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Abstract. In calculating the time evolution of an atomic system on diffusive timescales, off-
lattice kinetic Monte Carlo (OLKMC) can sometimes be used to overcome the limitations of
Molecular Dynamics. OLKMC relies on the harmonic approximation to Transition State The-
ory, in which the rate of rare transitions from one energy minimum to a neighboring minimum
scales exponentially with an energy barrier on the potential energy surface. This requires lo-
cating the index-1 saddle point, commonly referred to as a transition state, that separates two
neighboring energy minima. In modeling the evolution of an atomic system, it is desirable to
find all the relevant transitions surrounding the current minimum. Due to the large number of
minima on the potential energy surface, exhaustively searching the landscape for these saddle
points is a challenging task. In examining the particular case of isolated Lennard-Jones clusters
of around 50 particles, we observe very slow convergence of the total number of saddle points
found as a function of successful searches. We seek to understand this behavior by modeling the
distribution of successful searches and sampling this distribution to create a stochastic process
that mimics this behavior. Finally, we will discuss an improvement to a rejection scheme for
OLKMC where we terminate searches that appear to be failing early in the search process.
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1 Introduction

Simulating the time evolution of an atomic scale system in which a chemical reaction or diffusion
occurs is an essential task in the study of condensed matter physics and material science. While
molecular dynamics (MD) is often the preferred approach, it suffers from a severe timescale lim-
itation due to the need to integrate the classical equations of motion for all the particles in the
system using a time step on the order of a femtosecond. This restricts the timescale on which MD
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can simulate events to mere nanoseconds, while diffusion and chemical reactions can take much
longer. Off-lattice kinetic Monte Carlo (OLKMC), first introduced by Henkelman and J6nsson
[4], is aimed at overcoming this limitation. As explained further below, the essential challenge
with OLKMC lies in repeatedly building catalogs of saddle points/transition states. In this paper,
we explore several related aspects of these saddle point searches.

OLKMC relies on the observation that the system will spend the majority of its time oscil-
lating within the N,-particle configuration space about a local minimum of the potential energy
function, with rare transitions from one basin of attraction to another. The energy landscape typi-
cally features an enormous number of local minima, each of which is connected to a large number
of neighboring minima that can be reached by crossing a single saddle point. In view of this,
OLKMC seeks to replace the Newtonian dynamics of MD with a Markov chain model, with
dynamics given by jumps between discrete states, represented by the local minima. The rates
for these transition processes are estimated using the harmonic approximation to Transition State
Theory (TST) [1], also known as Vineyard Theory [13]:

R;j = Kexp 20i/kT (1.1)

where A¢;; is the energy barrier that must be overcome in moving from basin i to a neighboring
basin j, kg is Boltzmann’s constant, T is the system temperature, and K is a prefactor which we
will take to be constant for the purpose of our discussion.

Determining the set of accessible states and the corresponding rates at each time step requires
searching the potential energy surface (PES) for index-1 saddle points, where the gradient of the
potential is zero and all but one of the principal curvatures is positive. The energy barrier is the
difference between the saddle point (transition state) energy and the minimum energy, also known
as the binding state energy:

Adij = ¢(Xij) — 0(Xi), (1.2)

where X; is the current minimum configuration and X;; is an index-1 saddle configuration. Ideally—
for the method to yield a faithful representation of the dynamics—one would need to build an ex-
haustive catalog of connected index-1 saddle points at each discrete time step, where “connected"
indicates that the current binding site can be reached from the saddle point/transition state by a
path that is strictly descending. The difficulty in building such a catalog stems from the large
number of individual searches that must be performed in order to explore the PES.

For the most part, we focus on two issues associated with OLKMC. The first issue is relevant
to all OLKMC methods and concerns the global search for all of the connected saddle points as
outlined above, while the second issue deals with an inefficiency in doing a certain type of local
search to be described below. The issue associated with the global search is illustrated by consider-
ing what we will refer to as the accumulation plot, the top curve shown in Fig. 1. The lower curve
is an analogous result associated with the local search. The accumulation plot shows the number
of distinct, connected saddle points found as a function of the number of successful saddle point
searches. Each of these searches is initiated from an initial guess, which is generated by what we
will refer to as a perturbation scheme. Much of what we discuss is independent of the specific per-
turbation scheme chosen, but our specific scheme will be introduced in Section 2. This particular



accumulation plot was generated using a cluster of 55 particles arranged in what is thought to be
the global minimum configuration for a Lennard-Jones potential [15]. Notice that the number of
connected saddle points continues to grow, with no clear upper bound in sight. In Section 5, we
will examine this behavior using a stochastic model, with an eye toward understanding why this
happens.

