
9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 1/12

MATLAB Tutorial: An Introduction to MATLAB

AUGUST 31, 2015 BY UDEMYTUTORIALS

TABLE OF CONTENTS: CLICK TO JUMP TO A SPECIFIC SECTION

What is Matlab?

Setting it Up

Interactive Mode and Script Files

Writing Matlab Code

Brief overview
Variables
Arrays and Matrices
Control Flow

Conditional Branches
While/For Loops
Structs

Classes

Properties
Functions/Methods
Inheritance and handle

Applications

Plotting functions
Conway’s Game of Life

Conclusion

 What is Matlab?
Matlab, an abbreviation of Matrix Laboratory, is a commercial programming language that offers a range of built in

functions and tools. It was developed as a language to synthesize programming, as in C, C++, Pascal, or Java, into a

stronger and easier-to-use math development environment. Its primary users range from mathematics students and

academics to those in other science fields, for use with analysis, manipulation, extrapolation, and visualization of data.

Setting it Up

E
xc

8
B

TOP UDEMY COURSES:

Top Java Courses

Top Python Courses

Top Excel Courses

Learn Excel With This GIF Tutorial

Become a Web Developer from Scratch! (810
students)

Advanced Excel Training (42,660+ students)

Coding for Entrepreneurs (4810+ students)

Advanced Java Programming (735+ students

POPULAR POSTS

How to Build an iPhone App from Scratch for
Technical People: Your quick and dirty guide

Excel Formulas: 10 Formulas That Helped M
Keep My Job

Code Wars: Ruby vs Python vs PHP [Infogra

Top 10 Programming Languages to Learn in

How to Add Ringtones To Your iPhone (Upda
for iOS 7)

8 Best PowerPoint Presentations: How To Cr
Engaging Presentations

Java Interview Questions: How to crack the T
15 questions

Drupal vs Joomla vs WordPress: CMS Show
[infographic]

Making an App: 6 Things You Should Consid
Before Getting Started

10 Fórmulas de Excel para ser Más Productiv

https://blog.udemy.com/author/tutorialcontent/
https://blog.udemy.com/matlab-tutorial-playing-the-game-of-life
https://udemyblog.wpengine.com/topics/java
https://udemyblog.wpengine.com/topics/python/
https://udemyblog.wpengine.com/topics/excel/
https://www.udemy.com/tutorials/learn-excel?utm_source=blog&utm_medium=udemyads&utm_content=post0&utm_campaign=content-marketing-blog&xref=blog
https://www.udemy.com/course/how-to-become-a-web-developer-from-scratch/?tc=blog.widget.webdev.p&couponCode=blog13&utm_source=blog&utm_medium=udemyads&utm_content=post0&utm_campaign=content-marketing-blog&xref=blog
https://www.udemy.com/course/advanced-excel/?tc=blog.widget.excel.p&couponCode=blog13&utm_source=blog&utm_medium=udemyads&utm_content=post0&utm_campaign=content-marketing-blog&xref=blog
https://www.udemy.com/course/coding-for-entrepreneurs/?tc=blog.widget.coding.p&couponCode=blog13&utm_source=blog&utm_medium=udemyads&utm_content=post0&utm_campaign=content-marketing-blog&xref=blog
https://www.udemy.com/course/advanced-java-programming/?tc=blog.widget.java.p&couponCode=blog13&utm_source=blog&utm_medium=udemyads&utm_content=post0&utm_campaign=content-marketing-blog&xref=blog
https://blog.udemy.com/how-to-build-an-iphone-app-from-scratch-for-non-technical-people/
https://blog.udemy.com/how-to-build-an-iphone-app-from-scratch-for-non-technical-people/
https://blog.udemy.com/excel-formulas/
https://blog.udemy.com/excel-formulas/
https://blog.udemy.com/modern-language-wars/
https://blog.udemy.com/modern-language-wars/
https://blog.udemy.com/best-programming-language/
https://blog.udemy.com/best-programming-language/
https://blog.udemy.com/how-to-add-ringtones-to-iphone/
https://blog.udemy.com/how-to-add-ringtones-to-iphone/
https://blog.udemy.com/best-powerpoint-presentations/
https://blog.udemy.com/best-powerpoint-presentations/
https://blog.udemy.com/java-interview-questions/
https://blog.udemy.com/java-interview-questions/
https://blog.udemy.com/drupal-vs-joomla-vs-wordpress/
https://blog.udemy.com/drupal-vs-joomla-vs-wordpress/
https://blog.udemy.com/making-an-app/
https://blog.udemy.com/making-an-app/
https://blog.udemy.com/10-formulas-de-excel/
https://blog.udemy.com/10-formulas-de-excel/
https://blog.udemy.com/

