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Introduction Compactness Method

Elliptic Operators
with Rapidly Oscillating Coefficients

Consider

Lε = −div
(
A(x/ε)∇

)
= − ∂

∂xi

[
aij

(x
ε

) ∂

∂xj

]
, ε > 0.

Let
A = A(y) =

(
aij(y)

)
, 1 ≤ i , j ≤ d

Assume

• A is real, bounded, and uniformly elliptic

• A is 1-periodic
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Introduction Compactness Method

Basic Assumptions

• Ellipticity: there exists µ > 0 such that

‖A‖∞ ≤ µ−1

µ|ξ|2 ≤ aij(y)ξiξj

for any ξ ∈ Rd and a.e. y ∈ Rd .

• Periodicity:

A(y + z) = A(y) for any z ∈ Zd

and for a.e. y ∈ Rd .

• All results hold for second-order elliptic systems in
divergence form
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Uniform Regularity Estimates

• Question: Suppose that

Lε(uε) = F in Ω,

uε ∈ what space uniformly in ε > 0?

• Observation: If
uε = xk + εχk (x/ε),

where χk (y) is the corrector, then

Lε(uε) = 0 in Rd and ∇uε = ∇xk +∇χk (x/ε)

• Note that ∇uε is bounded uniformly in ε > 0, but not
uniformly Hölder continuous (unless χk = 0). Thus, the
optimal estimates one may prove are the Lipchitz
estimates, not C1,α estimates.
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Lipschitz Estimates: Dirichlet Condition

Theorem (M. Avellaneda - F. Lin, 1987)
Assume that A(y) =

(
aαβij (y)

)
is elliptic, periodic, and Hölder

continuous. Let Ω be C1,α. Suppose

Lε(uε) = F in Ω and uε = f on ∂Ω.

Then, if p > d and σ > 0,

‖∇uε‖L∞(Ω) ≤ C
{
‖F‖Lp(Ω) + ‖f‖C1,σ(∂Ω)

}
,

where C is independent of ε.
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Lipschitz Estimates: Neumann Conditions

Theorem (Kenig - Lin - S. (2013), S. Armstrong - S.
(2016))
Assume that A = A(y) is elliptic, periodic, and Hölder
continuous. Let Ω be C1,α. Suppose

Lε(uε) = F in Ω and
∂uε
∂νε

= g on ∂Ω.

Then, if p > d and σ > 0,

‖∇uε‖L∞(Ω) ≤ C
{
‖F‖Lp(Ω) + ‖g‖Cσ(∂Ω)

}
,

where C is independent of ε.
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Compactness Method
(M. Avellaneda - F. Lin)

Theorem (large-scale interior Lipschitz estimate)
Assume A = A(y) is elliptic and periodic. Suppose

Lε(uε) = 0 in B1 = B(0,1).

Then, for ε ≤ r ≤ 1,
 

Br

|∇uε|2 ≤ C
 

B1

|∇uε|2,

where C depends only on d and µ.

• No smoothness assumption is needed
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Interior Lipschitz Estimate (full scale)

Assume A = A(y) is elliptic, 1-periodic, and Hölder continuous,

|A(x)− A(y)| ≤ M|x − y |λ for any x , y ∈ Rd ,

where M > 0 and λ ∈ (0,1). Suppose that

Lε(uε) = 0 in B1.

Then

|∇uε(0)|≤C
( 

B1

|∇uε|2
)1/2

,

where C depends only d , µ, λ and M.
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• The case ε ≥ 1/2 follows from classical results, since
A(x/ε) is uniformly Hölder continuous in ε ≥ 1/2

• Let v(x) = ε−1uε(εx). Then L1(v) = 0. By the classical
results,

|∇v(0)|≤C
( 

B1

|∇v |2
)1/2

• Since |∇uε(εx)| = |∇v(x)|,

|∇uε(0)|≤C
( 

Bε
|∇uε|2

)1/2

≤C
( 

B1

|uε|2
)1/2

,

where the large-scale estimate is used for the last step.
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Compactness Theorem

Let M(µ) denote the class of all d × d 1-periodic matrices that
satisfy ‖A‖∞ ≤ µ−1 and the ellipticity condition with µ.

Theorem
Let uk be a weak solution of

div
(
Ak (x/εk )∇uk

)
= 0 in Ω,

where εk → 0 and Ak ∈ M(µ). Suppose that {uk} is bounded in
H1(Ω). Then there exists a subsequence, still denoted by {uk},
such that

uk → u0 weakly in H1(Ω),

div
(
A0∇u0

)
= 0 in Ω,

where A0 is a constant and positive-definite matrix.
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Proof of the Compactness Theorem

• Since {uk} is bounded in H1(Ω), there exists a
subsequence, still denoted by {uk}, such that uk → u0
weakly in H1(Ω).

• By passing to a subsequence, we may assume that

Âk → A0 in Rd×d

A0 satisfies the same ellipticity condition and
‖A0‖∞ ≤ C(d , µ).