While OLKMC is faster than the corresponding MD simulation, it is still computationally
challenging and there is a great need for finding ways to accelerate the method. Ruzayqat and
Schulze [12] introduce a scheme that relies on a standard Monte Carlo technique known as rejec-
tion , and this is where the local search mentioned above comes into play. In such a scheme, one
samples a majorizing distribution with approximate rates, # > r, rejecting an appropriate fraction
of selected events, f;f’, so that one is effectively sampling the original distribution. In Ref. [12],
the set of connected saddle points is partitioned into disjoint subsets associated with individual
atoms. The atom associated with a particular subset is referred to as the key atom, and is defined
as the atom whose position changes by the greatest magnitude in going from the local minimum
to a connected saddle point. The success of the rejection scheme relies on choosing a perturbation
scheme that can target a specific atom, so that a high percentage of the searches initiated with a
given target yield a saddle point where the targeted atom is the key atom. If this is the case, the
resulting saddle point will be referred to as a key connected saddle. The most straight-forward way
to accomplish this is to simply perturb the system so that the targeted atom is initially the atom
whose position changes by the greatest magnitude in the sense identified above. This procedure is
what we refer to as a local search. For the rejection scheme introduced in Ref. [12], rate estimates
7y > ry are provided for each of these subsets, so that one can select a candidate subset J before
performing a local search to evaluate the true rate r;. This allows one to select an event without
doing a much more costly global saddle point search.

In Fig. 1, we present the accumulation plot for both the local and the global searches. The two
curves are generated from the same set of data, consisting of 36,849 successful dimer searches out
of a total of 107,100 searches, with the data for non-key connected saddles having been discarded
for the local search. This is the correct way to define the accumulation plot in the context of the
rejection scheme, as this method discards the non-key connected saddles and only uses information
learned about key connected saddles. This reveals a significant inefficiency in the local searches in
that they locate many non-key connected saddles in the process of finding the set of key connected
saddles. In a perfectly efficient scheme, these curves would coincide. In Section 6, we will
introduce an early termination scheme that aims to overcome this problem. Early termination will
monitor the individual searches in a way that will ensure that the atom selected retains key-atom
status, terminating the search if this is not the case. Early termination will be shown to reduce the
cost in computational time, allowing one to reinvest the time saved into more searches.

In Section 2, we discuss the particular system and algorithm choices that we use for our ex-
amples in later sections. In Section 3, we look at the basins of attraction for individual saddle
points in 2D cross sections, illustrating the fractal and complex nature of the basins. In Section 4
we discuss the distribution of saddle points that is the result of the coupling of these basins with
a distribution of initial guesses. In Section 5, we use these distributions to model the behaviour
of accumulation plots. In Section 6, we introduce the early termination scheme for the Rejection
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Figure 1: The accumulation plot for a 55 particle configuration (upper, blue curve) and the
corresponding accumulation plot for the local saddle point search (lower, red curve).

OLKMC discussed above. We recap our main observations and summarize our conclusions in the
final section.

2 Implementation

This section describes various implementation details, such as choice of potential, the way con-
straints are placed on the system, and the method by which saddle points are located, including
the way individual searches start from a distribution of initial guesses. While the observations,
analysis and methods we present in later sections are largely independent of the choices described
in this section, the data we present is specific to these choices.

All of our data is for isolated clusters ranging in size from 8-55 particles. These configurations
interact via a Lennard-Jones potential:

0(X) =Y ¢i;(rij) for X € R, @2.1)

i<j

where the sum is over all pairs of N, particles, r;; is the distance between particles i and j, and the
pair potential ¢;; is given by
o c

9ij(rij) =4€[(—)" = (-)°]. (2.2)

rij rij
The parameter o is the distance at which the pair potential ¢;;(o) is zero, and is related to the
bond spacing that minimizes the pair potential, found at a distance of 250. The parameter € is the
well-depth for the pair potential, i.e. ¢; j(2% o) =—¢.
Building the catalog of transition states requires the repeated application of two basic algo-
rithms: a means to relax the system to a local minimum along a path that stays in the current basin

of attraction, i.e. by a strictly descending path, and an algorithm for finding a saddle point. For
relaxation we will use the Polak-Ribie’re Non-Linear Conjugate Gradient method [11] . To locate



saddle points, we use the well established and competitive Dimer Method introduced by Henkel-
man and Jonsson [2]. There exists a number of competing methods, including some improvements
on the original Dimer Method that could also be used [3, 5, 7, 9, 10, 16-19]. Whereas steepest
descent follows the force, —V ¢, to a local minimum, the Dimer Method attempts to follow what
is known as the Householder Vector to a saddle point. The Householder Vector,

F'=F—-2(F-f)A, (2.3)

is constructed by first identifying the eigenvector, f], corresponding to the smallest eigenvalue of
the Hessian, and then reversing this component of the force. Intuitively, this guides the system to
a saddle point by maximizing in the lowest curvature direction and minimizing in all other direc-
tions. The eigenvector ) is also known as the min-mode, and, when at a critical point, corresponds
to the direction of least curvature. More generally, it is the direction with the smallest second
derivative. Unlike other methods that use the Householder Vector, the Dimer Method identifies
the min-mode with the aid of a simple center difference approximation along a line in configura-
tion space:

f) = argmin C(7),C(7) ~ [¢ (X2) — 20 (Xo) + ¢ (X1)]/ A, (24)

n

where (X,,X;) are the endpoints, referred to as the dimer, and X is the center of the finite differ-
ence stencil.

