. We hav e placed three thermocouples in the slab, at
depths of 1 cm, 3 cm and 5 cm. We wish to know the time of melt of the portions
up to each thermocouple location, as well as the melting time for the entire slab.
We wish also to learn about the appearance of the time-temperature measurements
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provided by the thermocouples, as well as the appearance of the temperature distri-
bution as a function of position. The information that we seek is provided by the
relations (14) (for the melt front), and (15) (for the temperature distribution).
Before we hasten to compute, however, let us consider what we need to know and
what we are ignoring in our idealized melting model.

Firstly, this problem is not just a ‘‘textbook’’ question, but one that appears in
various forms in a variety of applications. Three analogous cases that come to
mind are the thawing of food, the freezing or melting of the ground under a high-
way, and the freezing of ground around an earth-based heat exchanger for a heat
pump. Even if the basic geometry of the process is not slab-like, the slab geometry
may be a good approximation to it. Thus for a large portion of the melting process
of a rectangular region, the corners do not affect the process very much and it may
be considered as if uncoupled melting or freezing processes are taking place at
each face. Similarly unless the pipe radius is very small the freezing or melting
around a pipe is roughly speaking, slab-like.

The words ‘‘roughly speaking’’ as used above are meaningful. While one may
strive for unlimited accuracy (and indeed, in the absence of that goal, a ‘‘rule of
thumb approach’’ will be questionable), nevertheless heat transfer process simula-
tion carries with it the burden of many sources of inaccuracy. These include the
lack of accurate thermophysical parameter values [TOULOUKIAN], the simplifi-
cations needed to apply the tools of mathematics to the goal of simulation, and the
simplifications needed to carry out experiments. The latter may arise, for example,
from the changes of density of a material under a change of phase, etc. (see PROB-
LEMS 11-13). Besides, rough, first-cut approximations are informative, and, pos-
sibly, sufficient in some circumstances.

In our example we are ignoring the thermal effects of the change of density,
which is reasonable for small temperature gradients and small volumes. For the
only effect of a density change is to replace less dense ice by denser water, thus in
effect ‘‘pulling’’ the material towards the heating face. This action would induce
convection in the liquid region (which is negligible due to the smallness of the
region involved), while the solid remains at the melt temperature for all time. The
mechanical effect of this action would, of course, be to buckle the container (if it is
tightly sealed) at the far end, (.1 m), an effect with which we are not concerned !
In any case, density change effects will be discussed in §2.3.

The assumption of the initial temperature being at the melting point is difficult
to attain in practice but may be ‘‘nearly’’ reached. As we will see in §2.2, the esti-
mate of the melt-depth that we will obtain will be greater than that obtained when
the initial subcooling is indeed taken into account (see §2.2).

Since our process is only ‘‘one-phase’’, we only need the relevant properties of
water which are: melt temperature = Tm = 0 °C , density = ρ = 1 g/ cm3 , specific
heat = cL = 4. 1868 J/ g°C , conductivity = kL = 0. 564 ×10−2 J/ cm s °C , thermal
diffusivity = α L = kL / ρcL =1. 347 ×10−3 cm2/ s , latent heat = L = 333. 4 J/ g. We
then compute the Stefan number StSt and obtain the melt front history X(t) and the
temperature distribution T (x, t) from (14-16).
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The temperature drop for our process is ∆TL = TL − Tm = 25°C, and thus the
Stefan number is St = cL ∆TL/L = 0. 314. Using the Newton-Raphson method of
PROBLEM 9 we find the root λ of (16) to be λ = 0. 3777 . A much simpler
method for solving the transcendental equation is to use relation (35), giving us the
value λ = 0. 3776. If you are really ‘‘in a hurry’’ to obtain a ‘‘back of the
envelope’’ estimate, the value of √⎯ ⎯⎯⎯StSt /2 is 0. 396 2 (see §2.1.F) with a relative error
of 4.9%, which is well within the needs of a reasonable ‘‘sizing’’ estimate.

From (14), the time needed for the melting front to reach a given depth X is

(36)tmelt = X2 / ( 4 λ2 α L) .

Let t1melt , t2
melt , t3

melt and t4
melt be the times needed for the melt front X(t) to reach

the thermocouples at depths X = 1 ,  3 , 5 centimeters, and the right hand face at 10
centimeters, respectively. Substitution into (36) yields

t1melt = 13 01. 44 sec = 0. 36 hr

t2
melt = 11 713 sec = 3. 25 hr

t3
melt = 3253 6 sec = 9. 04 hr

t4
melt = 13 0144 sec = 36.15 hr

In Figure 2.1.4 we see the simulated thermocouple readings at the three depths
where they were assumed placed. Note that the curves are all convex downward,
and heading asymptotically to the wall value of 25 °C. Figure 2.1.5 is interesting.
It shows temperature distributions in the liquid at the times t1melt , t2

melt and t3
melt ,

that to all intents and purposes are linear in the spatial variable. This is a particular
case of the general ‘‘rule of thumb’’ that for small values of the Stefan number StSt,
the temperature in the phase change process is at any time essentially at its steady
state, (quasistationary, see (38) and §3.1) because of the quickness of the response
of temperature relative to the movement of the phase change front. In Figure 2.1.6
we see the moving front as a function of time.
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Figure 2.1.4. Melting of ice: temperature histories at three depths.
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Figure 2.1.6. Melting of ice: interface location.

