(ロ) (同) (三) (三) (三) (○) (○)

Large-Scale Regularity in Elliptic Homogenization - Part I

Zhongwei Shen

University of Kentucky

March 30, 2023 UTK-PDE

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Elliptic Operators with Rapidly Oscillating Coefficients

Consider

$$\mathcal{L}_{\varepsilon} = -\mathrm{div} ig(\mathcal{A}(x/arepsilon)
abla ig) = -rac{\partial}{\partial x_i} \left[\mathbf{a}_{ij} \left(rac{x}{arepsilon}
ight) rac{\partial}{\partial x_j}
ight], \qquad arepsilon > \mathbf{0}.$$

Let

$$A = A(y) = (a_{ij}(y)), 1 \le i, j \le d$$

Assume

- A is real, bounded, and uniformly elliptic
- A is 1-periodic

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Elliptic Operators with Rapidly Oscillating Coefficients

Consider

$$\mathcal{L}_{\varepsilon} = -\mathrm{div} ig(\mathcal{A}(x/arepsilon)
abla ig) = -rac{\partial}{\partial x_i} \left[\mathbf{a}_{ij} \left(rac{x}{arepsilon}
ight) rac{\partial}{\partial x_j}
ight], \qquad arepsilon > \mathbf{0}.$$

Let

$$A = A(y) = (a_{ij}(y)), \ 1 \le i, j \le d$$

Assume

- A is real, bounded, and uniformly elliptic
- A is 1-periodic

Basic Assumptions

• Ellipticity: there exists $\mu > 0$ such that

 $\|\boldsymbol{A}\|_{\infty} \leq \mu^{-1}$ $\mu |\xi|^2 \leq a_{ij}(\boldsymbol{y})\xi_i\xi_j$

for any $\xi \in \mathbb{R}^d$ and a.e. $y \in \mathbb{R}^d$.

• Periodicity:

A(y+z) = A(y) for any $z \in \mathbb{Z}^d$

and for a.e. $y \in \mathbb{R}^d$.

• All results hold for second-order elliptic systems in divergence form

・ロト・西ト・西ト・西ト・日・

(ロ) (同) (三) (三) (三) (○) (○)

Basic Assumptions

• Ellipticity: there exists $\mu > 0$ such that

 $\|\boldsymbol{A}\|_{\infty} \leq \mu^{-1}$ $\mu |\xi|^2 \leq a_{ij}(\boldsymbol{y})\xi_i\xi_j$

for any $\xi \in \mathbb{R}^d$ and a.e. $y \in \mathbb{R}^d$.

• Periodicity:

A(y+z) = A(y) for any $z \in \mathbb{Z}^d$

and for a.e. $y \in \mathbb{R}^d$.

• All results hold for second-order elliptic systems in divergence form

(ロ) (同) (三) (三) (三) (○) (○)

Basic Assumptions

• Ellipticity: there exists $\mu > 0$ such that

 $\|\boldsymbol{A}\|_{\infty} \leq \mu^{-1}$ $\mu |\xi|^2 \leq a_{ij}(\boldsymbol{y})\xi_i\xi_j$

for any $\xi \in \mathbb{R}^d$ and a.e. $y \in \mathbb{R}^d$.

• Periodicity:

A(y+z) = A(y) for any $z \in \mathbb{Z}^d$

and for a.e. $y \in \mathbb{R}^d$.

 All results hold for second-order elliptic systems in divergence form

Uniform Regularity Estimates

Question: Suppose that

$$\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F \quad \text{ in } \Omega,$$

 $u_{\varepsilon} \in \text{ what space uniformly in } \varepsilon > 0?$

• Observation: If

 $u_{\varepsilon} = x_k + \varepsilon \chi_k(x/\varepsilon),$

where $\chi_k(y)$ is the corrector, then

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in \mathbb{R}^d and $\nabla u_{\varepsilon} = \nabla x_k + \nabla \chi_k(x/\varepsilon)$

 Note that ∇u_ε is bounded uniformly in ε > 0, but not uniformly Hölder continuous (unless χ_k = 0). Thus, the optimal estimates one may prove are the Lipchitz estimates, not C^{1,α} estimates.