Potentials are generally invariant under any translation or rotation, with the result that the Hes-
sian will have six zero eigenvalues. We can eliminate this degeneracy by considering a constrained
system that pins a particle to the origin, a second particle to a line passing through the origin, and
a third particle to a plane containing this line. This has the additional advantage of reducing the
total number of degrees of freedom by 6, so that X € R3»~6. Wth these constraints, minima are
stationary points where the reduced Hessian, H € R(GNy=6)x(3Ny=6) 'hag strictly positive eigenval-
ues. In addition to making the computation slightly faster, this makes it easier to identify saddle
configurations. For a large system, it is common to constrain a larger number of particles that
lie outside an active region [6], relying on the assumption that these particles move a negligible
amount between the binding state and the transition state. For smaller system sizes, twenty or
fewer particles, we use minimal constraints, and for larger systems we use what we refer to as a
constrained core consisting of a four-particle tetrahedral structure at the center of the cluster.

We assume that each initial guess determines a particular outcome, i.e. a specific saddle point
(connected or otherwise) or a failure to converge within certain specified tolerances. Within the
context of the Dimer Method this means a “guess” refers to both the initial configuration and the
initial dimer orientation. These choices are made at random according to some some probability
distribution, which we refer to as a perturbation scheme. We follow the scheme proposed in Ref.
[12], where each atom in the initial minimum X = {x; € R? ﬁﬁl is perturbed by a magnitude that
decreases with increasing distance from a central atom j. This reflects the assumption that most
transitions are localized around a single atom or group of atoms. The particular scheme is given
by

& ko .
X; =xi+ ~ exp{—||xi —xj||2} foralli=1,2,...N,, (2.5)



where N is the number of initial guesses, k = 1,2,...,N is the the guess number, ﬁf eR3isa
random unit vector, and o is the length scale parameter in the Lennard Jones potential.

Upon finding a saddle point, the configuration is requenched to ensure that it is connected to
the initial minimum. The Hessian is then utilized to ensure that the saddle point is index-1, and
higher indexed saddles are discarded. The saddle point is cataloged for future reference so we may
check for duplicate saddle points.

The duplicate check is performed by calculating the distance between a newly found saddle
point and previously cataloged saddle points. The saddle point is considered a duplicate if the
magnitude of the difference in position falls below a specified threshold. Care is taken to ensure
the threshold is not too small or too large. In the case where the threshold is too small, two
saddle points that have nearly identical configurations would be counted as distinct, and therefore
incorrectly inflate the number of saddle points. Whereas in the case where the threshold is too
large, two saddle points that have significantly different configurations would be counted as the
same saddle point, incorrectly yielding a smaller number of total saddle points. We find setting the
threshold on the magnitude of the difference in the position coordinates to 0.05 works well. In Fig.
2, we demonstrate this behavior for a small number of searches for a nine-particle configuration.
Notice that there is a range of values for which the criteria could be set to ensure that we do not
inflate or deflate the number of connected saddles.
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Figure 2: A plot of the total number of saddles found using a fixed number of searches and
a nine-particle configuration as a function of the duplicate-check threshold. Note that there is a
range of acceptable threshold values, including the 0.05 that we use for our calculations.

3 Basins of Attraction

In this section, we will briefly examine the basins of attraction for saddle points. While we are
working within the full configuration space, IR*"», we will be examining two dimensional cross
sections of this space to gain a sense of what the basins look like. Wales [14] employed a similar
approach to visualize the basins of attraction of transition states and minima on PES’s. Massen
and Doye [8] find that the basins of attraction provide a fractal-like tiling of the energy surface.



Our focus is specifically on the basins for the saddle points. For a fixed search algorithm, such
as an implementation of the Dimer Method, each initial guess (defined to include the dimer orien-
tation) produces a unique saddle point. For a given basin plot, we fix the initial dimer orientation,
so that the plot will reveal how the starting configurations partition that slice of configuration space
into domains of attraction for individual saddle points. Our aim is to understand why it is difficult
to complete an exhaustive search for saddle points and to gain insight into potential improvements
in the perturbation scheme. Ultimately, the distribution of initial guesses (perturbation scheme)
combines with the search algorithm to produce a distribution of saddle points. We will use the
distribution of the saddle points in Section 5 to gain an understanding of the slow convergence
observed in the accumulation plot.

