3.4 Rates of Change

Example 3.4.1. The population of Knoxville in 2010 was 558,696. Let P(t) be the population in year t, measured in millions.

$$P(2010) = 0.558696$$

What is the meaning of P'(2010)?

Estimate P(2011), given P'(2010) = 0.03.

Idea:
$$P'(t) = \lim_{h \to 0} \frac{P(t+h) - P(t)}{h} \approx \frac{P(t+h) - P(t)}{h}$$

$$= P(t+h) - P(t)$$

$$P(t+h) \approx P(t) + P'(t)$$

$$P(2011) \approx P(2010) + P'(2010)$$

$$= 0.588696 + 0.03$$

$$= 0.588696$$

Example 3.4.2. The cost (in dollars) for a company to produce a new line of jeans is

$$C(x) = 2000 + 3x + 0.01x^2 + 0.0002x^3$$

The marginal cost at producing level x is the cost of producing the (x + 1)st item.

$$C(x+1) - C(x) \approx C'(x)$$

What is the marginal cost at production level 100?

$$C(101) - C(100) = 2611.0702 - 2600 = 11.0702$$

 $C'(x) = 3 + 0.02x + 0.0006x^2$ $C'(100) = 11$

What is C'(100) and how can we interpret this?

Example 3.4.3. A tank holds 5000 gallons of water and a full tank can be emptied in 40 minutes when water drains from the bottom. Torricelli's Law tells us that the volume V in the tank after t minutes is

$$V(t) = 5000 \left(1 - \frac{t}{40}\right)^2$$
. = Sooo $\left(1 - \frac{t}{20} + \frac{t^2}{1600}\right)$

Find the rate at which the water is draining out of the tank after 5, 10, 20, and 40 minutes. When is water draining out the fastest? the slowest?

$$V'(t) = 5000 - \frac{1}{20} + \frac{t}{800}$$

$$V'(s) = -218.75 \text{ fastest}$$

$$V'(10) = -187.5$$

Example 3.4.4. A ball is thrown upward with an initial velocity of 80 feet per second. What is the maximum height of the ball? (Use the formula $s(t) = s_o + v_o t - \frac{1}{2}gt^2$, where $g = 32 \frac{\text{ft}}{\text{sec}^2}$.)

$$S(+)=0+80+-16+^{2}$$

 $V(+)=S'(+)=-32++80$
Max height when $V(+)=0$
 $0=46-32++80$
 $t=8\%_{32}=\frac{20}{8}=\frac{10}{9}$ = $5/2$ Sec
 $S(5/2)=100$ ft

Example 3.4.5. When the brightness of a light source is increased, the eye reacts by decreasing the area R of the pupil. The experimental formula developed is

$$R = \frac{40 + 24x^{0.4}}{1 + 4x^{0.4}}.$$

What is the sensitivity, which is defined to be the rate of change of the reaction?

Sers:7. Lity =
$$R^{1}$$

= $(1+4x^{0.4})(9.6x^{-0.6}) - (40+24x^{0.4})(1-6x^{-0.6})$
 $(1+4x^{0.4})^{2}$