2.1.F The case of small Stefan Number

For many materials of interest the specific heat is considerably smaller than the
latent heat so that the Stefan number for processes with moderate ∆T is of the
order 10−1 or less. Consider equation (26). For StSt ≈ 0 , λ must also be small, and

by (31) λ eλ2
erfλ ≈ λ.1. 2

√⎯ ⎯π
λ ; hence (26) is approximately

2

√⎯ ⎯π
λ2 =

StSt

√⎯ ⎯π
, or

(37)
λ ≈ √⎯ StSt

2
for StSt ≈ 0.

It also follows that for 0 ≤ x ≤ X(t) = 2λ√⎯ ⎯⎯⎯α L t the quantity
x

2√⎯ ⎯⎯α t
≤ λ << 1,

whence, by (31),
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erf(
x

2√⎯ ⎯⎯⎯α L t
)

erf λ
≈

2

√⎯ ⎯π
x

2√⎯ ⎯⎯⎯α L t
2

√⎯ ⎯π
λ

=
x

X(t)
,

and the Neumann temperature (15) becomes

(38)T (x, t) ≈ TL − ∆TL
x

X(t)
, 0 ≤ x ≤ X(t) , t ≥ 0 .

For each t > 0  this is linear in x, i.e. the temperature profile at each time is a
straight line joining the point (x = 0 , T = TL) with (x = X(t) , T = Tm). This is the
reason for the linear profile in Figure 2.1.5.

Note that (38) satisfies the steady-state equation Txx = 0, while the Neumann

temperature satisfies Txx =
1

α L
Tt . It is an approximate solution to (1-4), valid

when StStL ≈ 0 and it is called the quasistationary approximation, the subject of
§3.1, 3.2.

PROBLEMS

PROBLEM 1. (a) Formulate the 1-phase Stefan problem for a slab initially liq-
uid at Tm, freezing from the left due to an imposed constant temperature
TS < Tm at x = 0.

(b) Verify that the freezing problem results formally by replacing every sub-
script L by S and L by −L in (1-4).

PROBLEM 2. Show that f (λ) = λeλ2
erfλ , λ > 0  ,  is strictly increasing

[ f ′(λ) >  0 for any λ > 0 ].

PROBLEM 3. Verify the Neumann solution, i.e. that (14-16) satisfy (1-4).

PROBLEM 4. For the case of freezing, in PROBLEM 1,

(a) Seek the similarity solution in the form : X(t) = 2λ√⎯ ⎯⎯α S t ,
T (x, t) = F(ξ) , ξ = x / √⎯ t , and show that, with λ satisfying
λeλ2

erfλ = StStS / √⎯ ⎯π ,

T (x, t) = TS + [Tm − TS] erf(
x

2√⎯ ⎯⎯α S t
) / erfλ , 0 ≤ x ≤ X(t) , t ≥ 0 ,

(b) Verify that the solution for freezing results formally from the solution for
melting by the formal substitutions mentioned in PROBLEM 1 (b). Note
in particular, that the equation for λ is the same.

PROBLEM 5. Show that (5) is the only possible similarity variable for the heat
equation (1) of the form ξ = xγ tδ .
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PROBLEM 6. Derive the dimensionless form (19-23) of the 1-phase Stefan Prob-
lem (1-4) for the variables (17-18).

PROBLEM 7. (a) Seek the similarity solution of (19-23) in the form

Σ(Fo) = 2λ√⎯ ⎯⎯Fo , u(ζ , Fo) = F(ξ) , ξ =
ζ

√⎯ ⎯⎯Fo
, and show that this leads to

(24-26).
(b) By direct change of variables, obtain the solution in physical variables
(14-15) from the dimensionless solution (24-25).

PROBLEM 8. Repeat PROBLEMS 6,7 for the freezing case (see PROBLEMS
1,4).

PROBLEM 9. Write and implement a numerical scheme for solving (26) based on
the Newton-Raphson method

λ n+1 = λ n −
f (λ n)

f ′(λ n)
, λ0 = √⎯ ⎯⎯⎯StSt /2 ,

where f (λ) = λeλ2
erf λ −

StSt

√⎯ ⎯π
, and produce a table of values of the root λ for

0 < StSt < 5 , StSt = . 01 , . 02 , . . ..

PROBLEM 10. Freezing of water: Repeat the work of §2.1.E for the freezing of
water initially at its melting point and subject to a face temperature of -25 ° C.
In this range, the properties of ice may be taken as: ρ S = 0. 91 g/cm3,
cS ≈ 2 J/g K , kS ≈ . 023 J/cm s K , hence α S = . 0125 cm2/s. You may use the
approximation (35) for the root of equation (26), and the approximation of
(34) in the evaluation of the temperature function.

