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Elliptic Operators
with Rapidly Oscillating Coefficients

Consider

L. = —div(A(x/e)V) = _aax,- {a,-,- () a] . e>0.

Let
A=Ay) = (ajy), 1<ij<d
Assume
e Ais real, bounded, and uniformly elliptic

e Ais 1-periodic
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Introduction Compactness Method

Basic Assumptions

e Ellipticity: there exists 1 > 0 such that

Al < g
plél? < aj(y)&ig

forany ¢ e R and a.e. y € RY.
e Periodicity:
Aly +z)=A(y) foranyzez?

and for a.e. y € R,



Introduction Compactness Method

Basic Assumptions

e Ellipticity: there exists 1 > 0 such that
1Aoo < 7
pléP < aj(y)&ig
forany ¢ e R and a.e. y € RY.
e Periodicity:
Aly +z)=A(y) foranyzez?
and for a.e. y € R,

¢ All results hold for second-order elliptic systems in
divergence form
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Uniform Regularity Estimates

e Question: Suppose that
L.(u)=F inQ,

u. € what space uniformly in ¢ > 07

e Observation: If
U = Xk + exk(X/e),

where «(y) is the corrector, then
Lo(u)=0 inRY and Vu. = Vxx+ Vyk(x/e)

¢ Note that Vu. is bounded uniformly in £ > 0, but not
uniformly Hélder continuous (unless xx = 0). Thus, the
optimal estimates one may prove are the Lipchitz
estimates, not C' estimates.
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Lipschitz Estimates: Dirichlet Condition

Theorem (M. Avellaneda - F. Lin, 1987)

Assume that A(y) = (aj}‘ﬁ (v)) is elliptic, periodic, and Hélder
continuous. LetQ be C'. Suppose

L(u)=F inQ and u.=f onod.
Then, ifp > d and o > 0,
IVt i) < € {IFllieey + I1flormiomy }

where C is independent of .
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Lipschitz Estimates: Neumann Conditions

Theorem (Kenig - Lin - S. (2013), S. Armstrong - S.
(2016))

Assume that A = A(y) is elliptic, periodic, and Hélder
continuous. Let Q be C*. Suppose

ou.

L(u)=F inQ and B,

=g onoA.
Then, ifp > d and o > 0,

IVl < C{IFllioey + lgllcoqom) -

where C is independent of .
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Compactness Method
(M. Avellaneda - F. Lin)

Theorem (large-scale interior Lipschitz estimate)
Assume A = A(y) is elliptic and periodic. Suppose

L.(u)=0 inBj=B(0,1).

Then, fore <r <1,

][ Vw2 < c][ Vw2,
B, B,

where C depends only on d and .

¢ No smoothness assumption is needed
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Interior Lipschitz Estimate (full scale)

Assume A = A(y) is elliptic, 1-periodic, and Hélder continuous,
A(x) = A(y)| < Mlx — y|*  forany x.y € R,
where M > 0 and X € (0, 1). Suppose that

L-(u)=0 inB;.

1/2
|VUE(O)|§C<][ ywﬁ) ,
B;

where C depends only d, i, A and M.

Then
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e The case ¢ > 1/2 follows from classical results, since
A(x/¢e) is uniformly Hélder continuous ine > 1/2
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e The case ¢ > 1/2 follows from classical results, since
A(x/¢e) is uniformly Hélder continuous ine > 1/2

o Let v(x) = e 'u.(ex). Then £4(v) = 0. By the classical

results,
1/2
|IVv(0)|<C <][ |VV|2>
B;
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e The case ¢ > 1/2 follows from classical results, since
A(x/¢e) is uniformly Hélder continuous ine > 1/2

o Let v(x) = e 'u.(ex). Then £4(v) = 0. By the classical

results,
1/2
|IVv(0)|<C <][ |VV|2>
B;

e Since |Vu.(ex)| = |Vv(x)|,

1/2 1/2
|Vus(0>|<c<]‘ \Vuﬁ) <c<7[ |u€2) ,
B. B,

where the large-scale estimate is used for the last step.
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Compactness Theorem

Let M(n) denote the class of all d x d 1-periodic matrices that
satisfy ||Allso < 1~ and the ellipticity condition with .

