
MATLAB WORKBOOK

CME 102 Winter 2008-2009

Eric Darve
Hung Le

2/55 CME 102 Matlab Workbook 2008-2009

Introduction

This workbook aims to teach you Matlab and facilitate the successful integration of Matlab into the
CME 102 (Ordinary Differential Equations for Engineers) curriculum. The workbook comprises
three main divisions; Matlab Basics, Matlab Programming and Numerical Methods for Solving
ODEs. These divisions are further subdivided into sections, that cover specific topics in Matlab.
Each section begins with a listing of Matlab commands involved (printed in boldface), continues
with an example that illustrates how those commands are used, and ends with practice problems
for you to solve.
The following are a few guidelines to keep in mind as you work through the examples:

a) You must turn in all Matlab code that you write to solve the given problems. A convenient
method is to copy and paste the code into a word processor.

b) When generating plots, make sure to create titles and to label the axes. Also, include a legend
if multiple curves appear on the same plot.

c) Comment on Matlab code that exceeds a few lines in length. For instance, if you are defining
an ODE using a Matlab function,explain the inputs and outputs of the function. Also, include
in-line comments to clarify complicated lines of code.

Good luck!

CME 102 Matlab Workbook 2008-2009 3/55

1 Matlab Basics

1.1 Matrix and Vector Creation

Commands:

; Placed after a command line to suppress the output.
eye(m,n) Creates an m × n matrix with ones on the main diagonal and ze-

ros elsewhere (the main diagonal consists of the elements with equal
row and column numbers). If m = n, eye(n) can be used instead of
eye(n,n). Creates the n-dimensional identity matrix.

ones(m,n) Creates an m-by-n matrix of ones (m rows, n columns).
zeros(m,n) Creates an m-by-n matrix of zeros (m rows, n columns).
a:b:c Generates a row vector given a start value a and an increment b. The

last value in the vector is the largest number of the form a+nb, with
a+nb ≤ c and n integer. If the increment is omitted, it is assumed to
be 1.

sum(v) Calculates the sum of the elements of a vector v.
size(A) Gives the two-element row vector containing the number of row and

columns of A. This function can be used with eye, zeros, and ones
to create a matrix of the same size of A. For example ones(size(A))
creates a matrix of ones having the same size as A.

length(v) The number of elements of v.
[] Form a vector/matrix with elements specified within the brackets.
, Separates columns if used between elements in a vector/matrix. A

space works as well.
; Separates rows if used between elements in a vector/matrix.

Note: More information on any Matlab command is available by typing “help command name”(without
the quotes) in the command window.

1.1.1 Example

a) Create a matrix of zeros with 2 rows and 4 columns.

b) Create the row vector of odd numbers through 21,

L =
1 3 5 7 9 11 13 15 17 19 21

Use the colon operator.

c) Find the sum S of vector L’s elements.

d) Form the matrix

A =
2 3 2
1 0 1

4/55 CME 102 Matlab Workbook 2008-2009

Solution:

a) >> A = zeros(2,4)
A =

0 0 0 0
0 0 0 0

b) >> L = 1 : 2 : 21
L =

1 3 5 7 9 11 13 15 17 19 21

c) >> S = sum(L)
S =

121

d) >> A = [2, 3, 2; 1 0 1]
A =

2 3 2
1 0 1

1.1.2 Your Turn

a) Create a 6 x 1 vector a of zeros using the zeros command.

b) Create a row vector b from 325 to 405 with an interval of 20.

c) Use sum to find the sum a of vector b’s elements.

1.2 Matrix and Vector Operations

Commands:

+ Element-by-element addition. (Dimensions must agree)
- Element-by-element subtraction. (Dimensions must agree)
.* Element-by-element multiplication. (Dimensions must agree)
./ Element-by-element division. (Dimensions must agree)
.^ Element-by-element exponentiation.
: When used as the index of a matrix, denotes “ALL” elements of that

dimension.
A(:,j) j-th column of matrix A (column vector).
A(i,:) i-th row of matrix A (row vector).
.’ Transpose (Reverses columns and rows).
’ Conjugate transpose (Reverses columns and rows and takes complex

conjugates of elements).
* Matrix multiplication, Cayley product (row-by-column, not element-

by-element).

CME 102 Matlab Workbook 2008-2009 5/55

1.2.1 Example

a) Create two different vectors of the same length and add them.

b) Now subtract them.

c) Perform element-by-element multiplication on them.

d) Perform element-by-element division on them.

e) Raise one of the vectors to the second power.

f) Create a 3× 3 matrix and display the first row of and the second column on the screen.