PROBLEM 11. A box has been constructed to house an experiment in melting
and freezing of materials. The experiments are to be ‘‘one-dimensional’’, in
the sense that all but one of the box’s faces are insulated; the non-insulated
face is Aluminum through which Copper tubes carrying a cooling/heating
fluid pass. What problems can arise from the change of density of the mate-
rial that takes place when it melts or freezes? How would you deal with these
problems? What difficulties would arise in your modeling efforts as a result
of your handling of these problems.

PROBLEM 12. In the course of doing the experiments of the last PROBLEM you
encounter a material which in its liquid phase dissolves large amounts of air.
What may happen to your experiment?

PROBLEM 13. In the course of performing a melting experiment and recording
the temperature values read by a thermocouple held along a thin wire across
the box of PROBLEM 11, you find that the temperature value ‘‘jumped’’
through a short temperature range discontinuously. The range begins at the
melt temperature, the density of the solid is greater than that of the liquid, and
the thermocouple and recording equipment are in order. What could have
caused the jump?.
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PROBLEM 14. Let us stretch our imagination to the following (physically) imagi-
nary case: A slab of ice at the melt temperature is to be melted via an
imposed face temperature of 36000°C. How much will melt in 10 minutes?
Explain your result.

2.2. THE TWO-PHASE PROBLEM
ON A SEMI-INFINITE SLAB

In §2.1 we examined the explicit solution to the one-phase problem on a semi-
infinite slab corresponding to a uniform initial temperature Tm and an initially
solid phase (for a melting problem), or liquid phase (for a freezing problem). A
more realistic scenario is one in which the initial state of the PCM, say for a melt-
ing process, is solid, but its initial temperature is some value TS below Tm. This is
the case discussed in §1.2 and the subject of this section. For the problem to be
explicitly solvable, it is necessary to assume that the slab is semi-infinite. While
this would seem to rule out its utility for problems on a finite slab, the slow heat
conduction and phase change process found in most actual melting, freezing and
casting processes make the semi-infinite case a reasonable approximation to that of
the finite interval case (see §2.2.C). The assumptions listed in §1.2.B are assumed
to hold.

2.2.A Problem statement and solution

As prototype 2-phase process we consider the following

PHYSICAL PROBLEM: Melting of a semi-infinite slab, 0 ≤ x < ∞ , initially
solid at a uniform temperature TS ≤ Tm, by imposing a constant temperature
TL > Tm on the face x = 0. Thermophysical parameters: ρ , cL , cS , kL , kS , L,
α L = kL/ρcL , α S = kS/ρcS , all constant (see §1.2).

The mathematical model of this process, derived in §1.2 is the following:

Tw o-phase Stefan Problem (for a semi-infinite slab melting from the left):

Find a temperature distribution T (x, t) and an interface function X(t) satisfying
the following conditions (Figure 2.2.1) :

Heat equation in melt region

(1a)Tt = α LTxx , 0 < x < X(t) , t > 0,

Heat equation in solid region

(1b)Tt = α STxx , X(t) < x , t > 0,
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t T = Tm

ρ LX′ = − kL Tx + kS Tx

x

L I Q U I D

0

T = TL > Tm

T = TS < Tm

x = X(t)

Tt = α STxx

S O L I D

Tt = α LTxx

Figure 2.2.1. Space-time diagram for the Two-Phase Stefan Problem.

Interface temperature

(1c)T(X(t), t) = Tm , t > 0,

Stefan condition

(1d)ρ LX′(t) = − kLTx(X(t)−, t) + kSTx(X(t)+, t), t > 0 ,

Initial conditions

(1e)T(x, 0) = TS < Tm , x > 0, X(0) = 0,

Boundary conditions

T(0, t) = TL > Tm ,
x→ ∞
lim T(x, t) = TS , t > 0 .  (1f)

Recall (§1.2) that the right-hand side of the Stefan condition (1d) is the flux jump
qL − qS at the interface x = X(t). The notation Tx(X(t) +−, t) serves to remind us
that these are limiting values of Tx(x, t) as x → X(t) +− (from the left (liquid) and
from the right (solid)).

Because of the structure of the problem we can again find a solution in terms of
the similarity variable ξ = x/√⎯ t . Guided by the 1-phase case, we seek the solution
in the form X(t) = 2 λ √⎯ ⎯⎯α Lt, T(x, t) = FL(ξ ) in the liquid and T(x, t) = FS(ξ )
in the solid, with λ an unknown constant and FL, FS unknown functions of the
similarity variable ξ . Using the procedure of §2.1.B, we obtain (PROBLEM 2) the

Neumann solution of the 2-phase Stefan Problem (1) :

Interface location

(2a)X(t) = 2 λ√⎯ ⎯⎯α Lt , t > 0

Temperature in the liquid region 0 < x < X(t), t > 0 :
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T(x, t) = TL − (TL − Tm)
erf⎛

⎝
x

2√⎯ ⎯⎯α Lt
⎞
⎠

erf λ
, (2b)

Temperature in the solid region x > X(t), t > 0 :

T(x, t) = TS + (Tm − TS)
erfc⎛

⎝
x

2√⎯ ⎯⎯α St
⎞
⎠

erfc(λ√⎯ ⎯⎯⎯⎯α L/α S)
. (2c)

Here λ is the solution to the transcendental equation

(2d)StStL

exp(λ2) erf(λ)
−

StStS

ν exp(ν 2λ2) erfc(ν λ)
= λ√⎯ ⎯π ,

with
(3)

StStL =
cL(TL − Tm)

L
, StStS =

cS(Tm − TS)

L
, ν = √⎯ ⎯α L

α S
.

