
C H A P T E R 2

PROBLEMS WITH EXPLICIT SOLUTIONS

The formulation of Stefan Problems as models of basic phase-change
processes was presented in§1.2. Under certain restrictions on the parameters and
data such problems admitexplicit solutions in closed form. These simplest
possible, explicitly solvable Stefan problems form the backbone of our
understanding of all phase-change models and serve as the only means of
validating approximate and numerical solutions of more complicated problems.

Unfortunately, closed-form explicit solutions (all of which are of similarity
type) may be found only under the following very restrictive conditions:
1-dimensional, semi-infinite geometry, uniform initial temperature, constant
imposed temperature (at the boundary), and thermophysical properties constant in
each phase.

Within these confines we present a succession of models of increasingly
complicated phase-change processes.

We begin with the simplest possible models, the classical 1-phase Stefan
problem (§2.1), and 2-phase Stefan Problem (§2.2), modeling the most basic
aspects of a phase-change process (as discussed in§1.2). We present the Neumann
similarity solution and familiarize the reader with some of the information it
conveys.

Next ( §2.3 ) we relax the assumption of constant density by allowing the
densities of solid and liquid to be different (but each still a constant), thus bringing
density change effects into the picture.We study the effect of volume expansion
(no voids), and of shrinkage (causing formation of a void near the wall). In each
case we formulate explicitly solvable thermal models (neglecting all mechanical
effects) and examine the effect of density change on the Neumann solution.More
precise models, which include mechanical effects but don’t admit explicit
solutions, are derived from first principles in the last subsection.

In §2.4 we introduce supercooling, thus relaxing the assumption that the phase-
change occurs at the melt temperatureTm. We discuss the thermodynamics of
phase-coexistence and derive the Laplace-Young, Clausius-Clapeyron and Gibbs-
Thomson relations from first principles.The classical Mullins-Sekerka
morphological stability analysis is also presented.

In §2.5 we discuss binary alloy solidification, coupling heat conduction and
solute diffusion. We present the classical model of Rubinstein and its explicit
solution, as well as various other models of freezing over an extended temperature
range.

The introduction of each new physical phenomenon in the simplest possible
setting (dictated by the desire to have explicit solutions available) helps us
understand the phenomenon more easily and see its effects on the solution.
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Similarity solutions in cylindrical and spherical geometries for special
problems are the subject of§2.6. Finally, in §2.7 we present a contrived (artificial)
multi- dimensional phase-change problem whose explicit solution may serve as
benchmark for 2 or 3 dimensional numerical codes.Such a debugging tool
becomes necessary becauseno explicitly solvable phase-change problem exists in
2 or 3 dimensions.

Each phase-change process involvingmelting has a counterpart involving
freezing. For consistency throughout our discussions we will be treating the case
of melting, unless we are specifically interested in a solidification process (as in
§2.5). Theparallel developments for freezing will be mostly left as exercises for
the reader in the PROBLEMS, but the changes needed to turn the solution of the
one to the other will be indicated in the text.

2.1. THE ONE-PHASE STEFAN PROBLEM

2.1.A Introduction

The simplest explicitly solvable phase-change problem is the 1-phase Stefan
Problem (§1.2.F) with constant imposed temperature and constant thermophysical
properties. Itssolution is the classical Neumann similarity solution [CARSLAW-
JAEGER], [RUBINSTEIN] involving the error function.As prototype example
we treat themelting problem leaving the case of freezing for the reader to examine
via the Problems.

The term ‘‘one-phase’’ refers to only one of the phases (liquid) being ‘‘active’’,
the other phase staying at the melt temperatureTm (§1.2.F). Thus the physical
situation is the following:

PHYSICAL PROBLEM: Melting of a (semi-infinite) slab, 0≤ x < ∞, initially
solid at the melt temperature,Tm, by imposing aconstant temperature
TL > Tm on the face x = 0. Thermophysical parameters: ρ, cL,
kL, L, α L = kL / ρcL, all constant.

The physical realization of this problem is an insulated pipe, filled with a PCM,
and exposed at one face to a heat source, while its length is so great that the second
face is not reached by the melting front during the life of the experiment (Figure
2.1.1). The experiment begins with the material initially solid and at its melt
temperature. Thenearby face temperature is raised as quickly as possible to the
valueTL and maintained at that value for all time. This may be done by pumping
a heat exchange fluid at temperatureTL at very high mass flow rate across the
face. Themathematical model of this process leads, as in§1.2, to the following:

MATHEMATICAL PROBLEM (1-phase Stefan Problem for a slab melting
from the left) :
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Figure 2.1.1. Physical realization of the One-Phase Stefan Problem.
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Figure 2.1.2. Space-time diagram for the One-Phase Stefan Problem.

