

Ist ... Le (2)... N-dim. lebesque medere Energetnely, utst is the "best way" to arrouge tress splites?

Goal: Show •
$$U_{\varepsilon} \rightarrow u_{0}$$

• $u_{0} \in d_{0}, i_{1}^{2}$
• $u_{0} \equiv 2 \text{ special}^{n}$
 $T_{\varepsilon}(u):= \pm F_{\varepsilon}(u) = \int_{\Sigma} \left(\pm W(u(x_{1}) + \varepsilon |\nabla u(x_{0})|^{2}) dx \sim O(4) \right)$
 $u_{\varepsilon} = 5hill \text{ minimulting} T_{\varepsilon} !$
Mort Gartin Quipohaved: Write $u_{0} = u_{A_{0}}$, for some Aoch
usiter 1 Able m(R)
A. minimulties $u_{0} = u_{A_{0}}$, for some Aoch
 $u_{0} = 1 \text{ Able} = m(R)$
 $A_{0} = \operatorname{Per}(Au = U_{1}, \Omega)$ (perimeter inside Ω)
 $= \operatorname{Per}(Au = U_{1}, \Omega)$ (perimeter inside Ω)

Claim: Assume squeure
$$T_{\varepsilon}: \Omega \to \mathbb{R}$$
 with
• $\sup_{\varepsilon \in \varepsilon} \frac{1}{\varepsilon} \frac{1}{\varepsilon} \left(1 + \varepsilon \right) = \int_{\varepsilon} \left(\frac{1}{\varepsilon} W(1 + \varepsilon) + \varepsilon (1 + \varepsilon) \right) dx \int_{\varepsilon} \frac{1}{\varepsilon} (1 + \varepsilon) dx$
• $\int_{\varepsilon} \left(\frac{1}{\varepsilon} + \varepsilon \right) \frac{1}{\varepsilon} \frac{1}{\varepsilon} \left(\frac{1}{\varepsilon} + \varepsilon (1 + \varepsilon) \right) dx$
• $V_{\varepsilon}(x) \to V(x)$ pointwike a.e.
There $V(x) \in d_{0,1} + \varepsilon$

Since
$$\sup_{\varepsilon} \frac{1}{\varepsilon} \int W(\sigma_{\varepsilon}(x)) dx \leq H \subset tib$$

 $T \qquad (multiply -through by ε ,
 $\lim_{\varepsilon \to 0^+} W(\sigma_{\varepsilon}(x)) dx = 0.$ (*)$

$$\int f(x) dx \leq \lim \int f_{\varepsilon}(x) dx.$$

W entimology
$$V_{2}(x) \rightarrow V(x)$$
 a.e.
 $V_{W}(v_{2}(x)) \rightarrow V(v(x))$ a.e.
Appleg Febru's Lemmer to $(x): f_{2}(x):= V(V(x))$
 $f(x):= V(V(x))$
 T_{W}
 $\int_{\Omega} W(V(x)) dx \leq \underline{\lim} \int_{\Omega} W(v_{2}(x) dx = 0)$
 $f(x):= v_{1}$
 $\int_{\Omega} W(v(x)) = 0$ a.e.
 $\int_{\Omega} W(v(x) = 0$ a.e.