By PROBLEM 5, the transcendental equation (2d) has exactly one root λ > 0, and
therefore the similarity solution (2) is unique for each StStL > 0, StStS ≥ 0, ν > 0.
The fact that this is the only solution follows from the general uniqueness theory
(see §4.4) or it may be proved directly [RUBINSTEIN].

Note that when TS = Tm, we have StStS = 0 and (2) reduces to the similarity
solution of the 1-phase problem (§2.1.B), as expected. The presence of the term
containing StStS in (2d) simply reduces the magnitude of the root and therefore, for
any StStS > 0, we have

(4)λ2−phase < λ1−phase .

This of course is expected for it says merely that the presence of initial subcooling
in the solid will slow down the melting process (given by X(t) = 2 λ√⎯ ⎯⎯α Lt), since
some heat must go to raising the temperature of the solid to Tm before it can melt.

The Neumann solution for the case of freezing (PROBLEM 1) may be for-
mally obtained from (2) by simply interchanging the subscripts L and S and replac-
ing the latent heat L by −L (PROBLEM 7).

2.2.B Dimensionless form

The 2-phase problem in physical variables, (1), contains nine parameters,
namely, ρ , cL, cS, kL, kS, L, Tm, TL, TS. Undimensionalization reduces the num-
ber to four, the minimum necessary to specify the problem. Indeed, set (see (3))

StStL =
cL(TL − Tm)

L
, StStS =

cS(Tm − TS)

L
, ν = √⎯ ⎯α L

α S
, (5)

and with x̂̂ being any convenient length (no natural length scale is present here),
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introduce the dimensionless variables : ζ = x / x̂̂ , Fo = α L t / x̂̂
2 , and

Σ(Fo) =
X(t)

x̂̂
, uL(ζ , Fo) =

T(x, t) − Tm

TL − Tm
, uS(ζ , Fo) =

T(x, t) − Tm

Tm − TS
. (6)

Then, problem (1) takes the form (PROBLEM 8)

(7a)uL
Fo = uL

ζ ζ , 0 < ζ < Σ(Fo), Fo > 0  (liquid),

(7b)ν 2uS
Fo = uS

ζ ζ , Σ(Fo) < ζ < ∞, Fo > 0  (solid),

(7c)uL(Σ(Fo), Fo) = uS(Σ(Fo), Fo) = 0 , Fo > 0 ,

(7d)Σ′(Fo) = − StStL
. uL

ζ + ( StStS /ν 2 ) . uS
ζ , ζ = Σ(Fo), Fo > 0 ,

(7e)uS(ζ , 0) = − 1, 0 < ζ < ∞ , Σ(0) = 0

(7f)uL(0, Fo) = + 1,
ζ → ∞
lim uS(ζ , Fo) = − 1, Fo > 0,

which contains only the three parameters defined in (5).
Its similarity solution is easily found to be (PROBLEM 10)

(8a)Σ(Fo) = 2λ√⎯ ⎯⎯Fo

uL(ζ , Fo) = + 1 −
erf⎛

⎝
ζ

2√⎯ ⎯⎯Fo
⎞
⎠

erf λ
, 0 ≤ ζ ≤ Σ(Fo), Fo > 0, (liquid) (8b)

uS(ζ , Fo) = − 1 +
erfc⎛

⎝
ν

ζ
2√⎯ ⎯⎯Fo

⎞
⎠

erfc(ν λ)
, Σ(Fo) ≤ ζ , Fo > 0, (solid) (8c)

with λ the unique root of the (already dimensionless) equation (2d).

2.2.C Approximations to the root λ

We know from §2.1.F that in the 1-phase case, StStL ≈ 0 implies

λ1−phase ≈ √⎯ ⎯⎯⎯StStL/2. Since, by (4), λ2−phase < λ1−phase always holds, StStL ≈ 0 implies
λ2−phase ≈ 0. To the lowest order, equation (2d) is approximately

StStL/(2λ2) − StStS/(ν λ√⎯ ⎯π ) = 1, whence

λ2−phase ≈
1

2

⎡
⎢
⎣

−
StStS

ν √⎯ ⎯π
+ √⎯ ⎯⎯⎯⎯2StStL + (

StStS

ν √⎯ ⎯π
)2

⎤
⎥
⎦

for StStL ≈ 0 .  (9a)

If, in addition, StStS > > StStL ≈ 0, this simplifies to

λ2−phase ≈
ν √⎯ ⎯π

2

StStL

StStS
. (9b)
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An approximation, analogous to (35) §2.1, applicable to a narrow but useful
range of situations is the following:

(9c)λ2−phase ≈ 0. 706√⎯ ⎯St {1 − [ 0. 21 + U (0. 51 − 0. 169 St) ] . (0. 5642 St)B}

which is valid when α L = α S for St + 0. 8 U ≤ 2, where St : = StStL, U =

(Tm − TS) / (TL − Tm), and B =
0. 93

1 + 0. 69 U0.7
− 0. 15 St. Its error is less than

10% and usually less than 3-5%.
Highly accurate values may be found numerically, using, for example, Brent’s

method [PRESS et al] or even plain bisection. Note that most FORTRAN libraries
already contain the error function.

