4.3 Mean Value Theorem and Monotonicity

Theorem 4.3.1 (Mean Value Theorem (MVT)). If f(x) is continuous on [a, b] and differentiable on (a, b), then there is some $c \in (a, b)$ such that

XE (5,6)

Note: MVT rigorously confirms the following: $f(x) = \frac{f(b) - f(a)}{b} > 0$

Example 4.3.1. Find intervals where $f(x) = 10x^2 - 4x + 21$ is increasing or decreasing.

Frid CP: 20x-4=0 => X=1/s

fincrearing: (1/5,20)

fdecressing: (-20, 1/s)

Theorem 4.3.2 (First Derivative Test). Let x = c be a critical point of f(x), then

1. if f'(x) changes from negative to positive, then f(c) is a

2. if f'(x) changes from positive to negative, then f(c) is a

local maximum

Example 4.3.2. The graph of f(x) is given below.

a. What are the critical points for f(x)?

X = 2 15, 8, 10.5 below thereby are the local maximums for f(x)? f(x) = 2 10.5 f(x) = 3 10.5

b. What are the local maximums for f(x)?

(7,2),(10.5,1)

c. What are the local minimums for f(x)?

Example 4.3.3. Let $f(x) = x^4 + x^3$. Find critical points and determine whether f(x) has a local maximum, local minimum, or neither at those points.

$$f'(x) = 4x^3 + 3x^2$$
 (always defined)
 $0 = 4x^3 + 3x^2 = x^2(4x + 3)$ ($f: x = 0, -3/4$
 $\frac{1}{3}$ ($f: x = 0, -3/4$
 $x=0$ is neither $(0,0)$
 $x=0$ is neither $(0,0)$