Uniform Regularity Estimates

Question: Suppose that

$$\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F \quad \text{ in } \Omega,$$

 $u_{\varepsilon} \in \text{ what space uniformly in } \varepsilon > 0?$

Observation: If

$$u_{\varepsilon} = x_k + \varepsilon \chi_k(x/\varepsilon),$$

where $\chi_k(y)$ is the corrector, then

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in \mathbb{R}^d and $\nabla u_{\varepsilon} = \nabla x_k + \nabla \chi_k(x/\varepsilon)$

 Note that ∇u_ε is bounded uniformly in ε > 0, but not uniformly Hölder continuous (unless χ_k = 0). Thus, the optimal estimates one may prove are the Lipchitz estimates, not C^{1,α} estimates.

Uniform Regularity Estimates

Question: Suppose that

$$\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F \quad \text{ in } \Omega,$$

 $u_{\varepsilon} \in \text{ what space uniformly in } \varepsilon > 0?$

Observation: If

$$u_{\varepsilon} = x_k + \varepsilon \chi_k(x/\varepsilon),$$

where $\chi_k(y)$ is the corrector, then

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in \mathbb{R}^d and $\nabla u_{\varepsilon} = \nabla x_k + \nabla \chi_k(x/\varepsilon)$

 Note that ∇u_ε is bounded uniformly in ε > 0, but not uniformly Hölder continuous (unless χ_k = 0). Thus, the optimal estimates one may prove are the Lipchitz estimates, not C^{1,α} estimates.

(日) (日) (日) (日) (日) (日) (日)

Lipschitz Estimates: Dirichlet Condition

Theorem (M. Avellaneda - F. Lin, 1987) Assume that $A(y) = (a_{ij}^{\alpha\beta}(y))$ is elliptic, periodic, and Hölder continuous. Let Ω be $C^{1,\alpha}$. Suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F$ in Ω and $u_{\varepsilon} = f$ on $\partial \Omega$.

Then, if p > d and $\sigma > 0$,

 $\|
abla u_{\varepsilon}\|_{L^{\infty}(\Omega)} \leq C\left\{\|F\|_{L^{p}(\Omega)} + \|f\|_{C^{1,\sigma}(\partial\Omega)}
ight\},$

where C is independent of ε .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lipschitz Estimates: Neumann Conditions

Theorem (Kenig - Lin - S. (2013), S. Armstrong - S. (2016))

Assume that A = A(y) is elliptic, periodic, and Hölder continuous. Let Ω be $C^{1,\alpha}$. Suppose

 $\mathcal{L}_{arepsilon}(u_{arepsilon})=oldsymbol{F} \quad in\ \Omega \quad and \quad rac{\partial u_{arepsilon}}{\partial
u_{arepsilon}}=g \quad on\ \partial\Omega.$

Then, if p > d and $\sigma > 0$,

 $\|
abla u_{arepsilon}\|_{L^{\infty}(\Omega)}\leq C\left\{\|F\|_{L^{p}(\Omega)}+\|g\|_{\mathcal{C}^{\sigma}(\partial\Omega)}
ight\},$

where C is independent of ε .

A D F A 同 F A E F A E F A Q A

Compactness Method (M. Avellaneda - F. Lin)

Theorem (large-scale interior Lipschitz estimate) Assume A = A(y) is elliptic and periodic. Suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in $B_1 = B(0, 1)$.

Then, for $\varepsilon \leq r \leq 1$,

$$\int_{B_r} |\nabla u_{\varepsilon}|^2 \leq C \int_{B_1} |\nabla u_{\varepsilon}|^2,$$

where C depends only on d and μ .

No smoothness assumption is needed

A D F A 同 F A E F A E F A Q A

Interior Lipschitz Estimate (full scale)

Assume A = A(y) is elliptic, 1-periodic, and Hölder continuous,

 $|A(x) - A(y)| \le M |x - y|^{\lambda}$ for any $x, y \in \mathbb{R}^d$,

where M > 0 and $\lambda \in (0, 1)$. Suppose that

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1 .

Then

$$|\nabla u_{\varepsilon}(\mathbf{0})| \leq C \left(\int_{B_1} |\nabla u_{\varepsilon}|^2 \right)^{1/2},$$

where C depends only d, μ , λ and M.