Some materials have extremely small latent heat of melting. Considering
L = 0 as an approximation to such a case, (2d) reduces to

(9d)cL(TL − Tm)

eλ2 erf λ
=

cS(Tm − TS)

ν eν 2λ2 erfc(ν λ)
.

Note that then by (1d), there will be no flux jump at the interface, only the specific
heat and conductivity may have jumps. The interface will simply be the isotherm
T = Tm.

2.2.D Approximating the finite slab case

It is of interest and useful to know when we may consider a finite slab,
0 ≤ x ≤ l, as being semi-infinite. Clearly, if the back face, x = l, is anything but
insulated then there is an active boundary condition there which influences the
temperature throughout the slab immediately (§1.2) and no semi-infinite approxi-
mation is possible. With q(l, t) = 0, the question is up to what time will the Neu-
mann solution approximately satisfy this boundary condition? In other words,
given ε > 0, we want the time up to which

q(l, t) = − kSTx(l, t) =
kS ∆ TS

√⎯ ⎯⎯⎯π α St el2/4α St erfc(ν λ)
< ε , (10)

∆ TS = Tm − TS. Using el2/4α St > l2/4α St , (10) will certainly hold up to time t*

given by

t < t* : = ε 2⎛
⎝

π
α S

⎞
⎠

⎛
⎝

l2 erfc(ν λ)

4kS ∆TS

⎞
⎠

2

. (11)

EXAMPLE 1 : In melting a slab of ice of thickness l = 1 m, initially at
TS = − 10°C, via TL = 25°C at x = 0, an estimate of the time up to which the
Neumann solution flux at x = l remains less than ε = 10−3kJ /m2 s is
t* ≈ 20 × 10−6 seconds ! (PROBLEM 13).
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An alternative to keeping the flux at x = l small is to ask for how long does the
(solid) flux at x = l, qS(l, t), stay a small percentage of the incoming flux, qL(0, t),
namely

⎪
⎪
⎪

qS(l, t)

qL(0, t)

⎪
⎪
⎪

≤ ε . (12)

We find that this will happen up to time (PROBLEM 12)

t ≤ t**: =
l2

4α S ln
A

ε

with A = ν
kS ∆TS

kL ∆TL

erf λ
erfc(ν λ)

, (13a)

which may be roughly estimated, using erf λ >
2

√⎯ ⎯π
(λ −

λ3

3
), erfc(ν λ) <  1, by

t ≤
l2

4α S ln
B

ε

, B = ν
kS ∆TS

kL ∆TL

2

√⎯ ⎯π
(λ −

λ3

3
) .  (13b)

EXAMPLE 2 : For the situation of EXAMPLE 1, we have B ≈ 0. 94, so (12)
will hold with ε = 1% at least up to time t** ≈ 186 s, and with ε = 10−6 up to
61 seconds (PROBLEM 13). Yet another possibility is described in PROB-
LEM 15.

In order to use the Neumann solution as a debugging tool for a numerical simula-
tion of phase-change in a finite slab, we do not have to rely to such approxima-
tions. Instead, one may impose at the back face x = l the Neumann temperature
itself. This neutralizes the effect of the back face and direct comparison of the
computed temperatures and front location with the Neumann solution is meaning-
ful. The same could be done experimentally if one had the means to exactly con-
trol the time varying back-face temperature, which is difficult to achieve.

2.2.E Energy content and Stefan numbers

In the 2-phase Stefan Problem of §2.2.A, at any t > 0, the interval [0, X(t)) is
occupied by liquid and [X(t), ∞) by solid. The total energy (heat) in the system
consists of the sensible heat of the solid and of the liquid and the latent heat of liq-
uid. Taking TS as the (reference) temperature of zero energy (in order to have zero
energy at x = ∞), we have (per unit crossectional area)

(14a)
sensible heat of liquid: Esens

L (t) =
X(t)

0
∫ ρcS[Tm − TS]dx +

X(t)

0
∫ ρcL[T(x, t) − Tm]dx ,

sensible heat of solid: Esens
S (t) =

∞

X(t)
∫ ρcS[T(x, t) − TS]dx , (14b)
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(14c)Latent heat of liquid: Elat(t) = ρ LX(t) .