For illustrative purposes, we consider an eight-particle configuration that initially minimizes
the Lennard-Jones potential. This will allow us to build up what we believe to be an exhaustive
catalog of the connected saddle points, a task that is difficult for larger clusters. The accumulation
plot for this configuration is presented in Fig. 3, where the horizontal axis represents the number
of successful Dimer searches. We continue to search the PES until no new saddle points are found.
Typically one does not know if all the saddle points have been found, and in most systems with
larger than eight particles, complete convergence was elusive. For this configuration we were able
to find 48 saddles connected to the starting configuration.
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Figure 3: The number of connected saddles found as a function of the number of successful
dimer searches for the eight-particle configuration described in the text. We were able to find 48
connected saddles for this configuration.

In order to illustrate the basins of attraction, a plane is chosen for the 2D cross section, and
small steps within the plane are taken to create a grid ( Fig. 4a). While each starting position is
within this fixed plane and each dimer starts with the same orientation f], the subsequent Dimer
search takes place in the entire 3N,—dimensional configuration space. We outline this procedure
in Algorithm 1. If the Dimer Method completes the search and converges to a connected index-1
saddle point, the saddle point is either assigned a new saddle index number i or assigned an index
number based upon the catalog of previously found saddle points. Each saddle index is assigned
a color to distinguish the distinct connected saddle points. Also, if the Dimer Method fails to



Algorithm 1: Exploring a 2D Cross Section

1: Choose a particle j and an initial configuration X, € R3»

scheme outlined in Section 2.

2: Choose a plane passing through Xj. In practice, we choose two of the three coordinates
corresponding to particle j, labeling these coordinates x}. and x?.

3: Choose the starting dimer orientation ), which is to be used at each initiation of the Dimer
Method.

4: We explore the chosen 2D cross section by defining a grid of initial coordinates using
multiples {m,n} of a small distance 0x, keeping all of the other coordinates fixed to the

values of Xj:

according to the perturbation

xb=xt + mbx
J J
x? = x? +nox.

5: Initiate the Dimer Method for each configuration in the grid.

converge the point is assigned the color black, or, if it converges to a nonconnected saddle point,
it is assigned the color green, as presented in Table 1.

Table 1: Legend to Signify Dimer Results.

Dimer Result Color

Failed to Converge -

Converged to Nonconnected Saddle Point

Converged to Connected Saddle Point 48 other colors

Twenty-four distinct saddle points were located using this cross section. Although we have as-
signed every saddle point a specific color, this cannot be seen due to the relatively large percentage
of nonconnected saddles (green) and the relatively coarse resolution. In Fig. 4b, we show the basin
map without the nonconnected saddles to better view the basins for the connected saddle points.
We get an even better view in Figs. 4c and 4d, which are zoomed in versions of Figs. 4a and 4b.
Examining these figures, we learn a few things. First, as is to be expected, perturbations that place
the configuration a large distance away from the minimizing configuration are increasingly likely
to fail to converge or, at best, converge to a nonconnected saddle point. Second, the boundaries
of individual saddle basins are fractal in nature and not entirely connected, consistent with the
observations of others [14]. This can be traced to the nonlinear, iterative process introduced by
Newton’s method, which is used to do the line searches needed to minimize various quantities.
To the extent that there is a coherent pattern to the structures seen, this pattern will frequently
be disjoint as it is interrupted by various abrupt changes in the search algorithm, e.g. a change
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Figure 4: a) Basin plot for a two dimensional cross section of configuration space with initial
configurations colored according to Table 2. b) The same plot with the non-connected saddles
removed so that the connected saddles can be seen more clearly. ¢) A zoomed in version of figure
(a). d) A zoomed in version of figure (b). There are 24 distinct connected saddles within the plane.
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in search direction. Overall, for the dimer method, we find that perturbations that are especially
close to the local minimum work well in that this region tends to be a chaotic blend of very small
basins of attraction leading to many different saddle points.

While the details vary dramatically depending on the plane and particle chosen, the qualitative
features just described are similar, as can be seen by examining the additional cross section shown
in Fig 5. In Fig. 5b, we examine a zoomed in portion of this same cross section that is near
the minimum, and again see the random nature for small perturbations about the minimum. This
portion of this particular 2D cross section is especially rich in distinct saddle points, and we are
able to find 41 of the 48 distinct saddle points observed in our exhaustive search. While this is
somewhat unusual, it is nevertheless remarkable that it can occur at all. Placing constraints on the
configuration to reduce the dimensions of the configuration space will also alter these plots, but,
again, retaining qualitatively similar features.