(日) (日) (日) (日) (日) (日) (日)

- The case $\varepsilon \ge 1/2$ follows from classical results, since $A(x/\varepsilon)$ is uniformly Hölder continuous in $\varepsilon \ge 1/2$
- Let v(x) = ε⁻¹u_ε(εx). Then L₁(v) = 0. By the classical results,

• Since
$$|\nabla u_{\varepsilon}(\varepsilon x)| = |\nabla v(x)|$$
,

$$|\nabla u_{\varepsilon}(\mathbf{0})| \leq C \left(\int_{B_{\varepsilon}} |\nabla u_{\varepsilon}|^2 \right)^{1/2} \leq C \left(\int_{B_1} |u_{\varepsilon}|^2 \right)^{1/2},$$

where the large-scale estimate is used for the last step.

- The case $\varepsilon \ge 1/2$ follows from classical results, since $A(x/\varepsilon)$ is uniformly Hölder continuous in $\varepsilon \ge 1/2$
- Let v(x) = ε⁻¹u_ε(εx). Then L₁(v) = 0. By the classical results,

$$|\nabla v(0)| \leq C \left(\int_{B_1} |\nabla v|^2 \right)^{1/2}$$

• Since
$$|\nabla u_{\varepsilon}(\varepsilon x)| = |\nabla v(x)|$$
,

$$|\nabla u_{\varepsilon}(\mathbf{0})| \leq C \left(\int_{B_{\varepsilon}} |\nabla u_{\varepsilon}|^2 \right)^{1/2} \leq C \left(\int_{B_1} |u_{\varepsilon}|^2 \right)^{1/2},$$

where the large-scale estimate is used for the last step.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

- The case $\varepsilon \ge 1/2$ follows from classical results, since $A(x/\varepsilon)$ is uniformly Hölder continuous in $\varepsilon \ge 1/2$
- Let v(x) = ε⁻¹u_ε(εx). Then L₁(v) = 0. By the classical results,

$$|\nabla v(0)| \leq C \left(\int_{B_1} |\nabla v|^2 \right)^{1/2}$$

• Since
$$|\nabla u_{\varepsilon}(\varepsilon x)| = |\nabla v(x)|$$
,

$$|\nabla u_{\varepsilon}(\mathbf{0})| \leq C \left(\int_{B_{\varepsilon}} |\nabla u_{\varepsilon}|^2 \right)^{1/2} \leq C \left(\int_{B_1} |u_{\varepsilon}|^2 \right)^{1/2},$$

where the large-scale estimate is used for the last step.

Compactness Theorem

Let $M(\mu)$ denote the class of all $d \times d$ 1-periodic matrices that satisfy $||A||_{\infty} \leq \mu^{-1}$ and the ellipticity condition with μ .

Theorem Let u_k be a weak solution of

 $\operatorname{div}(A^k(x/\varepsilon_k)\nabla u_k)=0 \quad \text{ in } \Omega,$

where $\varepsilon_k \to 0$ and $A^k \in M(\mu)$. Suppose that $\{u_k\}$ is bounded in $H^1(\Omega)$. Then there exists a subsequence, still denoted by $\{u_k\}$, such that

 $u_k \rightarrow u_0$ weakly in $H^1(\Omega)$, div $(A^0 \nabla u_0) = 0$ in Ω ,

where A^0 is a constant and positive-definite matrix.

(日) (日) (日) (日) (日) (日) (日)

Proof of the Compactness Theorem

- Since {u_k} is bounded in H¹(Ω), there exists a subsequence, still denoted by {u_k}, such that u_k → u₀ weakly in H¹(Ω).
- By passing to a subsequence, we may assume that

 $\widehat{A^k} \to A^0$ in $\mathbb{R}^{d \times d}$

 A^0 satisfies the same ellipticity condition and $\|A^0\|_{\infty} \leq C(d, \mu).$

• Use the Div-Curl Lemma or L. Tartar's test function method to show that

 $A^k(x/\varepsilon_k) \nabla u_k \to A^0 \nabla u_0$ weakly in $L^2(\Omega)$

Proof of the Compactness Theorem

- Since {u_k} is bounded in H¹(Ω), there exists a subsequence, still denoted by {u_k}, such that u_k → u₀ weakly in H¹(Ω).
- By passing to a subsequence, we may assume that

 $\widehat{A^k} \to A^0$ in $\mathbb{R}^{d imes d}$

 A^0 satisfies the same ellipticity condition and $\|A^0\|_{\infty} \leq C(d, \mu).$