For the Neumann solution, (2), these turn out to be (PROBLEM 18)

(15a)
Esens

L (t) = ρ L StStS X(t) + ρ L StStL X(t)
1 − e−λ2

√⎯ ⎯π λ erf λ
,

Esens
S (t) = ρ L StStS X(t)

⎡
⎢
⎣

1

√⎯ ⎯π ν λ e(ν λ)2erfc(ν λ)
− 1

⎤
⎥
⎦

. (15b)

At time t = 0, the system was solid at TS, so had energy zero (by our choice of TS

as the reference temperature); the only heat that came in up to time t > 0  is
(PROBLEM 19)

Q(t) : =
t

0
∫ q(0, s)ds =

t

0
∫ − kLTx(0, s)ds =

ρ L StStL X(t)

√⎯ ⎯π λ erf λ
. (16)

One may easily verify the heat balance (PROBLEM 20)

(17)Esens
L + Esens

S + Elat = Q .

It is interesting to note that the ratios of sensible to latent heats are constants
(independent of time). Indeed, from (15) and (2d), we find, for example,

(18a)Esens
L (t)

Elat(t)
= StStS + StStL

1 − e−λ2

√⎯ ⎯π λ erf λ
,

(18b)Esens
L + Esen

S

Elat
=

StStL

√⎯ ⎯π λ erf λ
− 1.

When StStL ≈ 0, the right-hand side of (18a) is ≈ StStS +
StStL

2
, (PROBLEM 22), and

therefore in the 1-phase case (i.e. StStS = 0), the Stefan number represents twice the
ratio of sensible to latent heat (PROBLEM 23).

The above relationships may be used as simple checks on the validity of com-
puter codes as well as in finding the heat stored in the system, see §2.2.G.

2.2.F Shape of melting and cooling curves

Placing a thermocouple at a location x*, an experimenter records the tempera-
ture of that location over time. Plotting these temperatures against time produces a
melting or cooling curve, T = T*(t). This is the most precisely and easily measur-
able quantity in a phase-change experiment, so it is important to know what to
expect. The theoretical melting curve, corresponding to the experimental one, is
the curve T = T(x*, t), with x* the fixed thermocouple location. We are interested
in its shape and qualitative features.

As it is easier to work in dimensionless variables, we set
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ζ * =
x*

x̂̂
and τ * = ⎛

⎝
ζ *

2λ
⎞
⎠

2

= melt time of ζ * , (19)

and examine the Neumann solution (8), of our melting problem (1). For notational
convenience we denote dimensionless time (Fourier Number) by τ .

During 0 ≤ τ ≤ τ *, the point ζ = ζ * is solid with temperature, (8c),

u(ζ *, τ ) = − 1 +
erfc(ν

ζ *

2√⎯ ⎯τ
)

erfc(ν λ)
, 0 ≤ τ ≤ τ * , (20)

where λ is the root of (2d). Computing uτ (ζ *, τ ) and uτ τ (ζ *, τ ), we see that
(PROBLEM 24) uτ (ζ *, τ ) >  0, hence u(ζ *, τ ) is increasing for 0 ≤ τ ≤ τ *, and

uτ τ (ζ *, τ ) ≥ 0 for τ ≤ τ̂̂: =
ν 2ζ *2

6
, (21)

hence u(ζ *, τ ) is a convex curve up to τ ≤ τ̂̂. Thus, we have two possibilities. If

τ̂̂ > τ *, i.e. if ν λ > √⎯ ⎯⎯3 / 2, then the melting curve stays convex during 0 ≤ τ ≤ τ *,
Figure 2.2.2(a). Otherwise, it changes its concavity at τ = τ̂̂ < τ *, Figure 2.2.2(b).

After ζ * melts, its temperature follows (8b). Again, we see that (PROBLEM
25) uτ (ζ *, τ ) >  0 and

uτ τ (ζ *, τ ) ≤ 0 for τ ≥ τ̂̂̂̂ : =
ζ *2

6
. (22)

Hence, if τ̂̂̂̂ < τ *, i.e. if λ < √⎯ ⎯⎯3 / 2, then by (22) the melting curve is concave for-

ever, Figure 2.2.3(a). Otherwise, u(ζ *, τ ) is convex during τ * ≤ τ ≤ τ̂̂̂̂ and con-
cave everafter, Figure 2.2.3(b).

( a ) ( b )

1

−1 −1

1

uu

0 0

case τ̂̂ > τ * case τ̂̂ < τ *

τ̂̂τ̂̂

ττ

τ * τ *

Figure 2.2.2. Shape of melting curve before ζ * melts.
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u u

τ̂̂̂̂ τ *
τ * τ̂̂̂̂

−1

1

0 0

1

case τ̂̂̂̂ < τ * case τ̂̂̂̂ > τ *

( a ) ( b )−1

ττ

Figure 2.2.3. Shape of melting curve after ζ * melts.

It follows that the overall melting curve will consist of an appropriate combi-
nation of convex and concave time-histories. Clearly, cooling curves are similar in
shape but, of course, decreasing.

EXAMPLE 3 : Melting of ice, initially at TS = − 10°C, via TL = 25°C at x = 0.
With parameter values given in §2.1.E and PROBLEM 10 §2.1 the dimension-
less constants are: StStL = 0. 314, StStS = 0. 06, ν = 0. 02137, and the correspond-
ing root is λ = 0. 09178. Let us imagine a thermocouple at location ζ * = 0. 2.