Solution:

a) >> a = [2, 1, 3]; b = [4 2 1]; c = a + b

c =

6 3 4

b) >> c = a - b

c =

-2 -1 2

c) >> c = a .* b

c =

8 2 3

d) >> c = a ./ b

c =

0.5000 0.5000 3.0000

e) >> c = a .^ 2

c =

4 1 9

f) >> d = [1 2 3; 2 3 4; 4 5 6]; d(1,:), d(:,2)

ans =

1 2 3

6/55 CME 102 Matlab Workbook 2008-2009

ans =

2
3
5

1.2.2 Your Turn

a) Create the following two vectors and add them.

a =

5 3 1

b =

1 3 5

b) Now subtract them.

c) Perform element-by-element multiplication on them.

d) Perform element-by-element division on them.

e) Raise one of the vectors to the second power.

f) Create a 3× 3 matrix and display the first row of and the second column on the screen.

1.3 Basic 1D Plot Commands

Commands:

figure Creates a figure window to which MATLAB directs graphics output.
An existing figure window can be made current using the command
figure(n), where n is the figure number specified in the figure’s title
bar.

plot(x,y,’s’) Generates a plot of y w.r.t. x with color, line style and marker specified
by the character string s. For example, plot(x,y,’c:+’) plots a
cyan dotted line with a plus marker at each data point. The string s
is optional and default values are assumed if s is not specified. For
default values, list of available colors, line styles, markers and their
corresponding character representations, type help plot.

axis([xmin,xmax,
ymin,ymax])

Specifies axis limits for the x- and y- axes. This command is optional
and by default MATLAB determines axes limits depending on the
range of data used in plotting.

title(’...’) Adds a title to the graph in the current figure window. The title is
specified as a string within single quotes.

xlabel(’...’) Adds a label to the x-axis of the graph in the current figure window.
This is again specified as a string within single quotes.

CME 102 Matlab Workbook 2008-2009 7/55

ylabel(’...’) Similar to the xlabel command.
grid on Adds grid lines to the current axes.
grid off Removes grid lines from the current axes.

1.3.1 Example

Let us plot projectile trajectories using equations for ideal projectile motion:

y(t) = y0 −
1
2
gt2 + (v0 sin(θ0)) t,

x(t) = x0 + (v0 cos(θ0)) t,

where y(t) is the vertical distance and x(t) is the horizontal distance traveled by the projectile
in metres, g is the acceleration due to Earth’s gravity = 9.8 m/s2 and t is time in seconds. Let
us assume that the initial velocity of the projectile v0 = 50.75 m/s and the projectile’s launching
angle θ0 = 5π

12 radians. The initial vertical and horizontal positions of the projectile are given by
y0 = 0 m and x0 = 0 m. Let us now plot y vs. t and x vs. t in two separate graphs with the vector:
t=0:0.1:10 representing time in seconds. Give appropriate titles to the graphs and label the axes.
Make sure the grid lines are visible.

Solution:

We first plot x and y in separate figures:

>> t = 0 : 0.1 : 10;
>> g = 9.8;
>> v0 = 50.75;
>> theta0 = 5*pi/12;
>> y0 = 0;
>> x0 = 0;
>> y = y0 - 0.5 * g * t.^2 + v0*sin(theta0).*t;
>> x = x0 + v0*cos(theta0).*t;
>>
>> figure;
>> plot(t,x);
>> title(’x(t) vs. t’);
>> xlabel(’Time (s)’);
>> ylabel(’Horizontal Distance (m)’);
>> grid on;
>>
>> figure;
>> plot(t,y);
>> title(’y(t) vs. t’);
>> xlabel(’Time (s)’);
>> ylabel(’Altitude (m)’);
>> grid on;

8/55 CME 102 Matlab Workbook 2008-2009

0 5 10
0

50

100

150
x(t) vs. t

Time (s)

H
or

iz
on

ta
l D

is
ta

nc
e

(m
)

0 5 10
0

50

100

150
y(t) vs. t

Time (s)

A
lti

tu
de

 (
m

)

1.3.2 Your Turn

The range of the projectile is the distance from the origin to the point of impact on horizontal
ground. It is given by R = v0 cos(θ0). To estimate the range, your trajectory plots should be altered
to have the horizontal distance on the x-axis and the altitude on the y-axis. This representation
will clearly show the path of the projectile launched with a certain initial angle. This means you
will have to plot y vs. x.
Observing the formula for the projectile’s range, we see that to increase the range we will have to
adjust the launching angle. Use the following adjusted angles to create two more trajectory plots
(y vs. x), one for each angle, and determine which launching angle results in a greater range:

θ1
0 =

(
5π
12
− 0.255

)
radians and

θ2
0 =

(
5π
12
− 0.425

)
radians.