• Use the Div-Curl Lemma or L. Tartar's test function method to show that

 $A^k(x/\varepsilon_k) \nabla u_k \to A^0 \nabla u_0$ weakly in $L^2(\Omega)$

Proof of the Compactness Theorem

- Since {u_k} is bounded in H¹(Ω), there exists a subsequence, still denoted by {u_k}, such that u_k → u₀ weakly in H¹(Ω).
- By passing to a subsequence, we may assume that

 $\widehat{A^k} \to A^0$ in $\mathbb{R}^{d \times d}$

 A^0 satisfies the same ellipticity condition and $\|A^0\|_{\infty} \leq C(d, \mu).$

• Use the Div-Curl Lemma or L. Tartar's test function method to show that

 $A^k(x/\varepsilon_k)\nabla u_k \to A^0\nabla u_0$ weakly in $L^2(\Omega)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

One-Step Improvement

Lemma

Fix $\sigma \in (0, 1)$. There exist $\varepsilon_0 \in (0, 1/2)$, $\theta \in (0, 1/4)$, depending only on d, μ and σ , such that if $0 < \varepsilon < \varepsilon_0$ and

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in $B_1 = B(0, 1)$,

then

$$\begin{split} \int_{B_{\theta}} \left| u_{\varepsilon} - \int_{B_{\theta}} u_{\varepsilon} - (x + \varepsilon \chi(x/\varepsilon)) \int_{B_{\theta}} \nabla u_{\varepsilon} \right|^{2} \\ & \leq \theta^{2+2\sigma} \int_{B_{1}} |u_{\varepsilon}|^{2} \end{split}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Argue by Contradiction

- Let $\theta \in (0, 1/4)$ to be determined later. Assume that no $\varepsilon_0 > 0$ exists for this θ .
- Then there exist $\{\varepsilon_k\}, \{u_k\}, \{A^k\}$ such that

 $\varepsilon_k o \mathbf{0}, \ \mathbf{A}^k \in \mathbf{M}(\mu)$

$$div(A^{k}(x/\varepsilon_{k})\nabla u_{k}) = 0 \quad \text{ in } B_{1},$$
$$\int_{B_{1}} |u_{k}|^{2} = 1$$

$$\int_{B_{\theta}} \left| u_k - \int_{B_{\theta}} u_k - (x + \varepsilon_k \chi^k (x/\varepsilon_k)) \cdot \int_{B_{\theta}} \nabla u_k \right|^2 \ge \theta^{2+2\sigma}$$

• χ^k is the corrector for A^k

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Argue by Contradiction

- Let θ ∈ (0, 1/4) to be determined later. Assume that no ε₀ > 0 exists for this θ.
- Then there exist $\{\varepsilon_k\}, \{u_k\}, \{A^k\}$ such that

 $\varepsilon_k \to \mathbf{0}, \ \mathbf{A}^k \in \mathbf{M}(\mu)$

$$div(A^{k}(x/\varepsilon_{k})\nabla u_{k}) = 0 \quad \text{in } B_{1},$$
$$\int_{B_{1}} |u_{k}|^{2} = 1$$

$$\int_{B_{\theta}} \left| u_{k} - \int_{B_{\theta}} u_{k} - (x + \varepsilon_{k} \chi^{k} (x/\varepsilon_{k})) \cdot \int_{B_{\theta}} \nabla u_{k} \right|^{2} \geq \theta^{2+2\sigma}$$

• χ^k is the corrector for A^k

Proof (continued)

• By Caccioppoli's inequality, {*u_k*} is bounded in *H*¹(*B*_{1/2}). We may assume

 $egin{aligned} u_k &
ightarrow v & ext{weakly in } H^1(B_{1/2}) \ u_k &
ightarrow v & ext{weakly in } L^2(B_1) \end{aligned}$

- We may assume $\widehat{A^k} \to A^0$ for some A^0
- Let $k \to \infty$ to obtain

$$\begin{aligned} & \int_{B_1} |\mathbf{v}|^2 \leq \mathbf{1}, \\ & \int_{B_{\theta}} \left| \mathbf{v} - \int_{B_{\theta}} \mathbf{v} - \mathbf{x} \int_{B_{\theta}} \nabla \mathbf{v} \right|^2 \geq \theta^{2+2\alpha} \end{aligned}$$