FindT(x, t) and X(t) such that (Figure 2.1.2)

(1)Tt = α LTxx , 0 < x < X(t) , t > 0  (liquid)

(2a)T(X(t), t) = Tm , t ≥ 0

(2b)ρ LX′(t) = − kLTx(X(t), t) , t > 0

(3)X(0) = 0 ,  (material initiallycompletely solid)

(4)T(0, t) = TL > Tm , t > 0

The corresponding problem for a slabfreezing from the left due to a tempera-
tureTS < Tm being imposed atx = 0 is formally obtained by replacing every sub-
script L by S and the latent heatL by −L in (2b).
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2.1.B The Neumann Solution

We introduce the similarity variable

(5)ξ =
x

√ t
,

and seek the solution in the form

(6)T(x, t) = F(ξ) ,

with F(ξ) an unknown function. Accordingly it is natural that we would seek the
interface locationX(t) to be proportional to√ t , searching therefore for a constant
A for which

(7)X(t) = A√  t .

Substituting into (1) and integrating we obtain

F(ξ) = B

ξ

0
∫ e

−
s2

4α L ds+ C = B√ π α L erf(
ξ

2√ α L
) + C (8)

for B , C constants, where

erf(z) =
2

√ π

z

0
∫ e− s2

ds (9)

denotes theerror function [ABRAMOWITZ-STEGUN] (see§1.2, also (28-35)
below). Conditions(4) and (2a) yield

(10)C = TL and B =
Tm − TL

√ π α L erf(A/2√ α L )

Set

λ =
A

2√ α L
, ∆TL = TL − Tm , (11)

and

StStL =
cL∆TL

L
= Stefan Number . (12)

Then the Stefan condition (2b) leads to an equation forλ :

λeλ2
erf(λ) =

kL

ρ L

∆TL

√ π α L
=

cL∆TL

√ π L
=

StStL
√ π

. (13)

Hence it is more convenient to express the solution in terms ofλ . From (5-7, 11),

(14)X(t) = 2λ√ α L t,
and from (5-8,10)

T(x, t) = TL − ∆TL

erf(
x

2√ α L t
)

erf(λ)
, (15)

with λ a root of the transcendental equation
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(16)λeλ2
erf(λ) = StStL / √ π .

It is easily shown (PROBLEM 2) that the quantityf (λ) = λeλ2
erfλ is a strictly

increasing function ofλ ≥ 0 , f (0) = 0 ,
λ → ∞
lim f (λ) = + ∞ , and therefore the graph

of y = f (λ) intersects any horizontal liney = StStL /√ π exactly once. In other words,
for each value ofStStL > 0, there exists aunique root, λ , of equation (16),Figure
2.1.3. Onceλ is found by solving the transcendental equation (16), the solution of
the Stefan Problem is given by (14-15). Thisis the classicalNeumann solution to
the Stefan Problem (after F. Neumann).

Note that the uniqueness of the rootλ implies the uniqueness of thesimilarity
solution, i.e. that (14-15) is the only solution of the form (6-7). Is this theonly
possiblesolution of (1-4)? The answer is Yes. TheStefan problem is a well-posed
mathematical problem (§1.2.C,§4.5 ), so it admits only one solution.Uniqueness
of the solution follows from the much more general uniqueness of a weak solution
presented in§4.4 .

2.1.C Dimensionless form

We observe in (16) that the value of the rootλ and hence also the solution,
depends on asingle dimensionless parameter, theStefan Number, defined in (12).
This is better brought out by undimensionalizing the problem itself.We introduce
the dimensionless length and time variables,

(17)ζ =
x

x̂̂
, Fo =

α L

x̂̂2
t = Fourier Number,

where x̂̂ is any convenient length scale (note that there is no ‘‘natural’’ l ength in
this problem), and the dimensionless interface and temperature

(18)Σ(Fo) =
X(t)

x̂̂
, u(ζ , Fo) =

T(x, t) − Tm

∆TL
,

where∆TL = TL − Tm as in (11). Then the Stefan Problem (1-4) takes the form
(PROBLEM 6)

(19)uFo = uζ ζ , 0 < ζ < Σ(Fo) , Fo > 0

(20)u(Σ(Fo), Fo) = 0 , Fo > 0

(21)Σ′(Fo) = − StStL.uζ (Σ(Fo), Fo) , Fo > 0

(22)Σ(0) = 0

(23)u(0, Fo) = 1 , Fo > 0,

containing asingle parameter, the Stefan number (12).For alternative dimension-
less forms see§3.1.