The time vectors for these angles should be defined as t = 0:0.1:9 and t = 0:0.1:8 respectively.

1.4 Plotting Multiple Functions I

Commands:

plot(x,y) Creates a plot of y vs. x.
plot(x,y1,x,y2,
...)

Creates a multiple plot of y1 vs. x, y2 vs. x and so on, on the same fig-
ure. MATLAB cycles through a predefined set of colors to distinguish
between the multiple plots.

hold on This is used to add plots to an existing graph. When hold is set to
on, MATLAB does not reset the current figure and any further plots
are drawn in the current figure.

hold off This stops plotting on the same figure and resets axes properties to
their default values before drawing a new plot.

legend Adds a legend to an existing figure to distinguish between the plotted
curves.

ezplot(’f(x)’,
[x0,xn])

Plots the function represented by the string f(x) in the interval x0 ≤
x ≤ xn.

CME 102 Matlab Workbook 2008-2009 9/55

Note: Make sure that when you use the "hold" command to make multiple plots, you should
specify the color and/or line style in the plot command. Otherwise all the plots will be of the
same default (blue) color and line style. Check this out.

1.4.1 Example

a) Using the plot command for multiple plots, plot y = sin(x) and y = cos(x) on the same
graph for values of x defined by: x = 0:pi/30:2*pi.

b) Using the plot command for a single plot and the hold commands, plot y = sin(x) and
y = cos(x) on the same graph for values of x defined by: x = 0:pi/30:2*pi.

c) Using the ezplot command, plot y = 2
3 cos(πx) for values of x such that 0 ≤ x ≤ 2 ∗ pi.

Solution:

>> x = 0 : pi/30 : 2*pi;
>> plot(x,sin(x),x,cos(x));
>> title(’y = sin(x) and y = cos(x)’);
>> xlabel(’x’);
>> ylabel(’y’);
>> legend(’y = sin(x)’,’y = cos(x)’);
>> grid on;

>> x = 0 : pi/30 : 2*pi;
>> plot(x,sin(x));
>> title(’y = sin(x) and y = cos(x)’);
>> xlabel(’x’);
>> ylabel(’y’);
>> grid on;
>> hold on;
>> plot(x,cos(x),’r’);
>> legend(’y = sin(x)’,’y = cos(x)’);

>> ezplot(’(2/3)*cos(pi*x)’,[0,2*pi]);
>> title(’High Frequency Cosine Function’);
>> xlabel(’x’);
>> ylabel(’y’);
>> grid on;

10/55 CME 102 Matlab Workbook 2008-2009

0 1 2 3 4 5 6

−0.5

0

0.5

x

High Frequency Cosine Function

y

1.4.2 Your Turn

a) Using the plot command for multiple plots, plot y = atan(x) and y = acot(x) on the same
graph for values of x defined by x = -pi/2:pi/30:pi/2.

b) Using the plot command for a single plot and the hold commands, plot y = atan(x) and
y = acot(x) on the same graph for values of x defined by x = -pi/2:pi/30:pi/2.

c) Using the ezplot command, plot y = 2
3 sin(9πx), for values of x such that 0 ≤ x ≤ 2 ∗ pi.

1.5 Plotting Functions II

Commands:

log(n) Calculates the natural logarithm (base e) of n.
semilogy(x,y) Graphs a plot of y vs. x using a logarithmic scale (powers of ten) on

the y-axis.
semilogx(x,y) Graphs a plot of y vs. x using a logarithmic scale (powers of ten) on

the x-axis.
loglog(x,y) Graphs a plot of y vs. x using a logarithmic scale (powers of ten) on

both axes. The logarithmic scales prove most useful when the value
spans multiple orders of magnitude.