Basin Full Dimer Search Basin Full Dimer Search

¥
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Figure 5: a) Basin plot for an additional two dimensional cross section of configuration space
with initial configurations with the connected saddle points removed. b) A zoomed in version that
contains 41 of the 48 saddle points found in the exhaustive search.

Table 2: Fraction of Successful Dimer Searches. The first two columns are for the portions of the
2D cross section examined in Figs. 4a and 4c,and the third column is for data collected on the full
Configuration Space that is presented in Fig. 3.

Dimer Result Fig. 4a Fig. 4c Full Space
Failed to Converge 0.5926  0.3550 0.2258
Converged to Nonconnected Saddle Point  0.3491 0.2911 0.4898
Converged to Connected Saddle Point 0.0583 0.3539 0.2845

In Table 2 we present the fraction of successful Dimer searches. The first two columns are
for the portions of the 2D cross section examined in Figs. 4a and 4c, and the third column is for
data collected on the full configuration space that is presented in Fig. 3. When searching the full
configuration space, we perturbed each particle of our eight-particle system 500 times using the
scheme outlined in Section 2 to generate 4000 total guesses. We tallied the number of connected
and nonconnected saddle points to generate the data listed in Table 2. We note that for searches



11

within the plane, as we confine the search to be closer to the minimum, the portion of connected
saddles increases. This is another indication that small perturbations about the minimum are best
when searching for connected saddle points.

4 Distributions

When performing the global saddle point search of the PES for the eight-particle configuration in
the last section we were able to obtain what we believe to be an exhaustive catalog of 48 connected
saddle points. We increased the number of searches beyond that illustrated in Fig. 3 and kept track
of the number of times each saddle point on the surface was found to produce the distribution
found in Fig. 6a. In this figure, the index for each saddle point is based on the order in which it
was encountered. This is why the distribution tends to be decreasing in magnitude, as we are much
more likely to encounter an easily found saddle point early in the search process. It would be nice

Distribution of Successful Saddle Point Searches Energy Barrier From Saddle Index for Eight-Particle Configuration
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Figure 6: The distribution of successful saddle point searches for the 48 distinct connected sad-
dles found for the eight-particle configuration, along with a plot of the corresponding energy bar-
riers. The colors for the saddle index correspond to the color assigned in the previous section.

if the saddle points with large energy barriers, corresponding to rare and possibly less important
events, were the difficult to find saddle points, but examining the corresponding plot of energy
barriers presented in Fig. 6b, we see that this is not entirely the case. The extent to which this is
true depends on the potential, the saddle-searching algorithm and the details of its implementation,
including the perturbation scheme. Nevertheless, one cannot expect a strong correlation between
these two plots unless one performs costly computations that locate saddle points via something
closely imitating MD. Instead, we will try to gain a better understanding of what these distributions
look like and how they affect the accumulation of an exhaustive list of connected saddle points.

Consider again Fig. 6a, and let M; with i = 1,2,...,N be the number of times saddle point
i was found using g guesses. We will refer to the fraction of searches that yield saddle i as the
empirical distribution:

Pi= = @.1)
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i=1,2,...,N and note that nyzl pi = 1. From this we can imagine defining an ideal distribution
pi= ;E};Pi- 4.2)

We now present data for a larger system of 55 particles, shown in Fig. 7. The four constrained
particles near the center of the cluster are shown in red. As discussed earlier, these constraints
are introduced to decrease the computational cost of performing the Dimer Method. This is an
approximation that relies on the assumption that these interior particles move a negligible amount
between the binding state and the transition state.
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Figure 7: The 55 particle quenched system with a constrained core represented in red, and the 51
particles that are free to move during the Dimer Method searches shown in blue.

In Fig. 8, we present the saddle point distribution p; for the 1358 connected saddle points that
were found using 36,849 successful dimer searches. In Fig. 8a, the distribution is shown in the
order in which the saddle point was encountered during the dimer searches, while in Fig. 8b, the
distribution is sorted from greatest to lowest frequency.

We find that the data in Fig. 8b, the sorted distribution, is well represented by a Geometric

Distribution:
l—p\ i
mz@_w>ﬂ, 4.3)

where i is the saddle index, and we have normalized so that the sum over the first N values of p;
is one. Notice that this is a two parameter (p and N) family of normalized distributions. Keeping
N fixed to the 1358 saddle points that were found, we find that a nonlinear least-squares fit of Eq.
(4.3) to the data in Fig. 8b gives p = 0.9949. This is shown in Fig. 9. Note that p is close to one,
a fact that can be understood by realizing that the p" in the denominator of Eq. (4.3) is going to
be negligible. As a result, the 1 — p in the numerator must be approximately equal to the first data
point in the graph, which is a relatively small fraction as the number of saddle points grows large.
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Figure 8: The unsorted distribution of hits is presented in Fig. 8a for which the 1358 distinct
connected saddles were found with 36,849 successful Dimer searches. These are presented in the
order in which the saddles were encountered. Fig. 8b presents the distribution sorted from greatest
frequency to lowest frequency.
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Figure 9: Nonlinear least-squares fit of the geometric distribution, Eq. (4.3), to the sorted empir-
ical distribution shown in Fig. 8b. For this calculation, we kept N = 1358 and found p = 0.9949.
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5 Accumulation Plots