・ロト・個ト・モト・モト ヨー のへで

Proof (continued)

By Caccioppoli's inequality, {*u_k*} is bounded in *H*¹(*B*_{1/2}).
 We may assume

$$u_k o v$$
 weakly in $H^1(B_{1/2})$
 $u_k o v$ weakly in $L^2(B_1)$

- We may assume $\widehat{A^k} \to A^0$ for some A^0
- Let $k \to \infty$ to obtain

$$\begin{aligned} & \int_{B_1} |\mathbf{v}|^2 \leq 1, \\ & \int_{B_{\theta}} \left| \mathbf{v} - \int_{B_{\theta}} \mathbf{v} - \mathbf{x} \int_{B_{\theta}} \nabla \mathbf{v} \right|^2 \geq \theta^{2+2\sigma} \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(ロ) (同) (三) (三) (三) (○) (○)

Proof (continued)

• By the compactness theorem,

 $\operatorname{div}(A^0\nabla v)=0\quad \text{ in }B_{1/2}$

• By the *C*² regularity for elliptic systems with constant coefficients,

$$egin{aligned} & eta^{2+2\sigma} \leq \int_{B_{ heta}} \left| oldsymbol{v} - \int_{B_{ heta}} oldsymbol{v} - oldsymbol{x} \int_{B_{ heta}}
abla oldsymbol{v} \left|^2 \ & \leq C heta^4 \|
abla^2 oldsymbol{v} \|_{L^{\infty}(B_{1/4})}^2 \ & \leq C heta^4 \int_{B_{1/2}} |oldsymbol{v}|^2 \ & \leq C_0 heta^4 \end{aligned}$$

For contradiction, choose θ ∈ (0, 1/4) so that

$$C_0 \theta^4 < \theta^{2+2\sigma}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Iteration

Lemma Let σ , ε_0 , θ be the same as in the last lemma. Suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1 and $0 < \varepsilon < \varepsilon_0 \theta^{k-1}$

Then there exist $E_k \in \mathbb{R}$ and $H_k \in \mathbb{R}^d$ such that

$$\begin{aligned} \int_{B_{\theta^k}} |u_{\varepsilon} - E_k - (x + \varepsilon \chi(x/\varepsilon)) \cdot H_k|^2 \\ &\leq \theta^{(2+2\sigma)k} \int_{B_1} |u_{\varepsilon}|^2 \end{aligned}$$

and

$$|H_k| \leq C \sum_{\ell=1}^k \theta^{\sigma\ell} \left(\int_{B_1} |u_{\varepsilon}|^2 \right)^{1/2}$$

Proof by Induction on k

- The case k = 1 is given by the last lemma
- Suppose the lemma holds for some k ≥ 1. To prove it for k + 1, suppose

 $\mathcal{L}_arepsilon(u_arepsilon)=0$ in B_1 and $0<arepsilon<arepsilon_0 heta^k$

Apply the last lemma to

$$\mathbf{v}(\mathbf{x}) = \mathbf{u}_{\varepsilon}(\theta^{k}\mathbf{x}) - \mathbf{E}_{k} - \left((\theta^{k}\mathbf{x} + \varepsilon\chi(\theta^{k}\mathbf{x}/\varepsilon)) \cdot \mathbf{H}_{k}\right)$$

• Note that

$$\mathcal{L}_{rac{\varepsilon}{\theta^k}}(v) = 0$$
 and $0 < rac{\varepsilon}{\theta^k} < \varepsilon_0$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof by Induction on k

- The case k = 1 is given by the last lemma
- Suppose the lemma holds for some k ≥ 1. To prove it for k + 1, suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1 and $0 < \varepsilon < \varepsilon_0 \theta^k$

Apply the last lemma to

$$\mathbf{v}(\mathbf{x}) = \mathbf{u}_{\varepsilon}(\theta^{k}\mathbf{x}) - \mathbf{E}_{k} - \left((\theta^{k}\mathbf{x} + \varepsilon\chi(\theta^{k}\mathbf{x}/\varepsilon)) \cdot \mathbf{H}_{k}\right)$$