The Neumann similarity solution of the dimensionless problem (19-23) is
given by (PROBLEM 7)
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(24)Σ(Fo) = 2λ√ Fo , Fo ≥ 0 ,

u(ζ , Fo) = 1 −
erf(

ζ
2√ Fo

)

erf λ
, 0 ≤ ζ ≤ Σ(Fo) , Fo ≥ 0, (25)

with λ the root of the same transcendental equation

(26)λeλ2
erf λ =

StStL
√ π

.

2.1.D The root λ versus the Stefan Number

As the only parameter present in the problem (19-23), the Stefan numberStStL
completely characterizes the melting process.We may think of it as representing
the ratio of the ‘‘sensible heat’’, cL∆TL to the latent heatL. That this is indeed a
correct interpretation will be shown in§2.2.G. Note that for a freezing process we
define the Stefan number by

StStS =
cS(Tm − TS)

L
.

To gain perspective, let us computeStSt for some materials in typical phase-
change processes.

EXAMPLE 1 : Ice and Water. Ice and water are the solid and liquid phases of the
same material (H2O). Underordinary conditions the temperature of ice is less
than the valueTm = 273. 15 K (0°C); uponwarming, ice melts at this tempera-
ture with a latent heatL = 333. 4kJ /kg, and water is found at temperatures
aboveTm. Its specific heat iscL = 4. 1868 kJ /kg K. Due to the low value of the
ratio cL /L, the Stefan Number for melting of ice is typically no more than 1;
e.g. withTL = 37°C (body temperature), we have StStL = 0. 46.

In freezing of water, the specific heat of ice varies strongly with tempera-
ture (see (1)§1.2), typically in the range of1. ≤ cS ≤ 2. 09, which results in
ev en smaller Stefan numbers.For example, in a food freezing process, we may
have TS = − 20°C; taking cS = 2 as representative value, we find
StStS = cS(Tm − TS)/L ≈ 0. 12.

EXAMPLE 2 : Copper. For copperTm = 13 56. 2K andL = 20 4. 9  kJ/kg. Suppose
that copper, initially at the temperature 1470 K, cools down toTm and solidi-
fies; for liquid copper the average specific heat iscL = . 51 kJ/kg K, hence we
have StSt= . 28. Supposethat the process includes cooling to room temperature;
for this temperature range a representative value of the specific heat iscS = . 45
kJ/kg K; thus the temperature drop∆T in the Stefan number is approximately
1200 K andStSt= 2. 64.
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EXAMPLE 3 : Melting of a Paraffin Wax. Paraffin waxes have high latent heat.
A typical paraffin wax is N- Octadecane for whichc = 2. 16 kJ/kg K, L = 243
kJ/kg and the melting temperatureTm = 301.2 K. Over a range of tempera-
ture∆T = 100K , StSt= .89. Like water, paraffin waxes generally have low Ste-
fan numbers associated with their melting and solidification.

EXAMPLE 4 : Melting of Silicon-Dioxide from Room Temperature. Silica (sili-
con dioxide) is a material with a high specific heat In fact, over a range of tem-
peratures from room temperature to its melting point atTm = 1996 K the aver-
age specific heat isc = 1. 12 kJ/kg K, while its latent heat isL = 158. 3 kJ/kg.
Hence for a melting process from room temperature (298 K),StSt= 12.

These examples point to the following rule of thumb. For certain families of non-
metallic solids such as waxes, StSt is small; hence, the bulk of heat stored or
released from them is latent heat.For metalsStSt is of the order 1-10 and so the
effect of sensible heat is at least as large as that of latent heat.For other materials
such as silicatesStStmay be very large; thesensible heat will then dominate the
heat transfer process. Of courseStStdepends on the temperature drop∆T experi-
enced by the material during the heat transfer process (PROBLEM 14).

In general, the size ofStStwill determine the suitability of a particular method
for analyzing a given heat transfer process.For large StSt the process will essen-
tially be one of pure conductionto which a variety of existing techniques are appli-
cable. For smallStStthe conduction heat transfer process will be dominated by the
phase change.