1.5.1 Example

Graph the efficiency of several programming algorithms according to big-O notation, a method
of describing the running time of algorithms. Each expression represents the scale by which an
algorithm’s computation time increases as the number of its input elements increases. For example,
O(n) represents an algorithm that scales linearly, so that its computation time increases at the
same rate as the number of elements. The algorithms you must graph have the following big-O

CME 102 Matlab Workbook 2008-2009 11/55

characteristics:

Algorithm #1: O(n)

Algorithm #2: O(n2)

Algorithm #3: O(n3)
Algorithm #4: O(2n)
Algorithm #5: O(en)

After generating an initial graph with ranging from 0 to 8, use logarithmic scaling on the y-axis
of a second graph to make it more readable. You can also use the mouse to change the y-axis
scale. Go to the main menu of the figure, click Edit>Axes Properties. . . , the property editor dia-
logue will pop out. There, you can also change the font, the range of the axes, . . . Try to play with it.

Solution:

>> n=0:0.01:8;
>> plot(n,n,n,n.^2,n,n.^3,n,2.^n,n,exp(n))
>> title(’Big-O characteristics of Algorithms: Linear Plot’)
>> ylabel(’Estimate of Running Time’)
>> xlabel(’n (number of elements)’)
>> legend(’O(n)’,’O(n^2)’,’O(n^3)’, ’O (2^n)’,’O(e^n)’)
>> grid on;

0 2 4 6 8
0

500

1000

1500

2000

2500

3000
Big−O characteristics of Algorithms: Linear Plot

E
st

im
at

e
of

 R
un

ni
ng

 T
im

e

n (number of elements)

O(n)

O(n2)

O(n3)

O (2n)

O(en)

>> n = 0:0.01:8;
>> semilogy(n,n,’b’,n,n.^2,’r’,n,n.^3,’g’,n,2.^n,’c’,n,exp(n),’k’)
>> title(’Big-O characteristics: Logarithmic Plot’)
>> ylabel(’Estimate of Running Time’)
>> xlabel(’n (number of elements)’)
>> legend(’O(n)’,’O(n^2)’,’O(n^3)’, ’O(2^n)’,’O(e^n)’)

12/55 CME 102 Matlab Workbook 2008-2009

0 2 4 6 8
10

−6

10
−4

10
−2

10
0

10
2

10
4

Big−O characteristics: Logarithmic Plot

E
st

im
at

e
of

 R
un

ni
ng

 T
im

e

n (number of elements)

O(n)

O(n2)

O(n3)

O(2n)

O(en)

1.5.2 Your Turn

Your task is to graph algorithms with the following big-O characteristics:

Algorithm #1: O(n lnn)
Algorithm #2: O(

√
n)

Algorithm #3: O(lnn)

Note: The ln function in Matlab is given by log().
Print both the linear and logarithmic plots, using a domain from n = 1 to n = 500 to observe the
considerable improvement in readability that a logarithmic scale for the y-axis will provide. The
logarithmic scale is very useful when attempting to compare values that are orders of magnitude
apart on the same graph.
Do not use a grid for the logarithmic scale.

2 Matlab Programming

2.1 for and while Loops

Commands:

for i = a:b The for loop repeats statements a specific number of times, starting
with i = a and ending with i = b, incrementing i by 1 each iteration
of the loop. The number of iterations will be b - a + 1.

while condition The while loop repeats statements an indefinite number of times as
long as the user-defined condition is met.

for i = a:h:b The for loop works exactly the same except that i is incremented by
h after each iteration of the loop.

clear Clears all previously defined variables and expressions.
fprintf Outputs strings and variables to the Command Window. See below

for an example.
abs(x) Returns the absolute value of the defined variable or expression x.
factorial(n) Returns the factorial of the defined variable or expression n.

CME 102 Matlab Workbook 2008-2009 13/55

... The ellipses can be used to break up long lines by providing a contin-
uation to the next line. Strings must be ended before the ellipses but
can be immediately restarted on the next line. Examples below show
this.

Note: Neglecting the command clear can cause errors because of previously defined variables in
the workspace.

fprintf:
This is an example of how to use fprintf to display text to the command window.

fprintf (’\nOrdinary Differential Equations are not so ordinary.\n’);
fprintf (’---’...

’----------------\n’);
fprintf (’This course is CME %g: ODEs for Engineers. My expected’...

’ grade is %g\n’,102,100);
x = 100; y = 96;
fprintf (’The previous course was CME %g: Vector Calculus for ’...

’Engineers. My grade was: %g\n’,x,y);

The Matlab command window displays:

Ordinary Differential Equations are not so ordinary.