Theorem
Let u, be a weak solution of
div(A*(x/ex)Vuk) =0 inQ,

where e — 0 and AX € M(p). Suppose that {ux} is bounded in
H'(Q). Then there exists a subsequence, still denoted by {uy},

such that
Uk — Ug  weakly in H'(Q),

div(A’Vup) =0 inQ,

where A° is a constant and positive-definite matrix.
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Proof of the Compactness Theorem

o Since {uk} is bounded in H'(Q), there exists a
subsequence, still denoted by {uk}, such that ux — up
weakly in H'(Q).
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Proof of the Compactness Theorem

o Since {uk} is bounded in H'(Q), there exists a
subsequence, still denoted by {uk}, such that ux — up
weakly in H'(Q).

e By passing to a subsequence, we may assume that
Ak A inRI*Y

A satisfies the same ellipticity condition and
1A% < C(d, ).
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Proof of the Compactness Theorem

Since {ux} is bounded in H'(Q), there exists a
subsequence, still denoted by {uk}, such that ux — up
weakly in H'(Q).

By passing to a subsequence, we may assume that
Ak A inRI*Y

A satisfies the same ellipticity condition and
1A% < C(d, ).

Use the Div-Curl Lemma or L. Tartar’s test function method
to show that

A (x /e )Vug — A°Vuy  weakly in L2(Q)
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One-Step Improvement

Lemma
Fix o € (0,1). There existeg € (0,1/2), 6 € (0,1/4), depending
onlyond, u and o, such that if0 < ¢ < g9 and

L.(u) =0 inBj=B(0,1),

then

u. — ]{Bg U- — (X +ex(x/e)) ][ Vu. ?

By By

< 02+20 ’U€ |2
B;
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Argue by Contradiction

e Letd € (0,1/4) to be determined later. Assume that no
gp > 0 exists for this 6.
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Argue by Contradiction

e Letd € (0,1/4) to be determined later. Assume that no
gp > 0 exists for this 6.

o Then there exist {ex}, {ux}, {A¥} such that
ek — 0, Afe M(p)

div(A%(x/ek)Vuk) =0 in By,

f ul? =1
B;

Uk —7{3 Uy — (X + Ekxk(X/gk)) ]{3 V uy

‘2 > g2+20

A

 xXis the corrector for A¥
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Proof (continued)
e By Caccioppoli’s inequality, {uk} is bounded in H1(B1/2).
We may assume

uc — v weakly in H'(By 2)
uk — v weakly in L2(By)
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Proof (continued)

e By Caccioppoli’s inequality, {uk} is bounded in H1(B1/2).
We may assume
uc — v weakly in H'(By 2)

uk — v weakly in L2(By)

o We may assume Ak — A° for some A°
e Let k — oo to obtain

Fve<t,
B;
2
][ v—][ v—x][ Vv’ > g2+2o
By By By
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Proof (continued)
e By the compactness theorem,

div(A°Vv) =0 in By

By the C? regularity for elliptic systems with constant

coefficients,
2
vV — ][ vV — x][ Vv‘
By By

By

< CQ4HV2VHfoo(B1/4)

gce‘*][ V]2
By )2

< Cob*

e For contradiction, choose 6 € (0,1/4) so that

0064 < 92+20
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lteration

Lemma
Let o, eq, 0 be the same as in the last lemma. Suppose

L.(u)=0 inB; and 0<e< e’
Then there exist Ex € R and Hj € R? such that
F. lu= B (e extor) - Ml

ok
S9(2+2a)/<][ M
By

and

K 1/2
Hl<cy ot (f )
1

=1
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Proof by Induction on k

e The case k = 1 is given by the last lemma
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Proof by Induction on k

e The case k = 1 is given by the last lemma

e Suppose the lemma holds for some k > 1. To prove it for
k + 1, suppose

Lo(u)=0 inB; and 0<e<eyf¥
Apply the last lemma to

v(x) = U:(0"x) — Ex — ((6*x +ex(6*x/e)) - Hx



Introduction Compactness Method

Proof by Induction on k

e The case k = 1 is given by the last lemma

e Suppose the lemma holds for some k > 1. To prove it for
k + 1, suppose

Lo(u)=0 inB; and 0<e<eyf¥
Apply the last lemma to
V(X) = U(6%x) — Ex — ((6"x + ex(6"x/)) - Hy
e Note that

L-(V)=0 and 0< _

ok ok < €0
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Compactness Method

Proof (continued)
][ \v_][ V= (x+ 0 x (x0¥ <) f Vvl
B@ BG Bg
< 92+2"][ lv|? by the last lemma
B

< g@+20)(k+1) £ 1y 12 by the induction assumption
B;
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Proof (continued)

]{39 v — ]{39 v — (X + 0Ky (x0%/¢)) _fBe Vv‘z

< 92+2"][ lv|2 by the last lemma
By

< g+2o)(k+1) £ |y |2 by the induction assumption
B;