Given a melting or freezing process, hence a Stefan numberStSt, the transcen-
dental equation

(26)λeλ2
erf λ = StSt/√ π

is easily solvable by the Newton-Raphson iterative method [PRESS et al] using as
initial ‘‘guess’’ the value √ StSt/2. The latter is the approximate solution to (26)
when StSt≈ 0, as we shall show in §2.1.F. Figure 2.1.3 displays the values of the
root λ for eachStStin the range 0≤ StSt≤ 5, found by the Newton-Raphson method.

For the convenience of the reader and easy reference we list here the basic
properties of theerror function [ABRAMOWITZ-STEGUN]

(27)
erf(z) =

2

√ π

z

0
∫ e− s2

ds

(28)erf(0) = 0 ,  erf(∞) = 1 ,

(29)erf(−z) = erf(z)

(30)d

dz
erf(z) =

2

√ π
e−z2

> 0 ,

(31)
erf(z) =

2

√ π
(z −

z3

3.1!
+

z5

5.2!
−

z7

7.3!
+ . . .),
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Figure 2.1.3. The rootλ of (26) vs the Stefan Number.

erf(z) ≈ 1 −
e−z2

z√ π
(1 −

1

2z2
+ . . .) as z → ∞, (32)

(33)complementary errorfunction : erfc(z) = 1 − erf(z) .

Extensive tables of values appear in [ABRAMOWITZ-STEGUN], but many For-
tran libraries containerf(z). A useful analytical approximation to the error func-
tion is given by the following relation:

erf z =







1. 128z ,

−0. 0198 + z(1 .2911 − 0. 426 2z) ,

0. 881 4+ 0. 058 4z ,

1 ,

0 ≤ z ≤ 0. 15

0. 15 ≤ z ≤ 1. 5

1. 5 ≤ z ≤ 2

2 ≤ z

(34)

In the same spirit, an effective approximation to the rootλ of (26) is given by
the expression

(35)λ ≈ 0. 706√ StSt{1 − 0. 21(0. 5642.StSt)0. 93−0.15StSt} .

This relation has less than a 1% relative error for 0 < StSt< 0.83, a relative error
below 5% for 0.83 < StSt< 4. 28 and below 10% for StSt< 4.86.

2.1.E Example: Melting a slab of ice

A slab of ice is 10 cm thick. It is initially solid and at its melt temperature of
0°C. Oneface of the slab is insulated while from the initial momentt = 0 of our
experiment, the other will be set at the warm temperature of25° C and maintained
at this value for all time.We hav e placed three thermocouples in the slab, at
depths of 1 cm, 3 cm and 5 cm.We wish to know the time of melt of the portions
up to each thermocouple location, as well as the melting time for the entire slab.
We wish also to learn about the appearance of the time-temperature measurements
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provided by the thermocouples, as well as the appearance of the temperature distri-
bution as a function of position. The information that we seek is provided by the
relations (14) (for the melt front), and (15) (for the temperature distribution).
Before we hasten to compute, however, let us consider what we need to know and
what we are ignoring in our idealized melting model.

Firstly, this problem is not just a ‘‘textbook’’ question, but one that appears in
various forms in a variety of applications. Three analogous cases that come to
mind are the thawing of food, the freezing or melting of the ground under a high-
way, and the freezing of ground around an earth-based heat exchanger for a heat
pump. Even if the basic geometry of the process is not slab-like, the slab geometry
may be a good approximation to it. Thus for a large portion of the melting process
of a rectangular region, the corners do not affect the process very much and it may
be considered as if uncoupled melting or freezing processes are taking place at
each face. Similarlyunless the pipe radius is very small the freezing or melting
around a pipe is roughly speaking, slab-like.

The words ‘‘roughly speaking’’ as used above are meaningful. While one may
strive for unlimited accuracy (and indeed, in the absence of that goal, a ‘‘rule of
thumb approach’’ w ill be questionable), nevertheless heat transfer process simula-
tion carries with it the burden of many sources of inaccuracy. These include the
lack of accurate thermophysical parameter values [TOULOUKIAN], the simplifi-
cations needed to apply the tools of mathematics to the goal of simulation, and the
simplifications needed to carry out experiments. Thelatter may arise, for example,
from the changes of density of a material under a change of phase, etc. (see PROB-
LEMS 11-13). Besides, rough, first-cut approximations are informative, and, pos-
sibly, sufficient in some circumstances.