Recall that the accumulation plot represents the number of connected saddles found for a given
initial configuration as a function of the number of successful searches. Examining Fig. 1, it is
not clear how close we are to converging to the total number of connected saddle points. We
will model this behavior in an aim to help us understand why the growth rate of the number of
connected saddles is so slow.

Let [i 1,02, e e, ig] be a sequence of saddle points recovered from g independent searches, where
ij is the saddle index assigned to the jrh successful search. Note that the same saddle point could
appear in this sequence multiple times. Let ¢(n,g; N) represent the number of sequences that can
yield n distinct saddles from g guesses when a total of N saddles are available to choose from. We

have
N

Y C(n.g:N) = N¢. (5.1)
n=1
Let P(n,g;N ) be the probability of getting n distinct saddles using g guesses. For an arbitrary
distribution {p;}, we have IP([i1, 2, ....ig]) = [T}, pi; and

C(ngN) g
P(n.g:N)= Y. []» (5.2)
k=1 j=1

A recursive formula for computing the number of sequences that yield n distinct saddle points
for a number of guesses g and a fixed NV is

C(n,g+ 1;N) =nC(n,g;N)+(N—n+1)C(n—1,g;N). (5.3)

This recursion formula reflects the fact that there are n ways to add one more saddle to each of
the C(n,g;N) sequences resulting from g guesses that yielded n distinct saddles, and N —n + 1
ways to add one more saddle to each of the C(n—1,g : N) sequences resulting from g guesses that
yielded n — 1 distinct saddles.

The recursion formula Eq. (5.3) can be solved by introducing a related sequence aé") in the
form

N! n
Directly substituting Eq. (5.4) into Eq. (5.3) yields
aé’fﬁl = aé") n +a§"71), (5.5)

with the initialization of ¢ = 1.

For g > n, the solution to Eq. (5.5) can be represented in the form :

al) = Y by ke, with al) = 1, (5.6)
k=1

n
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where "
(="
bpy = ————, 5.7
" K (n—k)! 7
forn,k > 1.
Our main focus in this section is modeling the accumulation plot using the expected number

of saddles of the distribution as

<n>= )Y nP(n,g;N), (5.8)

N
n=1
for each fixed number of guesses g and fixed N.

We start by examining the special case of a uniform distribution {p; = p = %} While this is
not especially realistic, it can be analyzed more completely and provides insight into the general
case.

Now, as we are taking independent guesses,

g
P([il,iz,...,ig]) :Hp_i:ﬁng, (5.9

and
P(n,g;N) = —>"—=. (5.10)

(5.11)

1—p\* C(ng:N) g .
=) 5
k=1 j=1

In Fig. 10a, we use Eqgs. (5.8) and (5.10) to compute the expected value of an accumulation
curve for a uniform distribution of N = 100 objects/saddle points. The analogous calculation using
Eq. (5.11) for the geometric distribution is uncomputable due to the need to enumerate and store
the extremely large number C(n,g;N) of distinct sequences. Similarly, it is not possible to carry
out the calculation for the uniform case if the total number of objects N gets too large. For these
cases, we turn to a Monte Carlo sampling of the distributions to simulate an accumulation process
analogous to that in the actual saddle point search. Some curves comparing the outcomes for the
uniform distribution and several cases of the geometric distribution are shown in Fig. 10b.

As a final way of examining the behavior of accumulation plots, we will return to the 55 par-
ticle configuration used in Fig 1. This accumulation plot is again shown (in blue) in Fig. 11.
Recall that we were able to find N = 1358 connected saddles using just over 30,000 independent
searches. The red curves are realizations generated using a Monte Carlo sampling of the distribu-
tion Eq. (4.3) with the value of p = 0.9949 calculated for Fig. 9 and varying the value of N to
obtain a best least squares fit. The resulting N = 4660 is still smaller than we believe the actual
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Figure 10: In Fig. 10a the blue curve is the expected number of saddles found as a function
of successful search attempts, as modeled using Eq. (5.8) with N = 100. The corresponding red
curves are generated using Monte Carlo sampling of the uniform distribution p; = % In Fig. 10b,
the blue curve is a Monte Carlo simulation with N = 1,500 saddle points for the uniform distri-
bution (blue), and the remaining curves are simulations for several values of p in the geometric
distribution Eq. (4.3).

total number of saddle points to be. For example, extending our search to 3,518,985 successful
guesses, we have found 7,068 distinct connected saddles connected to the initial configuration.
Our point here is not to estimate the ultimate number of saddle points, though that would be desir-
able, but merely to demonstrate that the slow accumulation behavior is to be expected, especially
for a distribution that tails off quickly.