• Note that

$$\mathcal{L}_{rac{\varepsilon}{\theta^k}}(v) = 0$$
 and $0 < rac{\varepsilon}{\theta^k} < \varepsilon_0$

Proof by Induction on k

- The case k = 1 is given by the last lemma
- Suppose the lemma holds for some k ≥ 1. To prove it for k + 1, suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1 and $0 < \varepsilon < \varepsilon_0 \theta^k$

Apply the last lemma to

$$\mathbf{v}(\mathbf{x}) = \mathbf{u}_{\varepsilon}(\mathbf{\theta}^{k}\mathbf{x}) - \mathbf{E}_{k} - \left((\mathbf{\theta}^{k}\mathbf{x} + \varepsilon\chi(\mathbf{\theta}^{k}\mathbf{x}/\varepsilon)) \cdot \mathbf{H}_{k}\right)$$

Note that

$$\mathcal{L}_{rac{\varepsilon}{ heta^k}}(v) = 0 \quad ext{and} \quad 0 < rac{\varepsilon}{ heta^k} < arepsilon_0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof (continued)

$$\begin{split} & \int_{B_{\theta}} |\mathbf{v} - \int_{B_{\theta}} \mathbf{v} - (\mathbf{x} + \varepsilon \theta^{-k} \chi(\mathbf{x} \theta^{k} / \varepsilon)) \cdot \int_{B_{\theta}} \nabla \mathbf{v}|^{2} \\ & \leq \theta^{2+2\sigma} \int_{B_{1}} |\mathbf{v}|^{2} \quad \text{by the last lemma} \\ & \leq \theta^{(2+2\sigma)(k+1)} \int_{B_{1}} |u_{\varepsilon}|^{2} \quad \text{by the induction assumption} \end{split}$$

This leads to the inequality for k + 1 with

$$H_{k+1} = H_k + \theta^{-k} \oint_{B_{\theta}} \nabla v$$

Note that

$$\left|\theta^{-k} \oint_{B_{\theta}} \nabla v\right| \leq C \theta^{-k} \left(\oint_{B_{1}} |v|^{2} \right)^{1/2} \leq C \theta^{\sigma k} \left(\oint_{B_{1}} |u_{\varepsilon}|^{2} \right)^{1/2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof (continued)

$$\begin{split} & \int_{B_{\theta}} |\mathbf{v} - \int_{B_{\theta}} \mathbf{v} - (\mathbf{x} + \varepsilon \theta^{-k} \chi(\mathbf{x} \theta^{k} / \varepsilon)) \cdot \int_{B_{\theta}} \nabla \mathbf{v}|^{2} \\ & \leq \theta^{2+2\sigma} \int_{B_{1}} |\mathbf{v}|^{2} \quad \text{by the last lemma} \\ & \leq \theta^{(2+2\sigma)(k+1)} \int_{B_{1}} |u_{\varepsilon}|^{2} \quad \text{by the induction assumption} \end{split}$$

This leads to the inequality for k + 1 with

$$H_{k+1} = H_k + \theta^{-k} \oint_{B_{\theta}} \nabla v$$

Note that

$$\left|\theta^{-k} \oint_{B_{\theta}} \nabla v\right| \leq C \theta^{-k} \left(\oint_{B_{1}} |v|^{2} \right)^{1/2} \leq C \theta^{\sigma k} \left(\oint_{B_{1}} |u_{\varepsilon}|^{2} \right)^{1/2}$$

Proof of Large-scale Lipschitz Estimate Suppose that $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1 and $\varepsilon \leq r \leq \varepsilon_0 \theta$. Choose $k \geq 1$ such that

 $\varepsilon_0 \theta^{k+1} \leq r < \varepsilon_0 \theta^k$

Then

Proof of Large-scale Lipschitz Estimate Suppose that $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1 and $\varepsilon \leq r \leq \varepsilon_0 \theta$.

