Math 141 Fall 2017

2.2 Numerical and Graphical Limits

Definition 2.2.1.
lim f(z) =

r—a

means we can make the output values of f(z) arbitrarily close to L by taking z sufficiently close to a (on
either side) but not equal to a.
[Read: “the limit of f(z) as z goes to a is L"]
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Question: Is it possible for a function f(z) to satisfy:

e lim;,3 f(z) =5 S 4 5
+ =1 - i R

Why or why not? —
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Section 2.2: Numerical and Graphical Limits Math 141 Fall 2017

2.2.1 One-Sided Limits

Definition 2.2.2.
lim f(z)=L

T—ra”
means we can make the output values of f(z) arbitrarily close to L by taking z sufficiently close to a on
the left side of @ (i.e. z < a).
lim f(z)=L

z—at
means we can make the output values of f(z) arbitrarily close to L by taking z sufficiently close to a on

the right side of a (i.e. z > a).
{?m @(K) = L
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Example 2.2.2. The graph of f(z) is
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Find the following;:
lim f(z) =L lim f(z) oM lim f(z) =ﬂ_
=3~ x—4— 6~

zl_1+r§1+ f(z) =i zl_i)xil+ f(z) =Q zlim f(z) =L

—6F
lim /() =Puag lim (z) - lim f(2) _Dweg
s —undefiud = £(6) =
Example 2.2.3. Let
z2 <0
flz)=¢ = 0<z<1
1—z z>1
Find the following: | O (
lim fle) =—— dm fz)=—~_  lm f@)=—_  lm f(z) _—
_1:r_nl . f(z) =_L E%l+ f(z) =__Q_ lg]{l)r f(z) =Q li)nza+ f(z) =i
m fw) =L im @)= ) DVE i g = —

F(-1) =_l_ £(0) _ O £(1) _ 1 £(2) =— (
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