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 2/12

Because Matlab is a commercial programming language, it requires a purchase in order to access its features.

Mathworks, the company that develops Matlab, provides a free trial, as well as subsidized rates for students.

Some schools and companies also offer product keys and online access through, for instance, Citrix.

Open source projects that replicate much of the Matlab framework also exist. Most of this guide will be identical for

Octave, which is under active development, and FreeMat, which had its last release in 2013. Modifications can make

it compatible with Scilab, which has a slightly different syntax. More information about the differences between Scilab

and Matlab can be found here

In addition to the core features, Mathworks provides a powerful package with Simulink, which works closely with

Matlab, offering visualizations of various systems, including 3D models and statistical data as they change with time.

An open source equivalent is Xcos, which comes packaged with Scilab.

Interactive Mode and Script Files
Every program written for Matlab will consist of a sequence of lines of code that eventually produce a result. There are

two main ways of inputting these commands: interactive mode and script files.

When Matlab is launched, a command window will appear in the middle of the display

https://www.mathworks.com/store/index.do
https://www.mathworks.com/programs/trials/trial_request.html
http://www.mathworks.com/academia/student_version/
https://www.gnu.org/software/octave/
http://freemat.sourceforge.net/
http://www.scilab.org/
http://wiki.scilab.org/Tutorials?action=AttachFile&do=get&target=Scilab4Matlab.pdf
http://www.mathworks.com/products/simulink/
https://www.scilab.org/scilab/gallery/xcos
https://blog.udemy.com/wp-content/uploads/2015/09/image03.jpg

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 3/12

Similar to some other languages, such as Python, Perl, and Haskell, Matlab has a fully functional interactive mode in

which any code may be entered and immediately evaluated, one line at a time.

An alternative that is more ubiquitous in programming is using script files with a .m file extension. These can be created

by pressing the New Script button in the File menu under the Home tab.

After creating a new script and saving it, the script can be run with the Editor tab:

There are a number of useful tools in the Editor tab that we’ll go over later. For now, though, you simply need to know

about the Run button. Most of the other buttons are used when debugging.

In this tutorial, we’ll mostly be using interactive code for small bits of code and the scripting approach for more full

programs. For clarity, the >> at the beginning of each interactive mode line will be preserved whenever it appears. This

said, programs will run identically in each mode, albeit the order in which output appears will be different.

Writing Matlab Code

Brief overview
Before typing any code, there are a few things to clarify.

1. Excess whitespace will not affect the function of a program, excluding new lines. In this way, a=3 is exactly

identical to a = 3. Generally, sections that are together will be offset with a similar indentation, for clarity.

2. Lines generally will end with a ;. In interactive mode, though, leaving the semicolon off will print details about

the statement, as will be seen in examples below.

3. Lines beginning with % are comments for the reader. Matlab compilers ignore these lines automatically, and it is

generally advisable to include these, so as to have cleanly readable code.