• Use the Div-Curl Lemma or L. Tartar’s test function method
to show that

Ak (x/εk )∇uk → A0∇u0 weakly in L2(Ω)
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One-Step Improvement

Lemma
Fix σ ∈ (0,1). There exist ε0 ∈ (0,1/2), θ ∈ (0,1/4), depending
only on d, µ and σ, such that if 0 < ε < ε0 and

Lε(uε) = 0 in B1 = B(0,1),

then  
Bθ

∣∣∣uε −  
Bθ

uε −
(
x + εχ(x/ε)

)  
Bθ
∇uε

∣∣∣2
≤ θ2+2σ

 
B1

|uε|2
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Argue by Contradiction

• Let θ ∈ (0,1/4) to be determined later. Assume that no
ε0 > 0 exists for this θ.

• Then there exist {εk}, {uk}, {Ak} such that

εk → 0, Ak ∈ M(µ)

div
(
Ak (x/εk )∇uk

)
= 0 in B1, 

B1

|uk |2 = 1

 
Bθ

∣∣∣uk −
 

Bθ
uk −

(
x + εkχ

k (x/εk )
)
·
 

Bθ
∇uk

∣∣∣2 ≥ θ2+2σ

• χk is the corrector for Ak
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Proof (continued)

• By Caccioppoli’s inequality, {uk} is bounded in H1(B1/2).
We may assume

uk → v weakly in H1(B1/2)

uk → v weakly in L2(B1)

• We may assume Âk → A0 for some A0

• Let k →∞ to obtain 
B1

|v |2 ≤ 1,
 

Bθ

∣∣∣v −  
Bθ

v − x
 

Bθ
∇v
∣∣∣2 ≥ θ2+2σ
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Proof (continued)
• By the compactness theorem,

div(A0∇v) = 0 in B1/2

• By the C2 regularity for elliptic systems with constant
coefficients,

θ2+2σ ≤
 

Bθ

∣∣∣v −  
Bθ

v − x
 

Bθ
∇v
∣∣∣2

≤ Cθ4‖∇2v‖2L∞(B1/4)

≤Cθ4
 

B1/2

|v |2

≤ C0θ
4

• For contradiction, choose θ ∈ (0,1/4) so that

C0θ
4 < θ2+2σ
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Iteration

Lemma
Let σ, ε0, θ be the same as in the last lemma. Suppose

Lε(uε) = 0 in B1 and 0 < ε < ε0θ
k−1

Then there exist Ek ∈ R and Hk ∈ Rd such that
 

B
θk

∣∣uε − Ek − (x + εχ(x/ε)) · Hk
∣∣2

≤ θ(2+2σ)k
 

B1

|uε|2

and

|Hk | ≤ C
k∑
`=1

θσ`
( 

B1

|uε|2
)1/2
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Proof by Induction on k

• The case k = 1 is given by the last lemma

• Suppose the lemma holds for some k ≥ 1. To prove it for
k + 1, suppose

Lε(uε) = 0 in B1 and 0 < ε < ε0θ
k

Apply the last lemma to

v(x) = uε(θkx)− Ek −
(
(θkx + εχ(θkx/ε)

)
· Hk

• Note that

L ε

θk
(v) = 0 and 0 <

ε

θk < ε0



Introduction Compactness Method

Proof by Induction on k

• The case k = 1 is given by the last lemma

• Suppose the lemma holds for some k ≥ 1. To prove it for
k + 1, suppose

Lε(uε) = 0 in B1 and 0 < ε < ε0θ
k

Apply the last lemma to

v(x) = uε(θkx)− Ek −
(
(θkx + εχ(θkx/ε)

)
· Hk

• Note that

L ε

θk
(v) = 0 and 0 <

ε

θk < ε0



Introduction Compactness Method

Proof by Induction on k

• The case k = 1 is given by the last lemma

• Suppose the lemma holds for some k ≥ 1. To prove it for
k + 1, suppose

Lε(uε) = 0 in B1 and 0 < ε < ε0θ
k

Apply the last lemma to

v(x) = uε(θkx)− Ek −
(
(θkx + εχ(θkx/ε)

)
· Hk

• Note that

L ε

θk
(v) = 0 and 0 <

ε

θk < ε0



Introduction Compactness Method

Proof (continued)
 

Bθ

∣∣v −  
Bθ

v −
(
x + εθ−kχ(xθk/ε)

)
·
 

Bθ
∇v
∣∣2

≤ θ2+2σ
 

B1

|v |2 by the last lemma

≤ θ(2+2σ)(k+1)

 
B1

|uε|2 by the induction assumption

This leads to the inequality for k + 1 with

Hk+1 = Hk + θ−k
 

Bθ
∇v

Note that∣∣∣θ−k
 

Bθ
∇v
∣∣∣ ≤ Cθ−k

( 
B1

|v |2
)1/2

≤ Cθσk
( 

B1

|uε|2
)1/2
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Proof (continued)
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Proof of Large-scale Lipschitz Estimate
Suppose that Lε(uε) = 0 in B1 and ε ≤ r ≤ ε0θ.
Choose k ≥ 1 such that