In our example we are ignoring the thermal effects of the change of density,
which is reasonable for small temperature gradients and small volumes. For the
only effect of a density change is to replace less dense ice by denser water, thus in
effect ‘‘pulling’ ’ the material towards the heating face. Thisaction would induce
convection in the liquid region (which is negligible due to the smallness of the
region involved), while the solid remains at the melt temperature for all time.The
mechanical effect of this action would, of course, be to buckle the container (if it is
tightly sealed) at the far end, (.1 m), an effect with which we are not concerned !
In any case, density change effects will be discussed in§2.3.

The assumption of the initial temperature being at the melting point is difficult
to attain in practice but may be ‘‘nearly’’ reached. Aswe will see in§2.2, the esti-
mate of the melt-depth that we will obtain will be greater than that obtained when
the initial subcooling is indeed taken into account (see§2.2).

Since our process is only ‘‘one-phase’’, we only need the relevant properties of
water which are: melt temperature= Tm = 0 °C , density= ρ = 1 g/ cm3 , specific
heat= cL = 4. 1868 J/ g°C , conductivity = kL = 0. 564×10−2 J/ cm s°C , thermal
diffusivity = α L = kL / ρcL =1. 347×10−3 cm2/ s , latent heat= L =333. 4 J/ g. We
then compute the Stefan numberStStand obtain the melt front historyX(t) and the
temperature distributionT(x, t) from (14-16).
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The temperature drop for our process is∆TL = TL − Tm = 25°C, and thus the
Stefan number isSt = cL ∆TL /L = 0. 314. Using the Newton-Raphson method of
PROBLEM 9 we find the rootλ of (16) to beλ = 0. 3777 . A much simpler
method for solving the transcendental equation is to use relation (35), giving us the
value λ = 0. 3776. If you are really ‘‘in a hurry’’ to obtain a ‘‘back of the
envelope’’ estimate, the value of√ StSt /2 is 0.396 2(see§2.1.F) with a relative error
of 4.9%, which is well within the needs of a reasonable ‘‘sizing’’ estimate.

From (14), the time needed for the melting front to reach a given depthX is

(36)tmelt = X2 / ( 4 λ2 α L) .

Let t1melt , t2
melt , t3

melt and t4
melt be the times needed for the melt frontX(t) to reach

the thermocouples at depthsX = 1 ,  3 ,5 centimeters, and the right hand face at10
centimeters, respectively. Substitution into (36) yields

t1melt = 13 01. 44 sec = 0. 36 hr

t2
melt = 11 713 sec = 3. 25 hr

t3
melt = 3253 6sec = 9. 04 hr

t4
melt = 13 0144 sec = 36.15 hr

In Figure 2.1.4 we see the simulated thermocouple readings at the three depths
where they were assumed placed. Note that the curves are all convex downward,
and heading asymptotically to the wall value of 25°C. Figure 2.1.5 is interesting.
It shows temperaturedistributions in the liquid at the timest1melt, t2

melt and t3
melt,

that to all intents and purposes are linear in the spatial variable. Thisis a particular
case of the general ‘‘rule of thumb’’ that for small values of the Stefan numberStSt,
the temperature in the phase change process is at any time essentially at its steady
state, (quasistationary, see (38) and§3.1) because of the quickness of the response
of temperature relative to the movement of the phase change front.In Figure 2.1.6
we see the moving front as a function of time.

 0

 5

 10

 15

 20

 25

 0  10  20  30

T
em

pe
ra

tu
re

 (
C

)

time (hours)

at x = 1 cm

at x = 3 cm

at x = 5 cm

Figure 2.1.4. Melting of ice: temperature histories at three depths.
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Figure 2.1.6. Melting of ice: interface location.

2.1.F The case of small Stefan Number

For many materials of interest the specific heat is considerably smaller than the
latent heat so that the Stefan number for processes with moderate∆T is of the
order 10−1 or less. Consider equation (26).For StSt≈ 0 , λ must also be small, and

by (31)λ eλ2
erfλ ≈ λ.1. 2

√ π
λ ; hence (26) is approximately

2

√ π
λ2 =

StSt

√ π
, or

(37)
λ ≈ √ StSt

2
for StSt≈ 0.

It also follows that for 0 ≤ x ≤ X(t) = 2λ√ α L t the quantity
x

2√ α t
≤ λ << 1,

whence, by (31),
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erf(
x

2√ α L t
)

erf λ
≈

2

√ π
x

2√ α L t
2

√ π
λ

=
x

X(t)
,

and the Neumann temperature (15) becomes

(38)T(x, t) ≈ TL − ∆TL
x

X(t)
, 0 ≤ x ≤ X(t) , t ≥ 0 .