This course is CME 102: ODEs for Engineers. My expected grade is 100
The previous course was CME 100: Vector Calculus. My grade was: 96

The command fprintf takes a string and prints it as is. The character \n is one of several “Escape
Characters” for fprintf that can be placed within strings given to fprintf. \n specifies a new
line. %g is one of many “Specifiers” that fprintf uses and it represents a placeholder for a value
given later in the call to fprintf. The order of the arguments given to fprintf determine which
%g is replaced with which variable or number. Experiment with the code above to see what \n can
do and how %g can be used.

M-Files/Scripts:
Everything we have done so far has been in MATLABs interactive mode. However, MATLAB can
execute commands stored in a regular text file. These files are called scripts or ’M-files’. Instead
of writing the commands at the prompt, we write them in a script file and then simply type the
name of the file at the prompt to execute the commands. It is almost always a good idea to work
from scripts and modify them as you go instead of repeatedly typing everything at the command
prompt.
A new M-file can be created by clicking on the “New M-file” icon on the top left of the Command
Window. An M-file has a .m extension. The name of the file should not conflict with any existing
MATLAB command or variable.
Note that to execute a script in an M-file you must be in the directory containing that file. The

14/55 CME 102 Matlab Workbook 2008-2009

current directory is shown above the Command Window in the drop down menu. You can click
on the “. . . ” icon, called “Browse for folder”, (on the right of the drop-down menu) to change the
current directory. The % symbol tells MATLAB that the rest of the line is a comment. It is a good
idea to use comments so you can remember what you did when you have to reuse an M-file (as will
often happen).
It is important to note that the script is executed in the same workspace memory as everything
we do at the prompt. We are simply executing the commands from the script file as if we were
typing them in the Command Window. The variables already existing before executing the script
can be used by that script. Similarly, the variables in the script are available at the prompt after
executing the script.

2.1.1 Example

After your 30 years of dedicated service as CEO, TI has transfered you to a subdivision in the
Himalayas. Your task as head of the subdivision is to implement transcendental functions on the
Himalayan computers. You decide to start with a trigonometric function, so you find the following
Taylor Series approximation to represent one of these functions:

sin(x) = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ . . .

However, since the computers in the Himalayas are extremely slow (possibly due to the high alti-
tudes), you must use the Taylor Series as efficiently as possible. In other words, you must use the
smallest possible number of terms necessary to be within your allowed error, which is 0.001. You
will use x = 3 as the value at which to evaluate the function.

a) Compute and display the exact error of using the first 2 and 5 terms of the series as compared
to the actual solution when the function is evaluated at x = π

3 .

b) Compute and display the number of terms necessary for the function to be within the allowed
error.

Solution:

a) CODE from M-file

clear;
x = pi/3;

% Iterate 2 terms for our approximation.
SIN_Approx2 = 0;
for j=0:2

SIN_Approx2 = SIN_Approx2 + (-1)^j*x^(2*j+1)/factorial(2*j+1);
end
SIN_Error2 = abs(SIN_Approx2 - sin(x));

% Iterate 5 terms for our approximation.
SIN_Approx5 = 0;
for j=0:5

SIN_Approx5 = SIN_Approx5 + (-1)^j*x^(2*j+1)/factorial(2*j+1);

CME 102 Matlab Workbook 2008-2009 15/55

end
SIN_Error5 = abs(SIN_Approx5 - sin(x));

fprintf(’\nError with 2 terms:\n’)
fprintf (’--------------------------\n’)
fprintf (’sin(pi/3): %g\n’,SIN_Error2)

fprintf (’\nError with 5 terms: \n’)
fprintf (’--------------------------\n’)
fprintf (’sin(pi/3): %g\n’,SIN_Error5)

OUTPUT:

Error with 2 terms:

sin(pi/3): 0.00026988

Error with 5 terms:

sin(pi/3): 2.90956e-010

b) CODE from M-file:

clear;
SIN_APP = 0; % This is the sine approximation.
n = 0; x = 3;

% Iterate until our approximation is below the error tolerance.
while abs(SIN_APP - sin(x)) >= 0.001

SIN_APP = SIN_APP + (-1)^n*x^(2*n+1)/factorial(2*n+1);
n = n + 1;

end
SIN_Terms = n;
SIN_Error = abs(SIN_APP - sin(x));
% Output
fprintf (’\nNumber of Terms Needed for the function to be within the’...

’ allowed error:\n’);
fprintf (’--’...

’-------------\n’);
fprintf (’sin(3): %g terms | Error = %g\n’,SIN_Terms,SIN_Error);

OUTPUT:

Number of Terms Needed for the function to be within the allowed error:

sin(3): 6 terms | Error = 0.000245414