4. Names of variables should generally follow coding guidelines as given here

Variables
Going into the command window, we can start to write our first line of code:

https://blog.udemy.com/wp-content/uploads/2015/09/image021.png
https://blog.udemy.com/wp-content/uploads/2015/09/image011.png
https://blog.udemy.com/wp-content/uploads/2015/09/image041.png
https://en.wikipedia.org/wiki/Whitespace_character
http://www.ee.columbia.edu/~marios/matlab/MatlabStyle1p5.pdf

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 4/12

>> a = 'Hello World'

After hitting enter, immediately a response is given:

a =

Hello World

You may also notice a change in the bottom right window:

After entering in the statement, a variable named a will appear in our workspace with the value ‘Hello World’. a can

be substituted with any name within reason, and coding convention generally dictates naming variables with

capitalization as in myVariableName.

On the left side, we have set a to ’Hello World’. There are a number of primitive choices for variables, including:

1. characters, written as ’@’. A group, or array of characters is written similarly, as ’Hello’
2. integers, written plainly as a number like 2009. Booleans are also stored as integers, where false is 0 and

true is 1.

3. double precision floating points, or decimals, written similarly like 3.14159
4. Arrays and matrices, written as [1 2 3 4; 5 6 7 8]. We’ll discuss these more in a later section.

Once a variable is in the workspace, it can be referenced and modified. For instance, consider this simple program:

>> exampleNumber=3

exampleNumber =

 3

>> exampleNumber*3

ans =

 9

In addition to the variables that have been defined, another one pops up: ans. This appears as the output, whenever a

suitable variable isn’t given.

Arrays and Matrices
What would Matlab be without a healthy supply of functions and input for matrices?

Let’s construct an example matrix:

>> exMatrix = [1 4 7; 2 5 8; 3 6 9]

exMatrix =

 1 4 7

 2 5 8

https://blog.udemy.com/wp-content/uploads/2015/09/image061.png

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 5/12

 3 6 9

Both arrays and matrices are declared with square brackets, [], and are input row by row. Separation between row

elements can be done either with a comma or with spaces. Separation between rows should be done with a semicolon.

In addition, an index notation can be used for row vectors. In MatLab, generated ranges are made with the form

‘start:end’ or, when needed, start:increment:end. Unlike some programming languages, both start and end are

inclusive, so 1:4 will return [1 2 3 4], 1:2:5 will return [1 3 5], and 1:4:7 will return [1 5]

Now that we have a matrix in the workspace, it can be manipulated with a large number of built in functions for

matrices. In addition, nearly all other functions will act element by element; sin(matrix) will perform the sin on

every element. The notable exceptions are for functions like matrix multiplication and exponentiation, where

their expected forms in math take over:

>> exMatrix^2

ans =

 30 66 102

 36 81 126

 42 96 150

This works, as Matlab views the input as this:

The lesser used behavior of doing these operations element-wise can be done by inserting a . before the operation, as in

matrix.^2, matrix.*matrix, and 3.^matrix.

When referencing parts of a matrix, indexing is done with parentheses and is 1-indexed. This means that the first

element of our example matrix is given by matrix(1), which returns 1. The example matrix further shows the position

numbers for a 3×3 matrix. In addition, matrices can be referenced by coordinates in the same way, by (row,

column), so position 6 can be referenced by matrix(3,2). Matlab also allows for range, in the same way as the index

notation:

>> matrix(1:2,2:3)

ans =

 4 7

 5 8

Both of these can be used in a third way to create matrices, where any missing, but necessary, values are automatically

filled in with zeros:

>> e(2:3,2:3)=3

e =

 0 0 0

 0 3 3

 0 3 3

Control Flow

http://www.mathworks.com/help/matlab/linear-algebra.html
http://mathworld.wolfram.com/MatrixMultiplication.html
http://mathworld.wolfram.com/MatrixExponential.html
https://blog.udemy.com/wp-content/uploads/2015/09/image001.png

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 6/12

After we have a few different data types under our belt, explaining how to manipulate them into a usable program is

important.