For each t > 0  this is linear inx, i.e. the temperature profile at each time is a
straight line joining the point(x = 0 , T = TL) with (x = X(t) , T = Tm). Thisis the
reason for the linear profile inFigure 2.1.5.

Note that (38) satisfies the steady-state equationTxx = 0, while the Neumann

temperature satisfiesTxx =
1

α L
Tt . It is an approximate solution to (1-4), valid

when StStL ≈ 0 and it is called thequasistationary approximation, the subject of
§3.1, 3.2.

PROBLEMS

PROBLEM 1. (a) Formulate the 1-phase Stefan problem for a slab initially liq-
uid at Tm, freezing from the left due to an imposed constant temperature
TS < Tm at x = 0.

(b) Verify that the freezing problem results formally by replacing every sub-
script L by S andL by −L in (1-4).

PROBLEM 2. Show that f (λ) = λeλ2
erfλ , λ > 0  ,  is strictly increasing

[ f ′(λ) >  0 for anyλ > 0 ].

PROBLEM 3. Verify the Neumann solution, i.e. that (14-16) satisfy (1-4).

PROBLEM 4. For the case of freezing, in PROBLEM 1,

(a) Seek the similarity solution in the form: X(t) = 2λ√ α St ,
T(x, t) = F(ξ) , ξ = x / √ t , and show that, with λ satisfying
λeλ2

erfλ = StStS / √ π ,

T(x, t) = TS + [Tm − TS] erf(
x

2√ α St
) / erfλ , 0 ≤ x ≤ X(t) , t ≥ 0 ,

(b) Verify that the solution for freezing results formally from the solution for
melting by the formal substitutions mentioned in PROBLEM 1 (b).Note
in particular, that the equation forλ is the same.

PROBLEM 5. Show that (5) is the only possible similarity variable for the heat
equation (1) of the formξ = xγ tδ .
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PROBLEM 6. Derive the dimensionless form (19-23) of the 1-phase Stefan Prob-
lem (1-4) for the variables (17-18).

PROBLEM 7. (a) Seekthe similarity solution of (19-23) in the form

Σ(Fo) = 2λ√ Fo , u(ζ , Fo) = F(ξ) , ξ =
ζ

√ Fo
, and show that this leads to

(24-26).
(b) By direct change of variables, obtain the solution in physical variables
(14-15) from the dimensionless solution (24-25).

PROBLEM 8. Repeat PROBLEMS 6,7 for the freezing case (see PROBLEMS
1,4).

PROBLEM 9. Write and implement a numerical scheme for solving (26) based on
the Newton-Raphson method

λ n+1 = λ n −
f (λ n)

f ′(λ n)
, λ0 = √ StSt /2 ,

where f (λ) = λeλ2
erf λ −

StSt

√ π
, and produce a table of values of the rootλ for

0 < StSt< 5 , StSt= . 01,. 02,. . ..

PROBLEM 10. Freezing of water: Repeatthe work of§2.1.E for the freezing of
water initially at its melting point and subject to a face temperature of -25° C.
In this range, the properties of ice may be taken as: ρ S = 0. 91 g/cm3,
cS ≈ 2 J/g K, kS ≈ . 023 J/cm sK , henceα S = . 0125 cm2/s. You may use the
approximation (35) for the root of equation (26), and the approximation of
(34) in the evaluation of the temperature function.

PROBLEM 11. A box has been constructed to house an experiment in melting
and freezing of materials. The experiments are to be ‘‘one-dimensional’’, in
the sense that all but one of the box’s faces are insulated; the non-insulated
face is Aluminum through which Copper tubes carrying a cooling/heating
fluid pass.What problems can arise from the change of density of the mate-
rial that takes place when it melts or freezes?How would you deal with these
problems? Whatdifficulties would arise in your modeling efforts as a result
of your handling of these problems.

PROBLEM 12. In the course of doing the experiments of the last PROBLEM you
encounter a material which in its liquid phase dissolves large amounts of air.
What may happen to your experiment?

PROBLEM 13. In the course of performing a melting experiment and recording
the temperature values read by a thermocouple held along a thin wire across
the box of PROBLEM 11, you find that the temperature value ‘‘jumped’’
through a short temperature range discontinuously. The range begins at the
melt temperature, the density of the solid is greater than that of the liquid, and
the thermocouple and recording equipment are in order. What could have
caused the jump?.




