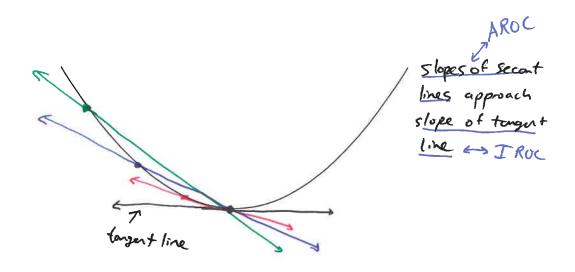
## Limits, Rates of Change, and Tangent Lines 2.1

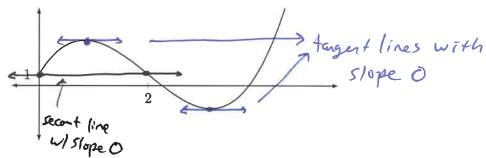
Average Rate of Change: The AROC of f(x) on [a, b] is

$$\frac{f(b) - f(a)}{b - a}$$


Example 2.1.1. An iPhone is thrown in the air from ground level with an initial velocity of  $60 \frac{m}{s}$ . Its

height at time 
$$t$$
 is  $h(t) = 60t - 4.9t^2$ m. Compute the stene's average velocity over the time interval [1, 3]. 
$$\frac{h(3)-h(1)}{3-1} = \frac{60\cdot 3 - 4.9(3^2) - (60\cdot 1 - 4.9\cdot 1^2)}{2} = \frac{80.8}{2} = 40.4 \text{ m/s}$$

**Note 2.1.1.** If p(t) is a position function, then if s < t


Secont line
$$\frac{p(t) - p(s)}{t - s} = a \text{ Verage velocity}$$

$$\frac{f(t_1) - f(t_1)}{t_2 - t_1} = ARO( \circ f(t_1) \circ t_2)$$



Note 2.1.2. Slope of tangent line (at  $x_1$ ) is what the AROC over  $[x_0, x_1]$  and  $[x_1, x_0]$  "go towards" as  $x_0$ "goes towards"  $x_1$ . We call the slope of the tangent line the instantaneous rate of change (IROC).

**Example 2.1.2.** Graph of  $f(x) = x^3 - 6x^2 + 8x + 1$ 



- (a) Using the graph, what is the AROC of f(x) over [0, 2]? Slope of secunt line is 0, so ARUC is 0. Check:  $\frac{f(z)-f(0)}{7-0} = \frac{1-1}{2} = 0$
- (b) Where is the IROC equal to 0?

(c) Estimate the IROC of f(x) at x = 2.

| •                                      |             |            |                             |  |
|----------------------------------------|-------------|------------|-----------------------------|--|
| Interval                               | AROC        | Interal    | AROC                        |  |
| [1,2]                                  | -3          | [2,3]      | -3                          |  |
| [1.9,2]                                | -3.99       | [2,2.1]    | -3.99 \ IROC of F(x) at x=2 |  |
| [1.99,2]                               | -3.9999     | [2,2.01]   | -3.9999 is about -4         |  |
| [1.999,2]                              | -3.999999 V | [2,2.00]   | -3.999999                   |  |
| Example 2.1.3. Let $f(x) = x^3 - 2x$ . |             | appoach -4 |                             |  |

 $\mathbf{E}\mathbf{x}$ (a) What is the AROC of f(x) on [0,1]?

$$\frac{f(1)-f(0)}{1-0}=\frac{-1-0}{1}=-1$$

(b) What is the AROC of f(x) on [1, 1.5]?

$$\frac{f(1.5) - f(1)}{1.5 - 1} = \frac{.375 + 1}{.5} = 2.75$$

(c) Estimate the IROC of f(x) at x = 1.

| Interal | AROL     | Interest  | AROC     | IROC of f(x) at k=1 |
|---------|----------|-----------|----------|---------------------|
| [0,1]   | -1       | [1,2]     | 5        | is about 1          |
| [.4,1]  | 15.0     | [1.1]     | 1.31     |                     |
| [.99,1] | 0.9701   | [10.1]    | 1.0301   |                     |
| [.999,] | 0.997001 | [1,1.00]] | 1.007001 |                     |