Math 141 Spring 2016

4.3 Mean Value Theorem and Monotonicity

Theorem 4.3.1 (Mean Value Theorem (MVT)). If f(z) is continuous on [a, b] and differentiable on (a, b),
then there is some ¢ € {a, b) such that
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Example 4.3.1. Find intervals where f(z) = 10z — 4z + 21 is increasing or decreasing.
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Theorem 4.3.2 (First Derivative Test). Let z = ¢ be a critical point of f(z), then
1. if f’(z) changes from negative to positive, then f(c) is a
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2. if f/(z) changes from positive to negative, then f(c) is a
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Example 4.3.2. The graph of f(z) is given below.

b. What are the local maximums for f(x)? t t
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c. What are the local minimums for f{z)?

(5,-2)

Example 4.3.3. Let f(z) = z*42°. Find critical points and determine whether f(z) has a local maximum,
local minimum, or neither at those points.
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