4.3 Mean Value Theorem and Monotonicity

Theorem 4.3.1 (Mean Value Theorem (MVT)). If f(x) is continuous on [a, b] and differentiable on (a, b), then there is some $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} \rightarrow ARUC$$

Note: MVT rigorously confirms the following:

$$f'(x) > 0 \circ r(a,b) \implies f.rcreasily$$

 $f'(x) < 0 \circ r(a,b) \implies f decreasing$

Example 4.3.1. Find intervals where $f(x) = 10x^2 - 4x + 21$ is increasing or decreasing.

$$f'(x) = 20x - y = 4(5x - 1)$$

 $f'(x) = 0$ when $x = \frac{1}{5}$
 $f'(x) = 0$ when $x = \frac{1}{5}$

Theorem 4.3.2 (First Derivative Test). Let x = c be a critical point of f(x), then

1. if f'(x) changes from negative to positive, then f(c) is a

local min

2. if f'(x) changes from positive to negative, then f(c) is a

local max

Example 4.3.2. The graph of f(x) is given below.

a. What are the critical points for f(x)?

b. What are the local maximums for f(x)?

c. What are the local minimums for f(x)?

$$(6, -2)$$

Example 4.3.3. Let $f(x) = x^4 + x^3$. Find critical points and determine whether f(x) has a local maximum, local minimum, or neither at those points.

$$f'(x) = 4x^{3} + 3x^{2} = x^{2}(4x + 3)$$
 $f'(x) = 0$ when $x = 0, -3/4 \leftarrow CP$
 $\frac{-1}{4} + \frac{1}{4} + \frac{1}{4}$
 $f'(x) = 0$ when $x = 0, -3/4 \leftarrow CP$
 $\frac{-1}{4} + \frac{1}{4} + \frac{1}{4}$
 $f'(x) = 0$ when $f'(x) = 0$