This leads to the inequality for k + 1 with

Hir1 = Hx + ok Vv
By

Note that

1/2 1/2
jek][ vv| < cok <][ ]v]2> < co (][ \u52>
By B, B4
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Proof of Large-scale Lipschitz Estimate
Suppose that £.(u:) =0in By and e < r < gq6.
Choose k > 1 such that

609k+1 <r< 600k
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Proof of Large-scale Lipschitz Estimate
Suppose that £.(u:) =0in By and e < r < gq6.
Choose k > 1 such that

609k+1 <r< 600k

Then

][ IVu.|? < 92 lu. — Ex|> by Caccioppoli
B = JB(0,eq0k—1)

C
< 2][ U — B — (x + ex(x/2)) - Fh?
= JB(0,e00k—1)
C
+— X + ex(x /)| Hk|?

r? JB(0.co0k—)

< CeZka][ |U5|2+C‘Hk|2
B;

<Co |uf?
B;
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Large-scale C'* estimates

Let 0 < a < 1. Suppose
Le(u:)=0 in By

Then, fore <r <1/2,

1/2
inf 1( g |ug—,6—(X+€x(X/€))'E!2>

EeRIBeR I

1/2
< ore (7[ |u5|2>
B;

where C depends only on d, i, and a.
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Interior Lipschitz Estimate

Theorem (M. Avellaneda - F. Lin, 1987)
Assume A is elliptic, periodic, and Hblder continuous. Suppose

L.(u:)=F inB(xo,R).
Then

||VU8HL°O(B(XO,F?/2))

1 1/2 1/,0
< c{ (f |usr2> +R<f rF|P> }
R\ JB(x,R) B(x0.R)

where p > d and C depends only on d, p, 1, and || Al| ca (1a)-
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Lipschitz Estimates for Dirichlet Problem

Suppose
L(u)=F inQ and u.=f onoQ.

Then
IVt @) < C{IF @) + I fllcrinqony }-

where p > d and o > 0.
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Dirichlet Correctors

To use the compactness method, in the place of the corrector
Xk, one introduces the Dirichlet corrector, define by

Lo(P-x)=0 inQ and & ,=xc ondQ.

Observation

Lo(Pep — Xk) = —Lo(X) = Le(exk(x/e))  inQ

and
(D&k —x,=0 0noQ
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Lipschitz Estimate for the Dirichlet Corrector

Lemma
Assume that A is elliptic, periodic, and Hélder continuous.
LetQ be C''?. Then

VO, kll () < C.
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Lipschitz Estimate for Dirichlet Corrector

e Step 1. Use the compactness method to establish
boundary Hdélder estimates



Introduction Compactness Method

Lipschitz Estimate for Dirichlet Corrector

e Step 1. Use the compactness method to establish
boundary Hdélder estimates

e Step 2. Use the Holder estimates to show

ClM*O()I°

|G=(x,y)| < ‘X_y|d—2+a+ﬁ

forO0<a,8 < 1.
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Lipschitz Estimate for Dirichlet Corrector

e Step 1. Use the compactness method to establish
boundary Hdélder estimates

e Step 2. Use the Holder estimates to show

ClM*O()I°

|G=(x,y)| < ‘X_y|d—2+a+ﬁ

forO0<a,8 < 1.

e Step 3. Use the Green function estimate to show if

L(u)=0 inQ and u.=g onoQ,
thenfor xp € 0N ande <r <1,

1/2
Vu.? < CIIVallseroy + e N
(ﬁ(xo,,)m' ') {IVlli=() + eIl }
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One-Step Improvement

There exists g € (0,1) such thatif 0 < ¢ < &,
L(u:)=0 inDy and u.=g onAy,

where g(0) = 0, Viang(0) = 0, |[Viangl|co20(a,) < 1, and

then
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Lipschitz Estimates for Neumann Problems

Suppose

ou.

Lo(u)=F inQ and o,

=g ononQ.

Then
VU oo (@) < C{HFHLP(Q) + HgHCU(BQ)},

where p > dand o > 0.
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Neumann Correctors

To use the compactness method for the Neumann Problem,
one introduces the Neumann correctors, defined by
L:(V.k)=0 inQ and i(\IJ K) = i(xk) on 09.
: © 8u€ © 81/0

Lemma (Kenig - Lin - S., 2013)
Assume A is elliptic, periodic, symmetric, and Hélder
continuous. LetQ be C'?. Then

[VV, ko) < C.

The proof uses Rellich estimates and Hoélder estimates for the
Neumann functions.
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