ε0θ
k+1 ≤ r < ε0θ

k

Then 
Br

|∇uε|2 ≤
C
r2

 
B(0,ε0θk−1)

|uε − Ek |2 by Caccioppoli

≤ C
r2

 
B(0,ε0θk−1)

|uε − Ek −
(
x + εχ(x/ε)

)
· Hk |2

+
C
r2

 
B(0,ε0θk−1)

|x + εχ(x/ε)|2|Hk |2

≤ Cθ2kσ
 

B1

|uε|2 + C|Hk |2

≤ C
 

B1

|uε|2
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B1

|uε|2
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Large-scale C1,α estimates

Let 0 < α < 1. Suppose

Lε(uε) = 0 in B1

Then, for ε ≤ r ≤ 1/2,

inf
E∈Rd ,β∈R

1
r

( 
Br

|uε − β − (x + εχ(x/ε)) · E |2
)1/2

≤ Crα
( 

B1

|uε|2
)1/2

where C depends only on d , µ, and α.
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Interior Lipschitz Estimate

Theorem (M. Avellaneda - F. Lin, 1987)
Assume A is elliptic, periodic, and Hölder continuous. Suppose

Lε(uε) = F in B(x0,R).

Then

‖∇uε‖L∞(B(x0,R/2))

≤ C

 1
R

( 
B(x0,R)

|uε|2
)1/2

+ R

( 
B(x0,R)

|F |p
)1/p

 ,

where p > d and C depends only on d, p, µ, and ‖A‖Cα(Td ).
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Lipschitz Estimates for Dirichlet Problem

Suppose

Lε(uε) = F in Ω and uε = f on ∂Ω.

Then
‖∇uε‖L∞(Ω) ≤ C

{
‖F‖Lp(Ω) + ‖f‖C1,σ(∂Ω)

}
,

where p > d and σ > 0.
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Dirichlet Correctors

To use the compactness method, in the place of the corrector
χk , one introduces the Dirichlet corrector, define by

Lε
(
Φε,k

)
= 0 in Ω and Φε,k = xk on ∂Ω.

Observation

Lε(Φε,k − xk ) = −Lε(xk ) = Lε
(
εχk (x/ε)

)
in Ω

and
Φε,k − xk = 0 on ∂Ω
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Lipschitz Estimate for the Dirichlet Corrector

Lemma
Assume that A is elliptic, periodic, and Hölder continuous.
Let Ω be C1,σ. Then

‖∇Φε,k‖L∞(Ω) ≤ C.
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Lipschitz Estimate for Dirichlet Corrector
• Step 1. Use the compactness method to establish

boundary Hölder estimates

• Step 2. Use the Hölder estimates to show

|Gε(x , y)| ≤ C[δ(x)]α[δ(y)]β

|x − y |d−2+α+β

for 0 < α, β < 1.

• Step 3. Use the Green function estimate to show if

Lε(uε) = 0 in Ω and uε = g on ∂Ω,

then for x0 ∈ ∂Ω and ε < r < 1,( 
B(x0,r)∩Ω

|∇uε|2
)1/2

≤ C
{
‖∇g‖L∞(Ω) + ε−1‖g‖L∞(Ω)

}
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One-Step Improvement

There exists ε0 ∈ (0,1) such that if 0 < ε < ε0,

L(uε) = 0 in D1 and uε = g on ∆1,

where g(0) = 0, ∇tang(0) = 0, ‖∇tang‖C0,2σ(∆1) ≤ 1, and( 
D1

|uε|2
)1/2

≤ 1,

then ( 
Dθ

∣∣∣uε − Φε,jnj(0)ni(0)

 
Dθ

∂uε
∂xi

∣∣∣2)1/2

≤ θ1+σ
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Lipschitz Estimates for Neumann Problems

Suppose

Lε(uε) = F in Ω and
∂uε
∂νε

= g on ∂Ω.

Then
‖∇uε‖L∞(Ω) ≤ C

{
‖F‖Lp(Ω) + ‖g‖Cσ(∂Ω)

}
,

where p > d and σ > 0.
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Neumann Correctors

To use the compactness method for the Neumann Problem,
one introduces the Neumann correctors, defined by

Lε
(
Ψε,k

)
= 0 in Ω and

∂

∂νε

(
Ψε,k

)
=

∂

∂ν0

(
xk
)

on ∂Ω.

Lemma (Kenig - Lin - S., 2013)
Assume A is elliptic, periodic, symmetric, and Hölder
continuous. Let Ω be C1,σ. Then

‖∇Ψε,k‖L∞(Ω) ≤ C.

The proof uses Rellich estimates and Hölder estimates for the
Neumann functions.
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