6 Early Termination

Recall that in the rejection scheme introduced by Ruzayqat and Schulze [12], transitions from the
current minimum configuration are partitioned into N, mutually exclusive subsets by associating
each saddle point with a particular particle. This is done by assigning a saddle point to the particle
that moves the most when the system is moved from the minimum to the transition state. The
perturbation scheme discussed in Section 2 allows us to control the particle that initially moves
the most. Once a transition state is found, it is requenched to check that it is a connected saddle.
For the connected saddle, if the particle that was initially perturbed is the one that has moved
the greatest distance from the initial configuration we then classify the state as a key connected
saddle. If it were possible to ensure that the perturbation along with the Dimer search led us to
a key connected saddle, a lot of valuable time could be saved and reinvested into more Dimer
searches to obtain a more comprehensive list of saddles. To this aim, we will implement an early
termination technique, where we monitor the distances particles have traveled from the initial
minimum as the dimer algorithm works its way to a saddle point. If the initially perturbed particle
no longer holds the status of being the particle that has moved the greatest distance, the Dimer
search is terminated, and the next search begins.

We will illustrate this using the same 55 particle system used in previous sections. In our
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Accumulation Plot with Monte Carlo Sampling
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Figure 11: The blue curve is the accumulation plot originally shown in Fig. 1, where 1,358
saddle points had been located using over 30,000 successful searches. The red curves are a couple
of realizations of the Monte Carlo simulations using the geometric distribution with p = 0.9948 fit
to the empirical distribution shown in Fig. 9 , with a value of N = 4,660 chosen to give the best fit.
The green curve, shown for comparison, is Monte Carlo simulation with the uniform distribution
and this same value of N.

examination of the basins of attraction for the saddle points, we concluded that small perturbations
about the minima were the most effective for exploring the PES for the saddles. This was due to the
chaotic nature of the basins of attraction. In Fig. 12, we present the distance each unconstrained
particle in the configuration moved as a function of the Dimer iteration until convergence to a
saddle point was observed. Recall that the perturbation scheme gives control over the particle that
has initially moved the greatest distance, and a key connected saddle is a transition state where
the initially perturbed particle retains the status of being the particle that has traveled the greatest
distance from the initial configuration. In Fig. 12a and Fig. 12b, we present cases where the
particle that was initially perturbed the most, remained the particle that moved the most, resulting
in a key connected saddle point. It is often the case that the initial perturbation coincides with the
key atom, but this is not always the case, as seen in Fig. 12c and Fig. 12d.

In view of these observations, we introduce an early termination procedure, where we monitor
the progress of the search every 100 iterations to see if the initially perturbed particle remains the
particle that moved the most. If this is the case, the Dimer search continues. If not, we exit the
current search and start again. If one chooses to use more or less iterations for the early termination
check, then one finds somewhat less or more saddle points, respectively.

In Table 3, we tabulate the number of searches per particle, connected saddles found, key
connected saddles found, and key connected saddles found with the early termination procedure.
These are independent runs as we increase the number of searches per unconstrained particle for
the Dimer Method. It is clear that we are able to get close to the number of key connected saddles
found using a full, non-terminated search, but we lose some as the number of searches increases.
This loss is more than made up for by the computation time that is saved, as this can be reinvested
into additional searches.

In Table 4, we give the ratio of key connected saddle points to connected saddle points and that
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Figure 12: In Fig. 12a and Figure 12b, we present cases in which the resulting connected saddle
is a key connected saddle, while in Fig. 12c and Fig. 12d the resulting connected saddle did not
maintain the key connected status.

Table 3: Table to compare the counts of Key connected saddles to connected saddles and the
Key connected saddles caught with early termination to the total number of Connected saddles.
Results are given for several, successively larger, searches, as indicated by the number of guesses
per particle.

Searches per Unconstrained Particle Connected Saddles Keyed (Regular) Early Termination

10 159 127 127
50 416 327 320
250 712 516 505

500 890 611 588
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of key connected saddle points caught by early termination to the connected saddle points. Again,
notice that we lose some key connected saddles as early termination is implemented, but the ratio
does not differ substantially.

Table 4: Table to compare the proportion of Key connected saddles to connected saddles and the
Key connected saddles caught with early termination to the total number of Connected saddles.