Then, from (19, 21-22) we find τ * = 1. 187, τ̂̂ = 3 × 10−6, τ̂̂̂̂ = 0. 0067. Since
τ̂̂ << τ *, the melting curve at ζ * = 0. 2 would change concavity but at a very
early time.

When an actual experiment or a computer simulation exhibit qualitatively different
melting curves than expected from the above, then one must question the simplify-
ing features of the model used (constant thermophysical properties, neglecting var-
ious effects, like supercooling or convection, etc).

On the other hand, if the expected behavior occurs then such curves may be
used to check the accuracy of parameter values. For example, the jump in the
slope of a melting curve at the melt time is a measurable quantity (with a differen-
tial thermal analyzer). For the Neumann solution this jump is, (from PROBLEMS
24-25)

[[uτ (ζ *, τ *)]]liquid
solid =

λ

√⎯ ⎯π τ *

⎡
⎢
⎣

e−λ2

erf λ
−

ν e−ν 2λ2

erfc(ν λ)

⎤
⎥
⎦

. (23)

For StStL ≈ 0 and StStS > StStL we know that λ ≈
ν √⎯ ⎯π

2

StStL

StStS
(see (9b)) and, expanding

erf to first order in λ , (23) yields

[[uτ ( ζ *, τ *)]]liquid
solid ≈

1

2τ *

⎡
⎢
⎢
⎢
⎣

1 −
1

kS

kL

∆TS

∆TL
− 1

⎤
⎥
⎥
⎥
⎦

, (24)
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with ∆TS = Tm − TS, ∆TL = TL − Tm. By measuring the left-hand side, (24) could
be used to check the correctness of data values for the ratio of conductivities
kS / kL.

2.2.G An example

For many years effective means have been sought for storing heat as the latent
heat of melting of a material. The prime source of such energy is solar, which is
intermittent, and whose energy, derived during sunlit periods, is needed at other
times. A material under intense study as a candidate for such a role is Glauber’s
salt (sodium sulfate decahydrate). Its thermal properties are as follows:
ρ = 1460 kg/ m3, Tm = 32 °C, L = 251. 21 kJ / kg, cL = 3. 31, cS = 1. 76
(kJ /kg°C), kL = 0. 59 × 10−3, kS = 2. 16 × 10−3 (kJ /m s °C) whence
α L = 1. 22 × 10−7, α S = 8. 4 × 10−7(m2/s) .

Let the face of a long can of Glauber’s salt be exposed to a warm temperature
TL = 90°C. Initially it is solid at the temperature TS = 25°C. We wish to
describe the resulting melting process. Here we have StStL = 0. 76422, StStS = 0. 049,
ν = 0. 3811, and solving (2d) numerically, λ = 0. 520815. Hence, the location of
the phase change front at any time is X(t) = 3. 64 × 10−4√⎯ t meters.

In Figure 2.2.4 we see the temperature profiles at three times. We note that the
temperature is very nearly linear in space with a jump in slope at the interface
x = X(t). The variation of the temperature in time at three depths in the material is
shown in Figure 2.2.5. Again we see a jump in the slope at the time when the
phase change takes place. We note the extreme flatness of the curves as we move
to greater depth, something that is typical of actual processes. A simple calcula-
tion shows that for any x we have Tt(x, 0) = 0 so, all melting curves start with zero
slope; since (ν λ)2 < 3/2 here (§2.2.F), there is a concavity change before the
melt time, as in Figure 2.2.2(b), but due to scaling this effect cannot be seen in
Figure 2.2.5.

at t = 10 hours

at t = 30 hours

at t = 60 hours

Figure 2.2.4. Temperature profiles at three times.
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at x = 5 cm

at x = 10 cm

at x = 15 cm

Figure 2.2.5. Temperature histories at three points.

At this point we have ‘‘modeled’’ the process, meaning that the temperature
(given by (2b,c) is related in a known way to the thermal properties and the initial
and boundary temperature. Of primary interest in heat storage is the ‘‘heat inven-
tory’’ at any time. For example, after 1 hour the melt-depth is
X(3600s) = 0. 0218 m, and the amount of heat that has entered the system is (from
(16)) Q(3600s) = 12306 kJ /m2. Of this amount, Elat = ρ LX = 7995. 5 kJ /m2 is
stored as latent heat and the rest, 4310. 5 kJ /m2, as sensible heat (of which,
Esens

L = 3308 in the liquid and only Esens
S = 1002. 5 in the semi-infinite solid, by

(15)).

PROBLEMS

PROBLEM 1. State precisely the 2-phase Stefan Problem for freezing from the
left with initial temperature TL > Tm and imposed temperature TS < Tm at
x = 0. Compare with (1).

PROBLEM 2. Derive (2) by following the procedure of §2.1.B.

PROBLEM 3. Verify that (2) solves (1).

PROBLEM 4. The function g(x): = ex2
erfc(x) is decreasing while the function

h(x): = x ex2
erfc(x) is increasing, for x > 0. These functions arise in the sim-

ilarity solutions in §2.2, 2.3 and 2.4. Their monotonicity properties may be

proved as follows: (a) Set φ (x): = e−x2
g′(x) = 2 x erfc x −

2

√⎯ ⎯π
e−x2

, x > 0.