Conditional Branches

One of the major building blocks of coding in general is the ability to only execute code when certain criteria are met. In

Matlab, as with most languages, this is done with if, elseif, and else blocks. This can be constructed by the

following:

 if condition1

 %This executes if condition1 is true

 elseif condition2

 %This executes if condition1 is false, but condition2 is true

 else

 %This executes if condition1 is false, and condition2 is false

 end

Each condition can be a single variable or an expression. Variables are evaluated as true or false by whether or not they

are 0 or empty; [], 0, and [0, 0] all evaluate as false, whereas ’b’, 3, and [0 0 1] all evaluate as true.

While/For Loops

Sometimes, instead of simply branching, looping while a constraint holds or for a certain number of iterations is useful.

For a large number of tasks in Matlab, using loops is not only useless but less efficient; operations that can be

performed on arrays will almost always be preferable. When this isn’t possible, while and for loops are relatively

universal constructs that are used. To start, the syntax for a while loop is very similar to an if statement:

 while conditionHolds

 %Perform an action

 end

These are frequently used to keep an activity repeating until it is finished. An example would be in the collatz

conjecture:

 while i ~= 1

 if mod(i, 2)

 % i is odd

 i = 3*i + 1;

 else

 % i is odd

 i = i/2;

 end

 display(i)

 end

In this example, ~= means “does not equal”, so the loop runs until i is 1. The condition is only checked at the beginning

of the loop, though, so 1 will still be displayed at the end.

Further, for loops provide similar functionality to while loops, but a counter is provided in the body of the loop.

Typically, the syntax is given by something of the form for i = 1:5. Any value can be given in the range, in lines with

the index notation Matlab provides. For very CPU-intensive loop bodies, where the order in which the loop is executed

does not matter, there is also an identically stated parfor, which uses multiple cores to run the for loop in parallel.

In both types of loops, some additional control is needed for management. These are given by the following:

break: Any time a break is encountered, the rest of the loop will be ignored, and the statement after the while

loop will be run.

continue: A continue is a softer `break, in which the rest of the current iteration of the loop is skipped, and

then the program continues back to the top of the loop; it skips an iteration and continues with the other

iterations.

More information about any control flow, including a few other keywords can be found here.

http://www.mathworks.com/help/matlab/control-flow.html

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 7/12

Structs

Sometimes, we need to use sets of data that are grouped together with more structure than a matrix. In many cases, this

can be accomplished with the use of a struct. With more complexity, an entire class might need be created, which will be

discussed in a later section.

Imagine having a few people for whom we would like to store information. A single person could be created

immediately by specifying its attributes:

person.firstName = 'Joe';

person.lastName = 'Smith';

person.age = 25;

display(person);

person =

 firstName: 'Joe'

 lastName: 'Smith'

 age: 25

Arrays of structs can also be used in a way that works much like tables

people(1).firstName = 'Sigmund';

people(1).lastName = 'Freud';

people(1).age = 25;

people(2).firstName = 'Carl';

people(2).lastName = 'Jung';

people(2).age = 30;

display(people);

people =

1x2 struct array with fields:

 firstName

 lastName

 age

Querying for all firstNames by doing people.firstName will produce each, one by one:

ans =

Sigmund

ans =

Carl

Classes
Matlab classes provide additional functionality and encapsulation than structs. Note that classes and functions are

not available in interactive mode. We’ll start with a basic setup, declared appropriately in NameOfClass.m:

classdef NameOfClass

 properties

 % Class variables

end

 methods

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 8/12

 % Class methods

 end

end

In its current form, an instance of this class could be created by doing instanceOfClass = NameOfClass().

Properties

All variables contained in the properties section operate similarly to the way a struct acts: A named variable is given a

value of one of our declarable types. In addition, the class gives additional attributes that may be assigned to sets of

properties. Some of the most common attributes are setting the type of variable (Constant, or Static for methods)

and setting access to a variable (private, protected, and public). All properties with similar attributes are grouped

in a section, so the properties for one’s own polar vector class might look something like the following:

properties

 %Set variables with some default value

 radius=1;

 angle=0;

end

properties (Constant, Access = protected)

 PI = 3.14159265358

end

In this case, methods for the vector might require constant access to PI, so it is easier to declare it as part of the class

(In practice, PI in particular is unnecessary to declare, since Matlab has pi as a default constant to the mathematical

value). Other useful properties that need to be the same for all instances of a class should be declared in a constant

section, so that changing them is as easy as swapping out their value in the properties section.

