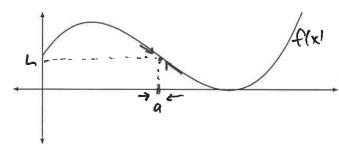
2.2 Numerical and Graphical Limits

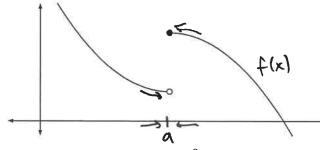
Definition 2.2.1.

$$\lim_{x \to a} f(x) = L$$

means we can make the output values of f(x) arbitrarily close to L by taking x sufficiently close to a (on either side) but not equal to a.

[Read: "the limit of f(x) as x goes to a is L".]





lin f(x) DNE x3a p Does Note xist

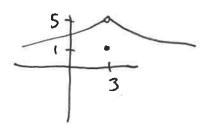
X	F(x)
0	Ī
.9	1.42631
.99	1.42631
.999	1.4992
3.0	

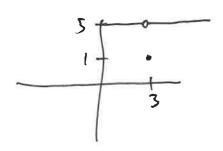
Question: Is it possible for a function f(x) to satisfy:

•
$$\lim_{x\to 3} f(x) = 5$$

•
$$f(3) = 1$$

Why or why not?





2.2.1 One-Sided Limits

Definition 2.2.2.

$$\lim_{x \to a^{-}} f(x) = L$$

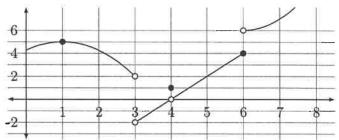
means we can make the output values of f(x) arbitrarily close to L by taking x sufficiently close to a on the left side of a (i.e. x < a).

$$\lim_{x \to a^+} f(x) = L$$

means we can make the output values of f(x) arbitrarily close to L by taking x sufficiently close to a on the right side of a (i.e. x > a).

$$\lim_{x\to a} f(x) = L$$
 if orderly: $\int_{x\to a^{+}}^{\ln x} f(x) = L$

Example 2.2.2. The graph of f(x) is



Find the following:

$$\lim_{x \to 3^{-}} f(x) = \frac{2}{\sum_{x \to 4^{-}}} \qquad \lim_{x \to 4^{-}} f(x) = \frac{0}{\sum_{x \to 6^{-}}} \qquad \lim_{x \to 6^{-}} f(x) = \frac{1}{\sum_{x \to 6^{+}}} f(x) = \frac{1}{\sum_{x \to 6^{+}}} f(x) = \frac{1}{\sum_{x \to 6^{+}}} f(x) = \frac{0}{\sum_{x \to 6^{+}}}$$

Example 2.2.3. Let

$$f(x) = \begin{cases} x^2 & x < 0 \\ x & 0 \le x \le 1 \end{cases}$$
Find the following:
$$\lim_{x \to -1^-} f(x) = \underbrace{\qquad} \lim_{x \to 0^-} f(x) = \underbrace{\qquad} \lim_{x \to 1^-} f(x) = \underbrace{\qquad} \lim_{x \to 2^-} f(x) = \underbrace{\qquad} \lim_{x \to 2^-} f(x) = \underbrace{\qquad} \lim_{x \to 2^+} f($$