Show that φ (0) < 0, φ (x) → 0 as x → ∞ and φ′(x) >  0 for x > 0. Conclude

that φ (x) <  0, whence g′(x) = ex2
φ (x) <  0, for x > 0.

(b) Set ψ (x): = e−x2
h′(x), x > 0. Show that ψ (0) = 1, ψ (x) → 0 as x → ∞
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and ψ ′(x) = 2 e−x2
g′(x) <  0 (from part (a)). Conclude that ψ (x) >  0, so also

h′(x) = ψ (x)ex2
(x) >  0 for x > 0.

PROBLEM 5. To prove that, for any StStL > 0 , StStS ≥ 0 , ν > 0  equation (2d) has a
unique root λ > 0, set f (λ) equal to the left-hand side of (2d), λ > 0. Use
(28-33) of §2.1 and the previous PROBLEM to show that
(a) f (0) = + ∞, f (∞) = − ∞; conclude that the equation f (λ) = λ√⎯ ⎯π has at
least one (positive) solution.
(b) f (λ) is strictly decreasing for λ > 0; conclude that f (λ) = λ√⎯ ⎯π has
exactly one (positive) solution.

PROBLEM 6. Seek an alternative form of the similarity solution by setting
X(t) = 2λ√⎯ ⎯⎯α St with T(x, t) as before. Compare with (2).

PROBLEM 7. Derive the Neumann solution for the freezing case described in
PROBLEM 1.

PROBLEM 8. Derive the dimensionless form (7).

PROBLEM 9. Corresponding to the alternative choice suggested in PROBLEM 6,

one may choose as Fourier number (dimensionless time) Fo = α S t / x̂̂
2.

Derive the dimensionless form of (1) with this choice of Fo. Compare with
PROBLEM 8.

PROBLEM 10. Seek the similarity solution of (7) in the form Σ = 2λ√⎯ ⎯⎯Fo,
u(ζ , Fo) = F(ξ ), ξ = ζ / √⎯ ⎯⎯Fo, to obtain (8).

PROBLEM 11. Prove that equation (9d) has unique solution. Using other sources
find a material for which a phase change with an ignorable latent heat is of
interest and for which the relation is relevant.

PROBLEM 12. Derive (13).

PROBLEM 13. In the situation of Example 1, §2.2.D, estimate the time up to
which the Neumann solution will be a reasonable approximation to this finite-
slab problem, according to the criterion (10) with ε = 10−3, and according to
criterion (12) with ε = 1%.

PROBLEM 14. Repeat PROBLEM 13 with the same ε , but using the approxima-
tion (9c) for λ and the first term of (32) §2.1 for erfc(ν λ).

PROBLEM 15. As another alternative in §2.2.D, consider the problem of §2.2.C
for the condition that the temperature at the right hand side of a finite slab be
closer to the initial temperature TS than some prescribed tolerance ε . Derive
an estimate similar to (10) for the condition that | T(l, t) − TS | < ε .

PROBLEM 16. Apply the results of (10), of (12), and of PROBLEM 15 to the
case of Glauber’s salt of §2.2.G for l = 0. 5m. Feel free to use the approxima-
tion (34) §2.1 for the error function.
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PROBLEM 17. Integral of the error function. By interchanging the order of inte-
gration show that

X

0
∫ erf(

x

2√⎯ ⎯⎯α Lt
)dx =

2

√⎯ ⎯π

X

0
∫

x

2√⎯ ⎯⎯⎯α Lt

0
∫ e−s2

dsdx = X erf λ −
2

√⎯ ⎯π
(1 − e−λ2

)√⎯ ⎯⎯α Lt ,

∞

X
∫ erfc(

x

2√⎯ ⎯⎯α St
)dx =

2

√⎯ ⎯π

∞

X
∫

∞

x
∫

2√⎯ ⎯⎯α St

e−s2
dsdx =

2√⎯ ⎯⎯α St

√⎯ ⎯π
e−(ν λ)2

− X erfc(ν λ) .

PROBLEM 18. Using the previous PROBLEM, derive relations (15).

PROBLEM 19. Derive relation (16).

PROBLEM 20. Verify the heat balance (17).

PROBLEM 21. Derive relations (18).

PROBLEM 22. Show that when λ ≈ 0, the last term in (18a) to lowest order is
StStL/2.

PROBLEM 23. In the 1-phase case, approximate the temperature by the average
of Tm and TL to show that the ratio of sensible to latent heat is half the Stefan
number, in agreement with the result of PROBLEM 18.

PROBLEM 24. Compute the time derivatives uτ (ζ *, τ ) , uτ τ (ζ *, τ ) of (20) and
verify (21).

PROBLEM 25. Compute the time derivatives uτ (ζ *, τ ) , uτ τ (ζ *, τ ) of (8b) and
verify (22).

PROBLEM 26. Verify the work in the Example of §2.2.F.

PROBLEM 27. Derive relation (23) and its approximation (24).

PROBLEM 28. Check the work in §2.2.G.