The Access of a variable, which can also be split up into GetAccess and SetAccess, refers to the context in which a

class variable can be referenced. The three access levels in Matlab are the following:

public: This is the default access level that allows any context to reference a variable

protected: The variable can only be referenced from within the class or any of its subclasses

private: The variable can only be referenced from within the class

Functions/Methods

After the properties of a class have been defined, the way they interact with method calls can be defined. First, let’s start

with the syntax and meaning of a function. Put simply, a function is a way to tell Matlab how to take some input, called

arguments, and produce a defined output. The following is an easy function that shows how one may be written:

function result = addTwo(input)

result = input+2;

end

After saving this with filename addTwo.m in a location that matlab can find, it can be used as:

>> addTwo(3)

ans =

 5

These kinds of functions may be placed in the methods section to encapsulate uses for the class. There are also two

main kinds of methods: instance methods, which work on a particular instance of a class, and Static methods, which

do not. Of particular note are the instance methods that override functionality. Let’s start with the constructor, which is

an important interface for readily creating an instance of a class:

function obj = PolarVector(radius, angle)

 obj.radius = radius;

 obj.angle = angle;

end

http://www.mathworks.com/help/matlab/matlab_oop/property-attributes.html

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 9/12

Unlike the initial example, an instance of this class can be created with quickly assigned default values by doing, for

instance, instanceOfClass = PolarVector(3, 0.0). Note that this constructor cannot go under a Static

attribute, as it implicitly implies that obj is an instance of the class.

In addition to a constructor, there are other types of functions that may be overridden, including the use of operators

such as + or -. A list of these operators and their associated functions can be found here. Overloading these operators

follows a more consistent scheme for instance methods. For instance, take an example overridden version of the

addition operator for a PolarVector:

function sum = plus(obj, objOther)

 x = obj.radius*cos(obj.angle)+objOther.radius*cos(objOther.angle);

 y = obj.radius*sin(obj.angle)+objOther.radius*sin(objOther.angle);

 rad = sqrt(x^2+y^2);

 ang = atan2(y,x);

 sum = PolarVector(rad,ang);

end

Given two instances of PolarVector, obj1 and obj2, this method may be referenced in three different ways: statically

with two arguments (PolarVector.add(obj1, obj2)), as an instance with one argument (obj1.add(obj2)), or

with the overloaded operator (obj1+obj2). In the second way, obj1 is sent in as the first argument to the function, as

will happen with all instance methods.

Finally, we have static methods. Imagine in our polar class we want a method to create a north facing vector of some

radius. This can be done in various ways, including having a static method that takes a radius argument. With the full

method signature, it would be created in the following way:

 methods (Static)

 function obj = north(radius)

 obj = PolarVector(radius, pi/2);

 end

 end

This may then be called by PolarVector.north(3).

Inheritance and handle

Often, there is a need for a specific type of an existing class that has special features over the old class. This is when

“object inheritance” comes into play. If a class is a subclass of another class, then it can be declared as follows by

classdef subClassName < superClassName.

One of the more useful classes to subclass is the handle class, provided by Matlab. Unlike many other programming

languages, creating an object x = PolarVector(3.0, 0.0) and setting a = x will assign a an entirely new value

from x. This means that setting values in a will have no bearing on activities in x. In some contexts, this is a useful tool,

but in others, particularly those where there are methods that make changes to values in the class, this is

counterintuitive. Adding < handle to the classdef line will change it to this expected result.