Searches/Particle Proportion Key/connected ET/connected

10 1874 1874
50 7861 7692
250 247 7093
500 .6865 .6607

Finally, we compare the performance of the rejection-based OLKMC with and without early
termination. For this comparison we used 100 guesses per particle to perform saddle point searches
focussed on each of the 51 unconstrained particles, and found a CPU time of 2,661 seconds for
the scheme without early termination and 946 seconds for the scheme with early termination. For
these simulations, the early termination procedure was approximately 2.5 times faster.

7 Conclusions

This paper is broadly motivated by OLKMC and the challenging task of finding all of the saddle
points connected to a given local minimum of a high-dimensional energy landscape. We began
with the observation, illustrated in Fig. 1 by what we refer to as an accumulation plot, that this
goal often seems unattainable—there are too many saddle points and progress in finding them
diminishes as more saddle points are found. Throughout the paper, we used freely suspended
Lennard-Jones clusters with between 8 and 55 particles. It may be that this is a somewhat more
challenging configuration than a free-surface environment with a constrained underlayer, which is
often considered in the OLKMC literature. Nevertheless it seems that this slow accumulation and
explosive growth of the number of located saddle points is a fundamental challenge that must be
overcome if OLKMC is to become more broadly applicable.

While a variety of saddle point finding methods may be used, they share the common feature
that one must equip them with a set of initial guesses for the configurations. The guesses are
crafted so that 1) they yield a high percentage of connected saddle points, and 2) fully explore the
energy landscape in the vicinity of a given local minimum. Usually this features a random choice
that can be thought of as a probability density p (X ) of points in configuration space. In Section 2,
we refer to this as the perturbation scheme, and discuss a specific example of such a scheme that
we use throughout the paper [12].

In Section 3 we map some two-dimensional cross sections of these initial guesses, identifying
the basins of attraction for specific saddle points. While these observations are not new [14], our
aim is to emphasize a few features of these searches. First, the way the located saddle point is
connected to the initial guess is chaotic with a fractal-like structure outside of a relatively small
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region surrounding each saddle point. This behavior can, for the most part, be traced back to the
nonlinear iterative process inherent to the Newton’s method that is employed in the various line
searches needed to locate saddle points. Our observation was that this was especially true in the
immediate vicinity of the local minimum being explored, and that this was actually a good region
to probe for saddle points as it satisfies the two goals identified in the previous paragraph.

In Section 4 we discuss the distribution p; of saddle points that is found due to the combination
of search algorithm and perturbation scheme. We observe that for the system we explored here
and the algorithm choices we made, this distribution is exponentially decreasing, so that it is well
approximated by a geometric distribution. The rapidly decaying tail of this distribution contributes
to the slow progress observed in the accumulation plots. Further study is required to determine
how general this behavior is. For example, it may be that one could get a flatter distribution by
combining multiple saddle search methods and perturbation schemes.

The distribution p; discussed in Section 4 can be related, in principle, to the basins of at-
traction introduced in Section 3 and the perturbation scheme discussed in Section 2. Let (); =
{perturbations X € R3that leads to saddle i} with Q) = [JY_, Q); being the set of initial guesses
for which the search converges to a connected saddle point. For any two distinct ();’s, notice
0;NQ; = {@}, that is they are mutually exclusive and partition (). Conceptually, the perturba-
tion scheme p (X ) and the basins of attraction (); combine to give the probability, j;, that an initial
guess leads to saddle point i:

5i— Jo,p(X)dX 7.1)
1 . .

Jap(X)dX

In section 5 we examine the effect of the distribution p; on the behavior of the accumulation
plot. While we were able to make some analytic progress in the special case of a uniform distri-
bution, this was mostly done using Monte Carlo sampling. Our main objective in this section was
to demonstrate that the slow accumulation behavior observed in Fig. 1 is an inherent feature of
the search process, especially in cases where the distribution p; has an exponentially diminishing
tail. While it appears difficult to get an accurate result, this procedure can be used to get a crude
estimate of the number of saddles left to be located, and this may be a promising avenue for further
study.

In Section 6 we consider a type of local saddle point search introduced by Ruzayqat and
Schulze[12] aimed at finding just the subset of saddle points associated with a particular particle,
e.g. the particle that moves the most in the transition from the binding to the transition state. If such
a search could be done efficiently, it allows a significant improvement of the OLKMC algorithm
through the use of a rejection scheme. However, as illustrated in Fig. 1, the local search suffers
from the slow accumulation problem to an even greater extent than the global search, presenting a
serious challenge to this type of algorithm. Our final observation is that this can be substantially
mitigated through the use of what we refer to as an early termination procedure, where one simply
monitors the motion of the key particle as the search proceeds and ends the search if another
particle has at some point moved further. We found that this more than doubled the efficiency of
the rejection OLKMC algorithm.
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