Choose $k \ge 1$ such that

 $\varepsilon_0 \theta^{k+1} \leq r < \varepsilon_0 \theta^k$

Then

$$\begin{split} \int_{B_r} |\nabla u_{\varepsilon}|^2 &\leq \frac{C}{r^2} \int_{B(0,\varepsilon_0\theta^{k-1})} |u_{\varepsilon} - E_k|^2 \quad \text{by Caccioppoli} \\ &\leq \frac{C}{r^2} \int_{B(0,\varepsilon_0\theta^{k-1})} |u_{\varepsilon} - E_k - (x + \varepsilon\chi(x/\varepsilon)) \cdot H_k|^2 \\ &\quad + \frac{C}{r^2} \int_{B(0,\varepsilon_0\theta^{k-1})} |x + \varepsilon\chi(x/\varepsilon)|^2 |H_k|^2 \\ &\leq C\theta^{2k\sigma} \int_{B_1} |u_{\varepsilon}|^2 + C|H_k|^2 \\ &\leq C \int_{B_1} |u_{\varepsilon}|^2 \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Large-scale $C^{1,\alpha}$ estimates

Let $0 < \alpha < 1$. Suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in B_1

Then, for $\varepsilon \leq r \leq 1/2$,

$$\inf_{E \in \mathbb{R}^{d}, \beta \in \mathbb{R}} \frac{1}{r} \left(\oint_{B_{r}} |u_{\varepsilon} - \beta - (x + \varepsilon \chi(x/\varepsilon)) \cdot E|^{2} \right)^{1/2} \\
\leq Cr^{\alpha} \left(\oint_{B_{1}} |u_{\varepsilon}|^{2} \right)^{1/2}$$

where *C* depends only on *d*, μ , and α .

(日) (日) (日) (日) (日) (日) (日)

Interior Lipschitz Estimate

Theorem (M. Avellaneda - F. Lin, 1987) Assume A is elliptic, periodic, and Hölder continuous. Suppose

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F$ in $B(x_0, R)$.

Then

$$\begin{split} \|\nabla u_{\varepsilon}\|_{L^{\infty}(B(x_0,R/2))} \\ &\leq C\left\{\frac{1}{R}\left(\int_{B(x_0,R)}|u_{\varepsilon}|^2\right)^{1/2}+R\left(\int_{B(x_0,R)}|F|^p\right)^{1/p}\right\}, \end{split}$$

where p > d and C depends only on d, p, μ , and $\|A\|_{C^{\alpha}(\mathbb{T}^d)}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lipschitz Estimates for Dirichlet Problem

Suppose

$$\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F$$
 in Ω and $u_{\varepsilon} = f$ on $\partial \Omega$.

Then

$$\|\nabla u_{\varepsilon}\|_{L^{\infty}(\Omega)} \leq C\Big\{\|F\|_{L^{p}(\Omega)} + \|f\|_{C^{1,\sigma}(\partial\Omega)}\Big\},$$

where p > d and $\sigma > 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Dirichlet Correctors

To use the compactness method, in the place of the corrector χ_k , one introduces the Dirichlet corrector, define by

 $\mathcal{L}_{\varepsilon}(\Phi_{\varepsilon,k}) = 0$ in Ω and $\Phi_{\varepsilon,k} = x_k$ on $\partial \Omega$.

Observation

$$\mathcal{L}_{\varepsilon}(\Phi_{\varepsilon,k} - x_k) = -\mathcal{L}_{\varepsilon}(x_k) = \mathcal{L}_{\varepsilon}(\varepsilon \chi_k(x/\varepsilon))$$
 in Ω

and

$$\Phi_{\varepsilon,k} - x_k = 0$$
 on $\partial\Omega$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lipschitz Estimate for the Dirichlet Corrector

Lemma

Assume that A is elliptic, periodic, and Hölder continuous. Let Ω be $C^{1,\sigma}$. Then

 $\|\nabla \Phi_{\varepsilon,k}\|_{L^{\infty}(\Omega)} \leq C.$

Lipschitz Estimate for Dirichlet Corrector

• Step 1. Use the compactness method to establish boundary Hölder estimates

Step 2. Use the Hölder estimates to show

$$|G_{\varepsilon}(x,y)| \leq \frac{C[\delta(x)]^{\alpha}[\delta(y)]^{\beta}}{|x-y|^{d-2+\alpha+\beta}}$$

for $0 < \alpha, \beta < 1$.