Applications

Plotting functions
As a math resource, Matlab should easily be able to handle plotting a function:

X = linspace(0,2*pi);

plot(X, sinc(X));

http://www.mathworks.com/help/matlab/matlab_oop/implementing-operators-for-your-class.html

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 10/12

linspace is a useful function in these contexts. It takes a range and produces, by default, 100 points, starting and

ending at given arguments. In addition, a third argument may be provided for the number of points, when 100 isn’t

reasonable. Many arguments to plot can be found here. Many other kinds of plots exist that give other ways of

visualizing data more effectively. When a plot is called, it returns a handle that may be used to modify what appears.

Conway’s Game of Life
Conway’s Game of Life is an example of a complex system that evolves from very simple rules. Try copying and pasting

the following class into GameOfLife.m:

classdef GameOfLife < handle

 properties (Access = protected)

 grid;

 speed;

 end

 properties (Constant, Access = protected)

 %This is a filter that is used on each point to add up the

 %surrounding points

 addNeighborsFilter = [1.0 1.0 1.0;1.0 0.0 1.0;1.0 1.0 1.0];

 end

 methods

 function obj = GameOfLife(density, size, speed)

 %rand returns a random array of dimensions size * size. This is

 %filtered by the density, meaning more 1s appear if the density

 %is higher. Convultions require doubles, so it is then changed

 %to a double.

 obj.grid = double(rand(size,size)<density);

 %The object's speed determines the length of a pause between

 %frames. The higher the speed, the lower the pause

 obj.speed = 1/speed;

 obj.start();

 end

 function start(obj)

 %Get a handle to the plot we create

 handle = pcolor(obj.grid);

 %The ishandle will return false when the window is destroyed

 while ishandle(handle)

 %Increment to the next frame

 obj.increment();

 %Set the data to be displayed to the new grid

https://blog.udemy.com/wp-content/uploads/2015/09/image051.png
http://www.mathworks.com/help/matlab/ref/plot.html
http://www.mathworks.com/help/matlab/2-and-3d-plots.html

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 11/12

When an instance of the class is instantiated, something like this will appear:

 handle.CData = obj.grid;

 %refreshdata tells the handle that new information should

 %be plotted

 refreshdata;

 %

 pause(obj.speed);

 end

 end

 end

 methods (Access = protected)

 %Progresses the grid from one frame to the next, by the rules of

 %Conway's Game of Life

 function increment(obj)

 %Convulutions can be used to find the number of adjacent live

 %neighbors around each point

 sumOfNeighbors = conv2(obj.grid, GameOfLife.addNeighborsFilter, 'same');

 %Filtering can be done with element-wise multiplication to get

 %results for live neighbors only

 liveSumOfNeighbors = sumOfNeighbors.*obj.grid;

 %Similar filtering can be done for dead neighbors

 deadSumOfNeighbors = sumOfNeighbors-liveSumOfNeighbors;

 %A point on a grid lives on if it is dead and has three

 %neighbors or if it is alive and has two or three

 obj.grid=(deadSumOfNeighbors==3)+((1<liveSumOfNeighbors).*(liveSumOfNeighb

 end

 end

end

GameOfLife(.4, 100, 20);

https://blog.udemy.com/wp-content/uploads/2015/09/image071.png

9/25/2019 MATLAB Tutorial: An Introduction to MATLAB

https://blog.udemy.com/matlab-tutorial/ 12/12

Conclusion
Matlab provides a considerable number of resources for a math development environment while still maintaining

relative speed and fine tunability. This gives it an important and powerful role in many fields. Learning Matlab can be a

big step as a first programming language since its syntax style is markedly similar, but simpler, to many other

languages. Hopefully, this tutorial provided enough of a resource to assist readers in being confident using Matlab for

the variety of uses it was intended for!

Filed Under: Uncategorized

Return to top of page Copyright © 2019 · Udemy, Inc. · Built on the Genesis Fram

https://blog.udemy.com/wp-content/uploads/2015/09/image08.gif
https://blog.udemy.com/category/uncategorized/
https://www.udemy.com/
http://www.studiopress.com/themes/genesis

