Math 141 Spring 2016

4.7 Applied Optimization

Example 4.7.1. Your group is given a piece of graph paper that was originally 20 units by 30 units. Four
congruent squares have been cut from each corner. The size of the squares is different for each group. Fold
the sides of your paper up to make a box with an open top.

Record the following (in graph paper units).
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Now let’s plot a graph of the volumes, V, each group found based on the length of the side of the square,
s, cut out from each corner.
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How could you use calculus to find the exact maximum volume?
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M ma XKomum occurs.

Observe that the volume is determined by the side length s of the square cut from each corner (a quantity
that we can control). We will now use calculus to figure out exactly what size square to cut from each
corner in order to maximize the volume of the open-topped box.
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Finding the maximum volume using calculus:

(a) Write a function for the volume (that will depend on s).
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(b) What is the domain of your function that fits the context of this problem?
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(c¢) Find the maximum volume using calculus.
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The methods you have learned so far for finding extreme values have practical applications in many areas
of life:

e A businessperson wants to minimize costs and maximize profits.
e A traveler wants to minimize transportation time.

e A migrating bird wants to maximize the distance it can travel without stopping, given the energy
that can be stored as body fat.

In this section, we will apply your knowledge of calculating absolute minimums and absolute maximums
to solve optimization problems.

Goal of an optimization problem: /V'Q)S € <« C(,ZC TS on f"’lq A
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The function that we are trying to maximize or minimize is called the € ("9 (3 h\@"
Oftentimes, but not in every situation, our goal is restricted by something that we refer to as a constraint.
Examples:

e A businessperson wants to maximize his or her prof;f but is constrained by

macket, poney e fof, fore, efe.

e A traveler wants to minimize transportation time but is constrained by

Fea FF, Spead [omi s et

Steps for Solving Optimization Problems:

P o f' Wr€. Draw a picture and choose your variables.

dependent variable: ‘M\L O/\Q(S\ )/0‘/{{@,\.\& XL~ ‘t)mj or m\ Mg B ’(j
independent variable(s): /L\( Ol [_J) )/m O FO{

e/?/(\ 2. Create your objective function by relating your variables.

3. If the objective function is written as a function of more than one variable, then you will need

FJ \ver! your objective function so that it becomes a function of only one variable.
&o A% 4, Find the domain of your objective function that fits the context of the problem.
Use calculus tools to find an extreme value of the function on the domain:

L? : 5. Find derivative and critical points (Do not stop at this step! You must verify whether or not the
critical point gives a global max or min.)

P ,c( min 6. Find global min or max
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Example 4.7.2. A farmer has 2400 feet of fencing and wants to fence off a rectangular field that borders a
straight river. He needs no fence along the river. What are the dimensions of the field that has the largest
area?

1. Draw a picture and choose variables.
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2. Create your objective function.

A= Xy

3. Get your objective function into one variable using a constraint equation.
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4. Find the domain of your objective function.
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Use calculus to find the maximum area.
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