• Step 3. Use the Green function estimate to show if

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in Ω and $u_{\varepsilon} = g$ on $\partial \Omega$, then for $x_0 \in \partial \Omega$ and $\varepsilon < r < 1$,

$$\left(\int_{B(x_0,r)\cap\Omega} |\nabla u_{\varepsilon}|^2\right)^{1/2} \leq C\{\|\nabla g\|_{L^{\infty}(\Omega)} + \varepsilon^{-1}\|g\|_{L^{\infty}(\Omega)}\}$$

Lipschitz Estimate for Dirichlet Corrector

- Step 1. Use the compactness method to establish boundary Hölder estimates
- Step 2. Use the Hölder estimates to show

$$|G_{\varepsilon}(x,y)| \leq rac{C[\delta(x)]^{lpha}[\delta(y)]^{eta}}{|x-y|^{d-2+lpha+eta}}$$

for $0 < \alpha, \beta < 1$.

Step 3. Use the Green function estimate to show if

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in Ω and $u_{\varepsilon} = g$ on $\partial \Omega$,

$$\left(\int_{B(x_0,r)\cap\Omega} |\nabla u_{\varepsilon}|^2\right)^{1/2} \leq C\{\|\nabla g\|_{L^{\infty}(\Omega)} + \varepsilon^{-1}\|g\|_{L^{\infty}(\Omega)}\}$$

Lipschitz Estimate for Dirichlet Corrector

- Step 1. Use the compactness method to establish boundary Hölder estimates
- Step 2. Use the Hölder estimates to show

$$|G_{\varepsilon}(x,y)| \leq rac{C[\delta(x)]^{lpha}[\delta(y)]^{eta}}{|x-y|^{d-2+lpha+eta}}$$

for $0 < \alpha, \beta < 1$.

Step 3. Use the Green function estimate to show if

 $\mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0$ in Ω and $u_{\varepsilon} = g$ on $\partial \Omega$,

then for $x_0 \in \partial \Omega$ and $\varepsilon < r < 1$,

$$\left(\int_{B(x_0,r)\cap\Omega} |\nabla u_{\varepsilon}|^2\right)^{1/2} \leq C\{\|\nabla g\|_{L^{\infty}(\Omega)} + \varepsilon^{-1}\|g\|_{L^{\infty}(\Omega)}\}$$

One-Step Improvement

There exists $\varepsilon_0 \in (0, 1)$ such that if $0 < \varepsilon < \varepsilon_0$,

 $\mathcal{L}(u_{\varepsilon}) = 0$ in D_1 and $u_{\varepsilon} = g$ on Δ_1 ,

where g(0) = 0, $\nabla_{tan} g(0) = 0$, $\|\nabla_{tan} g\|_{C^{0,2\sigma}(\Delta_1)} \leq 1$, and

$$\left(\int_{D_1} |u_{\varepsilon}|^2\right)^{1/2} \leq 1,$$

then

$$\left(\int_{D_{\theta}}\left|u_{\varepsilon}-\Phi_{\varepsilon,j}n_{j}(0)n_{i}(0)\int_{D_{\theta}}\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{2}\right)^{1/2}\leq\theta^{1+\sigma}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lipschitz Estimates for Neumann Problems

Suppose

$$\mathcal{L}_{arepsilon}(u_{arepsilon})=F \quad ext{in }\Omega \quad ext{and} \quad rac{\partial u_{arepsilon}}{\partial
u_{arepsilon}}=g \quad ext{on }\partial\Omega.$$

Then

$$\|
abla u_{arepsilon}\|_{L^{\infty}(\Omega)}\leq C\Big\{\|F\|_{L^{p}(\Omega)}+\|g\|_{\mathcal{C}^{\sigma}(\partial\Omega)}\Big\},$$

where p > d and $\sigma > 0$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Neumann Correctors

To use the compactness method for the Neumann Problem, one introduces the Neumann correctors, defined by

$$\mathcal{L}_{\varepsilon}(\Psi_{\varepsilon,k}) = 0$$
 in Ω and $\frac{\partial}{\partial \nu_{\varepsilon}}(\Psi_{\varepsilon,k}) = \frac{\partial}{\partial \nu_{0}}(x_{k})$ on $\partial \Omega$.

Lemma (Kenig - Lin - S., 2013)

Assume A is elliptic, periodic, symmetric, and Hölder continuous. Let Ω be $C^{1,\sigma}$. Then

 $\|\nabla \Psi_{\varepsilon,k}\|_{L^{\infty}(\Omega)} \leq C.$

The proof uses Rellich estimates and Hölder estimates for the Neumann functions.

Compactness Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank You