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1. Introduction and main results

Let (akl)n×n : Rn → Cn×n be a matrix of measurable complex valued functions that is uniformly
elliptic and bounded. In particular, we assume that there exists a constant Λ > 0 such that

(1.1)


Λ|ξ|2 ≤ Re

n∑
k,l=1

akl(x)ξkξl, ∀ ξ = (ξ1, ξ2, . . . , ξk) ∈ Rn and for a.e. x ∈ Rn,

|akl(x)| ≤ Λ−1 and Im akl(x) = Im alk(x) for all k, l = {1, 2, . . . , n} and for a.e. x ∈ Rn.

Also let c : Rn → C be a given measurable complex valued potential function. Motivated by the
study of Lp-diffusion phenomena for dissipative wave equations in [30] and by the study of other
related topics such as [1–3,5,7,9,11,13–18,21–23,34], we are interested in studying the uniqueness
solvability and regularity estimates in W2,p(Rn,C) for solutions u of the equations

(1.2) Lλu(x) = f (x) in Rn,

where f : Rn → C is a given measurable function, and Lλ is the generalized Schrödinger operator in
non-divergence form with measurable coefficients defined by

Lλu(x) = −

n∑
k,l=1

akl(x)Dklu(x) + λc(x)u(x)

in which λ > 0 is a scaling parameter. Throughout the paper, for each k, l = 1, 2, . . . , n, we denote
Dk = ∂xk the first order partial derivative operator with respect to the kth -variable and Dkl = ∂xk xl the
second order partial derivative operator with respect to the kth-variable and lth -variable.
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In this paper, we also investigate the uniqueness solvability and regularity in W1,p(Rn,C) for the
generalized divergence form Schrödinger equations

(1.3) Qλu(x) = λ f (x) + div[g(x)] in Rn

for some given measurable function f : Rn → C and some given measurable vector field g : Rn →

Cn, where Qλ is the generalized Schrödinger operator in divergence form with measurable coeffi-
cients defined by

Qλu(x) = −

n∑
k,l=1

Dl[alk(x)Dku(x)] + λc(x)u(x).

Different from other available work in the theory of W2,p and W1,p-regularity estimates such as
[6,9,10,21–25] and also motivated by [2,13–15,17,18,30], this paper investigates the case in which
the potential c is a measurable complex valued function. Throughout the paper, we write c(x) =

c1(x) + ic2(x) where c1, c2 : Rn → R are measurable functions. We assume that

(1.4) c1(x) ≥ 0, c1(x) + c2(x) ≥ α0, and c1(x) + |c2(x)| ≤ Λ−1α0 for a.e. x ∈ Rn,

and for a fixed number α0 > 0.
To state the results, let us introduce some notation. For a measurable function f defined in Rn and

for any x0 ∈ R
n, ρ > 0, the mean of f in the ball Bρ(x0) is written as

(1.5) ( f )Bρ(x0) =

?
Bρ(x0)

f (x)dx =
1

|Bρ(x0)|

∫
Bρ(x0)

f (x)dx,

and the mean oscillation of f in Bρ(x0) is denoted by

f #
ρ (x0) =

?
Bρ(x0)

| f (x) − ( f )Bρ(x0)|dx,

where Bρ(x0) is the ball in Rn with radius ρ and centered at x0. In particular, with the matrix
(akl(x))n×n and the potential function c(x) = c1(x) + ic2(x), we write

a#
ρ(x0) = max

k,l=1,2,··· ,n
a#

kl,ρ(x0), c#
ρ(x0) = max

k=1,2
c#

k,ρ(x0).

Our first main result is the following existence, uniqueness and regularity estimate for strong solu-
tions of the non-divergence form Schrödinger equation (1.2).

Theorem 1.1. Let Λ > 0, α0 > 0,R0 > 0, and p ∈ (1,∞) be given numbers. Then there exist a
sufficiently small number δ = δ(Λ, n, p) > 0 and a sufficiently large number N0 = N0(Λ, p, n) ≥ 1
such that the following statement holds true. Assume that (1.1) and (1.4) hold, and assume that

(1.6) sup
x∈Rn

sup
ρ∈(0,R0)

a#
ρ(x) ≤ δ and sup

x∈Rn
sup

ρ∈(0,R0)
c#
ρ(x) ≤ δα0.

Then, for every f ∈ Lp(Rn,C) and λ > N0
α0R2

0
, there exists a unique strong solution u ∈ W2,p(Rn,C) of

(1.2). Moreover, it holds that

(1.7)
∥∥∥D2u

∥∥∥
Lp(Rn) +

√
λα0 ‖Du‖Lp(Rn) + λα0 ‖u‖Lp(Rn) ≤ C(Λ, p, n) ‖ f ‖Lp(Rn) .

Similarly, we also prove the following result on existence, uniqueness and regularity estimates for
weak solutions of the divergence form Schrödinger equation (1.3).
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Theorem 1.2. Let Λ > 0, α0 > 0,R0 > 0, and p ∈ (1,∞) be fixed numbers. Then there exist a
sufficiently small number δ = δ(Λ, n, p) > 0 and a sufficiently large number N0 = N0(Λ, p, n) ≥ 1
such that the following statement holds true. Suppose that (1.1) and (1.4) hold and suppose also that

(1.8) sup
x∈Rn

sup
ρ∈(0,R0)

a#
ρ(x) ≤ δ and sup

x∈Rn
sup

ρ∈(0,R0)
c#
ρ(x) ≤ δα0.

Then, for every f ∈ Lp(Rn,C), g ∈ Lp(Rn,C)n, and for λ > N0
α0R2

0
, there exists a unique weak solution

u ∈ W1,p(Rn,C) of (1.3). Moreover, it holds that

(1.9) ‖Du‖Lp(Rn) +
√
λα0 ‖u‖Lp(Rn) ≤ C(Λ, p, n)

√ λ

α0
‖ f ‖Lp(Rn) + ‖g‖Lp(Rn)

 .
A few remarks regarding Theorems 1.1-1.2 are worth pointing out. Note that the novelty in the

estimates (1.7) and (1.9) is that they do not contain any norms of the solutions on the right hand sides.
This fact together with p > 1 imply that we can control slowly decaying solutions as |x| → ∞. More
importantly, this kind of estimates is useful in applications such as in [30] regarding the Lp-diffusion
phenomena in dissipative wave equations. When the potential c(x) = 1 ± iε with some sufficiently
small ε > 0, we can take α0 = 1

2 and (1.4) still holds. In this case, Theorems 1.1-1.2 can be
considered as limiting absorption principle for Schrödinger operators with measurable coefficients,
which are new. As such, Theorems 1.1-1.2 could be useful in other areas such as dispersive equations
with measurable coefficients. Regarding this, ones may also see Theorem 2.2 and Theorem 3.1 for
the special case of Theorem 1.1 and Theorem 1.2 which deal with constant coefficient equations.
Note also that our Theorems 1.1-1.2 are still valid when taking c1 = 0, i.e. the potential c is purely
imaginary. In comparison with the known work, we would like to note that similar estimates as (1.7)
and (1.9) are established in many papers for both linear and nonlinear equations, see [6, 8–10, 20–
22, 24–26, 31, 32]. However, in the available mentioned work, the potentials are assumed to be real
valued functions. Moreover, in [6,8,21,22,24–27], to obtain the estimates (1.7) and (1.9), the purely
real potentials are assumed to be sufficiently large to insure that eigenvalues of the PDE operatorsLλ
and Qλ are positive. In our case, due to the non-vanishing of the imaginary parts of the potentials, we
can take the real parts of the potentials to be identical to zero. To the best of our knowledge, the case
with complex valued potentials have not been investigated before and our estimates (1.7) and (1.9)
are new. Also, we would like to note that the estimates (1.7) and (1.9) imply the resolvent estimates of
the considered Schrödinger operators, which may have some interesting applications, see [16–18,34].
Moreover, note that both of the equations (1.2) and (1.3) can be rewritten into systems of equations
by taking the real and imaginary parts of the equations. Therefore, in some sense, Theorems 1.1-1.2
can be considered as an extension of the results in [6, 8–10, 20–22, 24–26, 31, 32] for systems of
equations.

Next, we remark that the first smallness condition in both of (1.6) and (1.8) on the BMO-semi
norm (bounded mean oscillation) of the coefficient matrix (akl)n×n is necessary. This is known in [26]
by a well-known example, see also [12] for a recent development and discussion. However, in our
case, it is not clear that if the same kind of the smallness condition on the mean oscillation of the
potential c is necessary. Nevertheless, it could be possible to relax these smallness conditions in
the BMO-semi norms and replace them by the corresponding smallness conditions in the partial
BMO-semi norms as in [9, 23]. However, we do not pursue this direction to avoid more technical
complications. Similarly, it could be also possible to improve Theorems 1.1-1.2 to more general
functional settings such as weighted spaces, mixed-norm spaces, and Lorentz spaces as in [10,11,32].

We also would like to mention that the scaling parameter λ plays an essential role in the analysis
of our paper. Essentially, both of the estimates (1.7) and (1.9) and both of the classes of the equations
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(1.2) and (1.3) are invariant under the natural scaling and dilation

(1.10) u(x) 7→
u(x)
γ
, and u(x) 7→ uγ(x) := u(γx), with γ > 0.

In particular, it is not too hard to check that if u is a solution of (1.2), then uγ defined above with
γ > 0 is also a solution of the equation

−

n∑
k,l=1

aγkl(x)Dkluγ(x) + λcγ(x)uγ(x) = fγ(x) in Rn,

where
aγkl(x) = akl(γx), cγ(x) = γ2c(γx), and fγ(x) = γ2 f (γx).

Note that in this case, the constant α0 in (1.4), (1.6), and (1.7) is replaced by α0γ
2 and the constant

R0 is replaced by R0
γ . As a result, the constant N0

α0R2
0

in Theorem 1.1 is invariant. Moreover, the
estimate (1.7) in Theorem 1.1 is also invariant with respect the scalings and dilations (1.10). Similar
homogeneous properties also hold for the class of divergence form equations (1.3) and Theorem 1.2.
Ones may find in the recent work [20, 28, 29, 31, 32] further applications and developments of the
scaling parameter technique in studying regularity theory in Sobolev spaces for solutions of nonlinear
elliptic and parabolic equations.

We apply the perturbation method using equations with freezing coefficients to prove our results,
see [3–6, 8–10, 20–23, 28, 29, 31–33]. We follow the method introduced in [21], which uses the
Fefferman-Stein sharp functions. See also [8–10,22,23] for further implementation and development
of the method. However, unlike the work [3–6,9,10,21–23] that freeze the principle coefficient matrix
(akl)n×n and treat the lower order terms as forcing terms, we freeze the coefficient matrix (akl)n×n and
also the potentials as well to take advantage of the non-zero imaginary parts of the potentials. In
this way, we are not only able to gain the control of the Lp-norms of the derivatives of solutions,
but also gain the control of the Lp-norms of the solutions even when the real parts of the potential
are identically zero. To achieve this, the role of the scaling parameter λ becomes essential in our
approach, see the recent work [20,28,29,31,32] for further intuition and applications. To implement
the above perturbation technique, we derive several interesting estimates utilizing the structure of the
equations with complex potentials.

The paper is organized as follows. In the next section, Section 2, we prove Theorem 1.1. Section
3 is devoted to the proof of Theorem 1.2.

2. Schrödinger equations in non-divergence form

This section proves Theorem 1.1. Our method is based on the perturbation approach using equa-
tions with frozen coefficients. See [3–6,8–10,20,20–23,28,29,31–33], for instance. However, unlike
in [3, 6, 8–10, 20, 20–23, 33] which consider lower order terms as forcing terms and therefore move
them to the right hand sides of the equations, in our approach, we take advantage of the imaginary
part of the potentials. Therefore, we freeze the spatial variable in our potentials and establish several
estimates for equations with complex constant coefficients. We start the section with the following
simple lemma that is useful in our paper.

Lemma 2.1. Let (akl)n×n be a matrix such that Im akl = Im alk for all k, l = 1, 2, . . . , n. Assume that
the ellipticity condition in (1.1) holds. Then

Re
n∑

k,l=1

aklξkξ̄l ≥ Λ|ξ|2,
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for all ξ = (ξ1, ξ2, . . . , ξn) ∈ Cn.

Proof. Let us denote
akl = a1,kl + ia2,kl and ξk = ξ1,k + iξ2,k,

where a j,kl, ξ j,l are in Rn for k, l = 1, 2, . . . , n and for j = 1, 2. Then, we see that
n∑

k,l=1

aklξkξ̄l =

n∑
k,l=1

akl(ξ1,kξ1,l + ξ2,kξ2,l) + i
n∑

k,l=1

akl(ξ2,kξ1,l − ξ1,kξ2,l).

From this it follows that

Re
n∑

k,l=1

aklξkξ̄l =

n∑
k,l=1

a1,kl(ξ1,kξ1,l + ξ2,kξ2,l) −
n∑

k,l=1

a2,kl(ξ2,kξ1,l − ξ1,kξ2,l)

As Im akl = Im alk, we see that a2,kl = a2,lk for all k, l = 1, 2, . . . , n and consequently,
n∑

k,l=1

a2,kl(ξ2,kξ1,l − ξ1,kξ2,l) = 0.

Then, it follows from (1.1) that

Re
n∑

k,l=1

aklξkξ̄l =

n∑
k,l=1

a1,kl(ξ1,kξ1,l + ξ2,kξ2,l) = Re
n∑

k,l=1

aklξ1,kξ1,l + Re
n∑

k,l=1

aklξ2,kξ2,l

≥ Λ
(
|ξ,1|

2 + |ξ,2|
2
)

= Λ|ξ|2.

where we have used the notation ξ,l = (ξl,1, ξl,2, . . . , ξl,n) ∈ Rn with l = 1, 2. The assertion is then
proved. �

2.1. Equations with constant coefficients. This section derives important estimates for solutions
of second order elliptic equations with complex constant coefficients. We consider the following
equation

(2.1) −

n∑
j,l=1

a jlD jlu + λ[c1 + ic2]u = f in Rn,

where λ > 0 is a scaling parameter constant, f : Rn → C is a given measurable function and
u : Rn → C is an unknown solution. Moreover, (a jl)n×n is a given n × n matrix of complex numbers,
and c1 ∈ R, c2 ∈ R are given numbers satisfying

(2.2) c1 ≥ 0, c1 + c2 ≥ α0, and c1 + |c2| ≤ Λ−1α0.

The following theorem is a special case of Theorem 1.1 in which the coefficients are constants.

Theorem 2.2. Let Λ > 0, α0 > 0, p ∈ (1,∞), and let (a jl)n×n be a matrix of complex numbers
satisfying (1.1). Then, for every real numbers c1, c2 satisfying (2.2) and for λ > 0, f ∈ Lp(Rn,C),
there exists a unique strong solution u ∈ W2,p(Rn,C) of (2.1). Moreover,

(2.3)
∥∥∥D2u

∥∥∥
Lp(Rn) +

√
λα0 ‖Du‖Lp(Rn) + λα0 ‖u‖Lp(Rn) ≤ C ‖ f ‖Lp(Rn)

where C = C(Λ, p, n).

Theorem 2.2 plays an important role in the proof of our Theorem 1.1. Even though Theorem 2.2
is for equations with constant coefficients, it is new, and we prove it. The first step in the proof of
Theorem 2.2 is to prove it for p = 2. This step is carried out in the following lemma.



6 T. PHAN, G. TODOROVA, AND B. YORDANOV

Lemma 2.3. Let Λ > 0, α0 > 0 and assume that (akl)n×n is a matrix of complex numbers satisfying
(1.1). Also, let c1, c2 be real numbers satisfying (2.2) . Then, for every λ > 0 and for f ∈ L2(Rn,C),
there exists a unique solution u ∈ W2,2(Rn,C) of (2.1). Moreover,∥∥∥D2u(x)

∥∥∥
L2(Rn) +

√
λα0 ‖Du‖L2(Rn) + λα0 ‖u‖L2(Rn) ≤ C(Λ) ‖ f ‖L2(Rn) .

Proof. Observe also that since C∞0 (Rn,C) is dense in W2,2(Rn,C), we can find a sequence of functions
uk ∈ C∞0 (Rn,C) such that uk → u in W2,2(Rn,C). Moreover, uk is a solution of

−

n∑
j,l=1

a jlD jluk + λ[c1 + ic2]uk = −

n∑
j,l=1

a jlD jl(u − uk) + λ[c1 + ic2](uk − u) + f , in Rn.

As the right hand side of the above equation converges to f in L2(Rn,C), it is sufficient to prove the
estimate in the lemma with the assumption that u ∈ C∞0 (Rn,C).

We use standard energy estimate taking advantage of the fact that c1 + |c2| ≥ α0. By multiplying
the equation (2.1) with λū, and using the integration by parts, we obtain

(2.4) λ

n∑
j,l=1

∫
Rn

aklDluDkūdx + λ2[c1 + ic2]
∫
Rn
|u|2dx = λ

∫
Rn

f (x)ū(x)dx.

From this and by taking the real part of (2.4) and using Lemma 2.1, the boundedness of c1, c2 in (1.4)
and the Young’s inequality, we see that

(2.5) λα0

∫
Rn
|Du(x)|2dx ≤ C(Λ)

[
λ2α2

0

∫
Rn
|u(x)|2dx +

∫
Rn
| f (x)|2dx

]
.

Now, let ε > 0 be sufficiently small which will be determined. By taking the real part of (2.4) and
using Lemma 2.1, we see that

λΛ

∫
Rn
|Du(x)|2dx + λ2c1

∫
Rn
|u(x)|2dx ≤ λ

∫
Rn
| f (x)||u(x)|dx

≤
ελ2

2

∫
Rn
|u(x)|2dx +

1
2ε

∫
Rn
| f (x)|2dx.

This estimate and since c1 ≥ 0, we particularly infer that

λ

∫
Rn
|Du(x)|2dx ≤ C(Λ)

[
ελ2

∫
Rn
|u(x)|2dx +

1
ε

∫
Rn
| f (x)|2dx

]
, and

λ2c1

∫
Rn
|u(x)|2dx ≤

ελ2

2

∫
Rn
|u(x)|2dx +

1
2ε

∫
Rn
| f (x)|2dx.

(2.6)

On the other hand, by taking the imaginary part of (2.4) and by using boundedness condition of the
coefficients akl in (1.1) and Young’s inequality, we obtain

λ2c2

∫
Rn
|u|2dx ≤ λΛ−1

∫
Rn
|∇u|2dx + λ

∫
Rn
| f (x)||u(x)|dx

≤ λΛ−1
∫
Rn
|∇u|2dx +

ελ2

2

∫
Rn
|u(x)|2dx +

1
2ε

∫
Rn
| f (x)|2dx

≤ C(Λ)
[
ελ2

∫
Rn
|u(x)|2dx +

1
ε

∫
Rn
| f (x)|2dx

]
,

(2.7)
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where we have used the first estimate of (2.6) in the last step. Now, we combined this last estimate
with the second estimate in (2.6) to imply that

λ2(c1 + c2)
∫
Rn
|u(x)|2dx ≤ C(Λ)

[
ελ2

∫
Rn
|u(x)|2dx +

1
ε

∫
Rn
| f (x)|2dx

]
.

From this and the condition c1 + c2 ≥ α0, we can choose ε such that C(Λ)ε = α0/2 to obtain

(2.8) λ2α2
0

∫
Rn
|u|2dx ≤ C(Λ)

∫
Rn
| f (x)|2dx.

It then follows from (2.5) and (2.8) that

(2.9) λα0

∫
Rn
|Du(x)|2dx ≤ C(Λ)

∫
Rn
| f (x)|2dx.

From (2.8) and (2.9), we see that it remains to control the L2-norm of the second derivative of u.
To this end, for each k ∈ {1, 2, · · · , n}, by multiplying the equation (2.1) with Dkkū and using the
integration by parts, we see that

n∑
j,l=1

∫
Rn

a jlDl(Dku)D j(Dkū)dx = λ[c1 + ic2]
∫

Rn
|Dku(x)|2dx +

n∑
j,l=1

∫
Rn

f (x)Dkkū(x)dx.

Then, by taking the real part of the above equation, and using Lemma 2.1, (2.9), and the Young’s
inequality again, we obtain ∫

Rn
|D2u(x)|2dx ≤ C(Λ)

∫
Rn
| f (x)|2dx.

This completes the proof of the estimate in lemma.
Finally, we prove the unique solvability of (2.1) in W2,2(Rn,C). Observe that the uniqueness

follows directly from the estimate that we just proved. Also, the solvability can be obtained by the
method of continuity (see [22, Theorem 1.4.4, p. 15 and Theorem 6.4.1 p. 139]) using the solvability
of the equation

−∆u + λα0u = f in Rn.

The proof of the lemma is completed. �

Observe that Lemma 2.3 justifies Theorem 2.2 when p = 2. For general p ∈ (1,∞), the proof
of Theorem 2.2 is more involved and it requires more analytic theory and regularity estimates. Our
next lemma gives local regularity estimates for solutions of the homogeneous constant coefficient
equations.

Lemma 2.4. Let (akl)n×n and c1, c2 be as in Lemma 2.3. If u ∈ C∞(B1) is a solution of

(2.10) −

n∑
j,l=1

a jlD jlu + λ[c1 + ic2]u = 0 in B1

with some λ > 0 and q ∈ (1,∞), then

‖u‖C1(B1/2) ≤ C(Λ, q, n) ‖u‖Lq(B1) ,

where C(Λ, q, n) is independent on λ and α0.



8 T. PHAN, G. TODOROVA, AND B. YORDANOV

Proof. Let r,R ∈ (1/2, 1) with r < R. Let φ ∈ C∞0 (BR) be a real valued function satisfying φ = 1 on
Br and 0 ≤ φ ≤ 1 on BR. Multiplying the equation (2.10) with ūφ2 and using the integration by parts,
we obtain ∫

BR

φ2(x)a jlDlu(x)D jū(x)dx + λ[c1 + ic2]
∫

BR

|u(x)|2φ2(x)dx

= −2
∫

BR

a jlDlu(x)D jφ(x)[ū(x)φ(x)]dx.
(2.11)

Then, by taking the real part of the identity (2.11) and using the Lemma 2.1, and the boundedness of
the coefficient akl in (1.1), we obtain

Λ

∫
BR

|Du(x)|2φ2(x)dx + λc1

∫
BR

|u(x)|2φ2(x)dx ≤ 2Λ−1
∫

BR

|Du(x)||Dφ(x)||ū(x)|φ(x)dx.

Now, using the Hölder’s inequality and Young’s inequality for the right hand side term of the last
estimate, we obtain

(2.12) Λ

∫
Br

|Du(x)|2φ2(x)dx + λc1

∫
BR

|u(x)|2φ2(x)dx ≤ C(Λ)
∫

BR

|u(x)|2|Dφ(x)|2dx.

Similarly, by taking the imaginary part of the identity (2.11), and using the boundedness condition
in (1.1) and the Young’s inequality, we obtain

(2.13) λc2

∫
Br

|u(x)|2dx ≤ Λ−1
[∫

BR

|Du|2φ2(x)dx +

∫
BR

|u(x)|2|Dφ(x)|2dx
]
.

This estimate together with (2.12) imply that∫
Br

|Du|2dx + λα0

∫
Br

|u(x)|2dx ≤ C(Λ, n,R − r)
∫

BR

|u(x)|2dx.

Because Du is also a solution of (2.10), we also obtain∫
Br

|D2u|2dx + λα0

∫
Br

|Du(x)|2dx ≤ C(Λ, n,R − r)
∫

BR

|Du(x)|2dx.

By an iteration, we then see that

(2.14)
∫

Br

|Dk+1u|2dx + λα0

∫
Br

|Dku(x)|2dx ≤ C(Λ, n,R − r)
∫

BR

|u(x)|2dx, ∀ k ∈ N.

Then, by taking k > n/2 and using Sobolev’s imbedding, we obtain

(1 + λα0) ‖u‖L∞(Br) ≤ C(Λ, n)
(?

B2r

|u(x)|2dx
)1/2

, r ∈ (0, 1/2).

From this, and a standard iteration technique (see [19, p. 75]), we obtain

(2.15) (1 + λα0) ‖u‖L∞(B1/2) ≤ C(Λ, q, n)
(?

B1

|u(x)|qdx
)1/q

for q ∈ (1,∞). Because Dku satisfying the same equation as u, we use (2.14) and (2.15) to derive
that

(1 + λα0)
∥∥∥Dku

∥∥∥
L∞(B1/2) ≤ C(Λ, n, k)

(?
B1

|u(x)|qdx
)1/q

.

The proof of the lemma is completed. �
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Next, we state and prove a corollary of Lemma 2.4, which gives the control of the mean oscilla-
tions of the solutions and its derivatives for the equation (2.10).

Lemma 2.5. Let Λ ∈ (0, 1) and q ∈ (1,∞) be fixed. Then, there is C = C(Λ, q, n) > 0 such that
the following statement holds true. Suppose that ρ > 0 and (1.1) holds for some matrix of complex
numbers (akl)n×n. Suppose also that u ∈ C∞(Bρ) is a solution of

−

n∑
j,l=1

a jlD jlu + λ[c1 + ic2]u = 0 in Bρ,

with some λ > 0 and some real numbers c1, c2 satisfying (2.2). Then, for every κ ∈ (0, 1/2), the
following estimates hold?

Bκρ
|D2u − (D2u)Bκρ |dx ≤ κC0

?
Bρ
|D2u(x)|qdx

1/q

,?
Bκρ
|Du − (Du)Bκρ |dx ≤ κC0

?
Bρ
|Du(x)|qdx

1/q

,?
Bκρ
|u − (u)Bκρ |dx ≤ κC0

?
Bρ
|u(x)|qdx

1/q

.

Proof. By scaling, we may assume that ρ = 1. Observe that from Lemma 2.4, we see that?
Bκ
|u − (u)Bκ |dx ≤ C(Λ, q, n)κ‖Du‖L∞(B1/2) ≤ C(Λ, n)κ

(?
B1

|u(x)|qdx
)1/q

.

This proves the last estimate in the lemma. The other first two estimates in the lemma can be proved
similarly as Du,D2u are solutions of the same equations as u. The proof is then completed. �

The next lemma provides us the mean oscillation estimates of solutions and their derivatives for
the non-homogeneous equation (2.1).

Lemma 2.6. For a given constant Λ ∈ (0, 1), there exists C = C(Λ, n) such that the following
statement holds. Suppose that (akl)n×n is a matrix of complex numbers satisfying (1.1). Suppose also
that f ∈ L2(Bρ(x0),C). Then, if u ∈ W2,2(Bρ(x0),C) is a solution of

−

n∑
j,l=1

a jlD jlu + λ[c1 + ic2]u = f in Bρ(x0)

for some x0 ∈ R
n, some ρ > 0, λ > 0, and for c1, c2 satisfying (2.2), the following estimates hold?

Bκρ(x0)
|U − (U)Bκρ(x0)|dx ≤ C

κ ?
Bρ(x0)

|U(x)|2dx
1/2

+ κ−
n
2

?
Bρ(x0)

| f (x)|2dx
1/2 ,

for every κ ∈ (0, 1/4) and for U = D2u,
√
λα0Du, or λα0u.

Proof. By using the translation x 7→ x− x0, we can assume that x0 = 0. Let η ∈ C∞0 (Bρ) be a standard
cut-off function which satisfies

η = 1 on Bρ/2.

Then, let w ∈ W2,2(Rn,C) be the solution of the equation

(2.16) −

n∑
j,l=1

a jlD jlw + λ[c1 + ic2]w = η(x) f (x) in Rn.
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Note that the existence of w is obtained from Lemma 2.3. By writing W = (D2w,
√
λα0Dw, λα0w),

we can see that from Lemma 2.3 that?
Bκρ
|W |2dx

1/2

≤
C(Λ, n)

κ
n
2

?
Bρ
| f (x)|2dx

1/2

, and?
Bρ
|W |2dx

1/2

≤ C(Λ, n)
?

Bρ
| f (x)|2dx

1/2

.

(2.17)

Now, let v = u − w, we see that v is a solution of the equation

−

n∑
j,l=1

a jlD jlv + λ[c1 + ic2]v = 0 in Bρ/2.

Again, by writing V = (D2v,
√
λα0Dv, λα0v), we can apply Lemma 2.5 for V to see that

(2.18)
?

Bκρ
|V(x) − (V)Bκρ |dx ≤ κC0

?
Bρ/2
|V(x)|2dx

1/2

, ∀ κ ∈ (0, 1/4).

Recall that ?
Bκρ
|U − (U)Bκρ |dx ≤ 2

?
Bκρ
|U − c|dx, ∀c ∈ R.

Then, by taking c = (V)Bκρ , and using the triangle inequality and Hölder’s inequality, we see that?
Bκρ
|U − (U)Bκρ |dx ≤ 2

?
Bκρ
|U − (V)Bκρ |dx

≤ 2

?
Bκρ
|V − (V)Bκρ |dx +

?
Bκρ
|W |2dx

1/2 .
From this estimate, the first estimate in (2.17), and from (2.18), we see that?

Bκρ
|U − (U)Bκρ |dx

≤ C

κ ?
Bρ/2
|V(x)|2dx

1/2

+ κ−
n
2

?
Bρ
| f (x)|2dx

1/2
≤ C

κ ?
Bρ/2
|U(x)|2dx

1/2

+ κ

?
Bρ/2
|W(x)|2dx

1/2

+ κ−
n
2

?
Bρ
| f (x)|2dx

1/2 .
Now, using the second estimate in (2.17), we can control the second term on the right hand side of
the last estimate and infer that?

Bκρ
|U − (U)Bκρ |dx ≤ C

κ ?
Bρ
|U(x)|2dx

1/2

+ κ−
n
2

?
Bρ
| f (x)|2dx

1/2 ,
where C is a constant depending only on Λ and n. The proof of the lemma is therefore completed. �

Remark 2.7. We observe that (2.7) and (2.13) still hold true if the constant c2 in the terms on the
left hand sides of (2.7) and (2.13) is replaced by |c2|. As such, Lemmas 2.3, 2.4, 2.5, and 2.6 are all
valid if the second condition in (2.2) is replaced by c1 + |c2| ≥ α0.
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Next, to prove our main results, we need to recall several definitions and analysis estimates. Let
us denote the collection of balls in Rn by

B = {Bρ(x) : ρ > 0, x ∈ Rn}.

For any locally integrable function f defined in Rn, the Hardy-Littlewood maximal function of f is
defined by

M( f )(x) = sup
B∈B,x∈B

?
B
| f (y)|dy.

Moreover, the Fefferman-Stein sharp function of f is defined by

f #(x) = sup
B∈B,x∈B

?
B
| f (y) − ( f )B|dy,

where ( f )B is defined as in (1.5). Note that for p ∈ (1,∞) and f ∈ Lp(Rn), it follows from the
Fefferman-Stein theorem and Hardy-Littlewood maximal function theorem that (see [22, Chapter 3],
for instance)

(2.19) ‖ f ‖Lp(Rn) ≤ C(n, p)‖ f #‖Lp(Rn), and ‖M( f )‖Lp(Rn) ≤ C(n, p)‖ f ‖Lp(Rn).

Also, observe that it follows directly from the definitions that

f #(x) ≤ 2M( f )(x), for a.e. x ∈ Rn.

Consequently,

(2.20) ‖ f #‖Lp(Rn) ≤ 2‖M( f )‖Lp(Rn) ≤ C(n, p)‖ f ‖Lp(Rn).

Proof of Theorem 2.2. By duality, we only need to consider the case p ∈ [2,∞). Moreover, as the
case p = 2 is proved already by Lemma 2.3, it remains to consider the case p > 2.

We first prove the a-priori estimate (2.3). Let u ∈ W2,p(Rn,C) be a solution of (2.1). By using the
density of C∞0 (Rn,C) in W2,p(Rn,C) as in the proof of Lemma 2.3, we can assume that u ∈ C∞0 (Rn,C).
Then, by applying Lemma 2.6, we can control the Fefferman-Stein sharp function of U as

U#(x) ≤ C(Λ, n)
[
κM(|U |2)(x)1/2 + κ−

n
2M(| f |2)(x)1/2

]
, for a.e. x ∈ Rn,

where U = (D2u,
√
λα0Du, λα0u), C = C(Λ, n) and κ ∈ (0, 1/4). By using the Fefferman-Stein

theorem for sharp functions and Hardy-Littlewood maximal function theorem (see (2.19) and (2.20)),
we obtain

‖U‖Lp(Rn) ≤ C(n, p)
∥∥∥U#

∥∥∥
Lp(Rn) ≤ C

[
κ
∥∥∥M(|U |2)1/2

∥∥∥
Lp(Rn) + κ−

n
2
∥∥∥M(| f |2)1/2

∥∥∥
Lp(Rn)

]
≤ C

[
κ ‖U‖Lp(Rn) + κ−

n
2 ‖ f ‖Lp(Rn)

]
.

From this and by choosing κ sufficiently small, we obtain

‖U‖Lp(Rn) ≤ C(Λ, p, n) ‖ f ‖Lp(Rn) ,

and this proves (2.3).
Now, it remains to prove the existence of the solution as the uniqueness follows from (2.3). For

given f ∈ Lp(Rn,C), by the density of C∞0 (Rn,C) in Lp(Rn,C), we can find a sequence of smooth
compactly supported functions { fk}k ⊂ C∞0 (Rn,C) such that fk → f in Lp(Rn,C). Observe that as
p > 2, fk ∈ L2(Rn)∩ Lp(Rn). Then, by Lemma 2.3, there is a unique solution uk ∈ W2,2(Rn,C) of the
equation

(2.21) −

n∑
j,l=1

a jlD jluk + λ[c1 + ic2]uk = fk(x) in Rn.
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Since fk ∈ C∞0 (Rn,C), and the coefficients in (2.21) are constants, we can formally differentiate the
equation (2.21) and then apply Lemma 2.3 iteratively to prove that uk ∈ W l,2(Rn,C) for all l ∈ N.
From this and by choosing l sufficiently large, we can apply the Sobolev imbedding theorem to infer
that uk ∈ W2,p(Rn,C). Then, by using the a-priori estimate (2.3), we obtain∥∥∥D2uk

∥∥∥
Lp(Rn) +

√
λα0 ‖Duk‖Lp(Rn) + λα0 ‖uk‖Lp(Rn) ≤ C(Λ, p, n) ‖ fk‖Lp(Rn) .

Similarly to this estimate by considering the equation for uk − ul, we also see that∥∥∥D2(uk − ul)
∥∥∥

Lp(Rn) +
√
λα0 ‖D(uk − ul)‖Lp(Rn) + λα0 ‖uk − ul‖Lp(Rn) ≤ C(Λ, p, n) ‖ fk − fl‖Lp(Rn) ,

for every k, l ∈ N. This estimate, and since fk → f in Lp(Rn) as k → ∞, we infer that {uk}k
is a Cauchy sequence in W2,p(Rn,C). Let u ∈ W2,p(Rn,C) be the limit of the sequence {uk}k in
W2,p(Rn,C). It can be proved easily that u is a solution of (2.1). The proof of the theorem is
completed. �

Remark 2.8. By observing the proof and from Remark 2.7, we see that Theorem 2.2 still holds if the
second condition in (2.2) is replaced by c1 + |c2| ≥ α0.

2.2. Equations with measurable variable coefficients. We first state and prove an improved ver-
sion of Lemma 2.6 for equations with constant coefficients.

Lemma 2.9. For a given constant Λ ∈ (0, 1) and q ∈ (1,∞), there exists C = C(Λ, q, n) > 0 such
that the following statement holds. Suppose that the matrix (a jl)n×n of complex numbers satisfies the
conditions in (1.1). Suppose also that f ∈ Lq(Bρ(x0),C). Then, if u ∈ W2,q(Bρ(x0),C) is a solution of

−

n∑
j,l=1

a jlD jlu + λ[c1 + ic2]u = f , in Bρ(x0)

for some x0 ∈ R
n, ρ > 0, λ > 0, and some real numbers c1, c2 satisfying (2.2), the following estimate

holds?
Bκρ(x0)

|U − (U)Bκρ(x0)|dx ≤ C(Λ, q, n)

κ ?
Bρ(x0)

|U(x)|qdx
1/q

+ κ−
n
q

?
Bρ(x0)

| f (x)|qdx
1/q ,

for every κ ∈ (0, 1/4) and for U = D2u or
√
λα0Du or λα0u.

Proof. The proof is similar to that of Lemma 2.6. The only difference is that we do not apply Lemma
2.3 as in the proof of Lemma 2.6, but instead, we apply Theorem 2.2. We provide the details of the
proof for completeness. By using the translation x 7→ x − x0, we can assume that x0 = 0. Let
η ∈ C∞0 (Bρ) be a standard cut-off function which satisfies

η = 1 on Bρ/2.

Then, let w ∈ W2,q(Rn,C) be the solution of the equation

(2.22) −

n∑
j,l=1

a jlD jlw + λ[c1 + ic2]w = η(x) f (x) in Rn,

where the existence of w is obtained by using Theorem 2.2. By writing W = (D2w,
√
λα0Dw, λα0w),

we can see that from Theorem 2.2 that?
Bκρ
|W |qdx

1/q

≤
C(Λ, q, n)

κ
n
q

?
Bρ
| f (x)|qdx

1/q

and?
Bρ
|W |qdx

1/q

≤ C(Λ, q, n)
?

Bρ
| f (x)|qdx

1/q

.

(2.23)
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Now, let v = u − w, we see that v is a solution of the equation

−

n∑
j,l=1

a jlD jlv + λ[c1 + ic2]v = 0 in Bρ/2.

Again, by writing V = (D2v,
√
λα0Dv, λα0v), we can apply Lemma 2.5 for V to see that

(2.24)
?

Bκρ
|V(x) − (V)Bκρ |dx ≤ κC0

?
Bρ/2
|V(x)|qdx

1/q

, ∀ κ ∈ (0, 1/4).

Recall that ?
Bκρ
|U − (U)Bκρ |dx ≤ 2

?
Bκρ
|U − c|dx, ∀c ∈ R.

Then, by taking c = (V)Bκρ , and using the triangle inequality and Hölder’s inequality, we see that?
Bκρ
|U − (U)Bκρ |dx ≤ 2

?
Bκρ
|U − (V)Bκρ |dx

≤ 2

?
Bκρ
|V − (V)Bκρ |dx +

?
Bκρ
|W |qdx

1/q .
From this, the first estimate in (2.23), and from (2.24), we see that?

Bκρ
|U − (U)Bκρ |dx

≤ C

κ ?
Bρ/2
|V(x)|qdx

1/q

+ κ−
n
q

?
Bρ
| f (x)|qdx

1/q
≤ C

κ ?
Bρ/2
|U(x)|qdx

1/q

+ κ

?
Bρ/2
|W(x)|qdx

1/q

+ κ−
n
q

?
Bρ
| f (x)|qdx

1/q .
Now, using the second estimates in (2.23), we can control the second term on the right hand side of
the last estimate and infer that?

Bκρ
|U − (U)Bκρ |dx ≤ C

κ ?
Bρ
|U(x)|qdx

1/q

+ κ−
n
q

?
Bρ
| f (x)|qdx

1/q ,
where C is a constant depending only on Λ, q and n. The proof of the lemma is therefore completed.

�

Lemma 2.10. Let Λ ∈ (0, 1) and assume that (1.1) and (1.4) hold. Let q ∈ (1,∞), p ∈ (q,∞) and
assume that f ∈ Lq(Bρ(x0),C) and u ∈ W2,p(Bρ(x0),C) is a strong solutions of

−

n∑
j,k=1

a jk(x)D jku + λ[c1(x) + ic2(x)]u(x) = f (x) in Bρ(x0),
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with some λ > 0. Then, for every κ ∈ (0, 1/4), it holds that?
Bκρ(x0)

|U(x) − (U)Bκρ(x0)|dx

≤ C

κ ?
Bρ(x0)

|U(x)|qdx
1/q

+ κ−
n
q [a#

ρ(x0)]
1
q−

1
p

?
Bρ(x0)

|D2u(x)|pdx
1/p

+λα0κ
− n

q [c̃#
ρ(x0)]

1
p−

1
q

?
Bρ(x0)

|u(x)|pdx
1/p

+ κ−n/q
?

Bρ(x0)
| f (x)|qdx

1/q ,
where C = C(Λ, p, q, n), and U = D2u or

√
λα0Du or λα0u and c̃(x) =

c(x)
α0

.

Proof. Let us denote

F(x) = f (x) +

n∑
j,l=1

[a jk(x) − (a jk)Bρ(x0)]D jku(x) + λ[(c)Bρ(x0) − c(x)]u(x),

where (a jk)Bρ(x0) and (c)Bρ(x0) are defined as in (1.5). Then, we see that u is a strong solution of

−(a jk)Bρ(x0)D jku + λ(c)Bρ(x0)u = F(x).

From (1.4), it follows that (c1)Bρ(x0) ≥ 0 and (c1)Bρ(x0) + (c2)Bρ(x0) ≥ α0. Then, by applying Lemma
2.9, we infer that?

Bκρ(x0)
|U − (U)Bκρ(x0)|dx ≤ C(Λ, q, n)

κ ?
Bρ(x0)

|U(x)|qdx
1/q

+ κ−
n
q

?
Bρ(x0)

|F(x)|qdx
1/q ,

for every κ ∈ (0, 1/4) and for U = D2u,
√
λα0Du, or λα0u and for some fixed q ∈ (1, p). Now,

observe that by using Hölder’s inequality with the power p
p−q and p

q and by using the boundedness of
the coefficients (akl)n×n in (1.1), we see that?

Bρ(x0)
|(a jk)Bρ(x0) − a jk(x)|q|D jku(x)|qdx

1/q

≤

?
Bρ(x0)

|(a jk)Bρ(x0) − a jk(x)|
qp
p−q dx

 p−q
pq

?
Bρ(x0)

|D jku(x)|pdx
1/p

≤ C(Λ, p, q)
?

Bρ(x0)
|(a jk)Bρ(x0) − a jk(x)|dx

 p−q
pq

?
Bρ(x0)

|D jku(x)|pdx
1/p

= C(Λ, p, q)[a#
ρ(x0)]

1
q−

1
p

?
Bρ(x0)

|D2u(x)|pdx
1/p

.

Similarly, using the fact that c̃(x) =
c(x)
α0

is bounded above by a constant depending only on Λ, we
also have

λ

?
Bρ(x0)

|(c)Bρ(x0) − c(x)|q|u(x)|qdx
1/q

= λα0

?
Bρ(x0)

|(c̃)Bρ(x0) − c̃(x)|q|u(x)|qdx
1/q

≤ λα0C(Λ, p, q)[c̃#
ρ(x0)]

1
p−

1
q

?
Bρ(x0)

|u(x)|pdx
1/p

.

Collecting all of the above estimates, we obtain the desired result. �

Now, we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. We first prove the a-priori estimate (1.7). Assume that u ∈ W2,p(Rn,C) is a
strong solution of the equation

(2.25) Lλu(x) = f (x), for a.e. x ∈ Rn.

By (1.4), the density of C∞0 (Rn,C) in W2,p(Rn,C), and by following the argument in the proof of
Lemma 2.3, we prove (1.7) only for u ∈ C∞0 (Rn,C). Recall that from (1.6), we have

(2.26) a#
ρ(x) ≤ δ, c#

ρ(x) ≤ δα0, for a.e. x ∈ Rn, ∀ ρ ∈ (0,R0).

We follow the approach introduced in [21,22] and split the proof of the estimate (1.7) into two steps.

Step I. We assume that spt(u) ⊂ Rn−1 × (x̂n −R0ρ0, x̂n + R0ρ0) for some ρ0 > 0 sufficiently small that
will be determined, and for some x̂n ∈ R. For all ρ ∈ (0,R0), by applying Lemma 2.10 and (2.26),
we infer

?
Bκρ(x)

|U(y) − (U)Bκρ(x)|dy

≤ C(Λ, q, n)
[
κM(|U |q)(x)1/q + κ−n/qM(| f |q)(x)1/q

]
+ C(Λ, q, n)κ−n/qδ

1
q−

1
p
[
M(|D2u|p)(x)1/p + λα0M(|u|p)(x)1/p

]
,

(2.27)

for a.e. x ∈ Rn, where U = (D2u,
√
λα0Du, λα0u), κ ∈ (0, 1/4) and some q ∈ (1, p).

On the other hand, when ρ ≥ R0, we see that

?
Bκρ(x)

|U(y) − (U)Bκρ(x)|dy ≤ C(n)κ−n
?

Bρ(x)
|U(y)|dy

≤ C(n)κ−n
?

Bρ(x)
1(x̂n−R0ρ0,x̂n+R0ρ0)(yn)dy

1− 1
q
?

Bρ(x)
|U(y)|qdy

 1
q

≤ C(n)κ−n
(
R0ρ0

ρ

)1− 1
q
?

Bρ(x)
|U(y)|qdy

 1
q

≤ C(n)κ−n (ρ0)1− 1
q M(|U |q)(x)

1
q .

From this last estimate and (2.27), it follows that

U#(x) ≤ C(Λ, q, n)
[(
κ + κ−nρ

1− 1
q

0

)
M(|U |q)(x)1/q + κ−n/qM(| f |q)(x)1/q

]
+ C(Λ, q, n)κ−n/qδ

1
q−

1
p
[
M(|D2u|p)(x)1/p + λα0M(|u|p)(x)1/p

]
, ∀ x ∈ Rn.
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Then, by using the Fefferman-Stein theorem for sharp functions, and Hardy-Littlewood maximal
function theorem (see (2.19) and (2.20)), we obtain

‖U‖Lp(Rn) ≤ C(n, p)
∥∥∥U#

∥∥∥
Lp(Rn)

≤ C
[(
κ + κ−nρ

1− 1
q

0

) ∥∥∥M(|U |q)1/q
∥∥∥

Lp(Rn) + κ−
n
q
∥∥∥M(| f |q)1/q

∥∥∥
Lp(Rn)

]
+ Cκ−

n
q δ

1
q−

1
p
[∥∥∥M(|D2u|p)1/p

∥∥∥
Lp(Rn) + λα0

∥∥∥M(|u|q)1/q
∥∥∥

Lp(Rn)

]
≤ C(Λ, q, n)

[(
κ + κ−nρ

1− 1
q

0

)
‖U‖Lp(Rn) + κ−

n
2 ‖ f ‖Lp(Rn)

]
+ C(Λ, q, n)κ−

n
q δ

1
q−

1
p
[∥∥∥D2u

∥∥∥
Lp(Rn) + λα0 ‖u‖Lp(Rn)

]
≤ C(Λ, q, n)

[(
κ + κ−nρ

1− 1
q

0

)
‖U‖Lp(Rn) + κ−

n
2 ‖ f ‖Lp(Rn)

]
+ C(Λ, n)κ−

n
q δ

1
q−

1
p ‖U‖Lp(Rn) .

(2.28)

Now, we choose κ sufficiently small and then we choose ρ0 sufficiently small so that

C(Λ, q, n)
(
κ + κ−nρ

1− 1
q

0

)
<

1
2
.

From this and the estimate (2.28), it follows that

‖U‖Lp(Rn) ≤ C(Λ, p, q, n) ‖ f ‖Lp(Rn) + C(Λ, p, q, n)δ
1
q−

1
p κ−n/q ‖U‖Lp(Rn) .

Then, with the choice of δ so that it is sufficiently small depending only on Λ, n, p, we can deduce
from the last estimate that

‖U‖Lp(Rn) ≤ C(Λ, p, q, n) ‖ f ‖Lp(Rn) .

This proves (1.7) when spt(u) ⊂ Rn−1 × (x̂n − R0ρ0, x̂n + R0ρ0) .

Step II. We remove the condition on the smallness of the support of the solution u and proving (1.7)
for λ > N0

α0R2
0

with some sufficiently large constant N0 > 0 that depends only on n,Λ, p. The essential
idea is to use the partition of unity. Let ρ0 > 0 be the number defined in Step I which depends only
on n, q,Λ. Let ξ ∈ C∞0 (−R0ρ0,R0ρ0) be the standard non-negative cut-off function satisfying

(2.29)
∫
R
ξp(s)ds = 1, |ξ′| ≤

2
R0ρ0

, and |ξ′′| ≤
4

(R0ρ0)2 .

For any s ∈ R, let ws(x) = u(x)ξ(xn − s) for every x = (x′, xn) ∈ Rn−1 × R. We observe that for each
s, ws is a solution of

Lλws(x) = Fs(x) x ∈ Rn,

where

Fs(x) = f (x)ξ(xn − s) + 2
n−1∑
l=1

anl(x)Dluξ′(xn − s)

+ ann(x)
[
2Dnu(x)ξ′(xn − s) + u(x)ξ′′(xn − s)

]
, x = (x′, xn) ∈ Rn−1 × R.

(2.30)

As spt(ws) ∈ Rn−1 × (s − R0ρ0, s + R0ρ0), we can apply the result in Step I to conclude that

(2.31)
∥∥∥D2ws

∥∥∥
Lp(Rn) +

√
λα0 ‖Dws‖Lp(Rn) + λα0 ‖ws‖Lp(Rn) ≤ C(Λ, p, n) ‖Fs‖Lp(Rn) .
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Now, we observe that for each multi-index σ ∈ (N ∪ {0})n, it follows from the first identity in (2.29)
that

|Dσu(x)|p =

∫
R
|Dσu(x)|pξp(xn − s)ds, for a.e. x ∈ Rn.

From this and the Fubini’s theorem, we find that∥∥∥Dσu
∥∥∥p

Lp(Rn) =

∫
R

[∫
Rn
|Dσu(x)|pξp(xn − s)dx

]
ds.

On the other hand, observe that

|Du|ξ ≤ C
[
|Dws| + |u||ξ′|

]
, |D2u|ξ ≤ C

(
|D2ws| + 2|Du||ξ′| + |u||ξ′′|

)
.

Then, we deduce that

‖Du‖pLp(Rn) ≤ C(p)
[∫
R
‖Dws‖

p
Lp(Rn)ds + (R0ρ0)−p‖u‖pLp(Rn)

]
and ∥∥∥D2u

∥∥∥p
Lp(Rn) ≤ C(p)

[∫
R
‖D2ws‖

p
Lp(Rn)ds + (R0ρ0)−p‖Du‖pLp(Rn) + (R0ρ0)−2p‖u‖pLp(Rn)

]
.

As a consequence, we obtain∥∥∥D2u
∥∥∥p

Lp(Rn) +
( √

λα0 ‖Du‖Lp(Rn)

)p
+

(
λα0‖u‖Lp(Rn)

)p

≤ C(p)
[∫
R
‖D2ws‖

p
Lp(Rn)ds + (λα0)

p
2

∫
R
‖Dws‖

p
Lp(Rn)ds + (λα0)p

∫
R
‖ws‖

p
Lp(Rn)ds

]
+ C(p, ρ0)R−2p

0

[
Rp

0‖Du‖pLp(Rn) +
{
Rp

0 (λα0)
p
2 + 1

}
‖u‖pLp(Rn)

]
.

From this last estimate and (2.31), we obtain∥∥∥D2u
∥∥∥

Lp(Rn) +
√
λα0 ‖Du‖Lp(Rn) + λα0‖u‖Lp(Rn)

≤ C(Λ, p, n)
(∫
R
‖Fs‖

p
Lp(Rn)ds

) 1
p

+ C(Λ, p, ρ0, n)R−2
0

[
R0‖Du‖Lp(Rn) +

(
R0

√
λα0 + 1

)
‖u‖Lp(Rn)

]
,

From this estimate, the definition of Fs in (2.30), and the fact that R0 ∈ (0, 1), we infer that∥∥∥D2u
∥∥∥

Lp(Rn) +
√
λα0 ‖Du‖Lp(Rn + λα0‖u‖Lp(Rn)

≤ C(Λ, p, n) ‖ f ‖Lp(Rn) + C∗(Λ, n, p)R−2
0

[
R0‖Du‖Lp(Rn) +

(
R0

√
λα0 + 1

)
‖u‖Lp(Rn)

]
,

(2.32)

where in the last step, we have used the fact that ρ0 is a constant depending only on Λ, n, p. Now, let
N0 = 16C2

∗ , where C∗ is the constant defined in the right hand side of (2.32) which can be assumed
to be greater than one. Then, with γ0 := N0R−2

0 , we easily deduce that

C∗(Λ, n, p)R−1
0 ≤

√
γ0

2
and C∗(Λ, n, p)

(
R−1

0
√
γ + R−2

0

)
≤
γ

2
, γ ≥ γ0,

From this and (2.32), we conclude that∥∥∥D2u
∥∥∥

Lp(Rn) +
√
λα0 ‖Du‖Lp(Rn) + λα0‖u‖Lp(Rn) ≤ C(Λ, n, p) ‖ f ‖Lp(Rn)

for all λ > γ0
α0

=
N0
α0R2

0
. This completes the proof of (1.7).
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It now remains to prove the existence and uniqueness of solutions of (1.2). Observe that the
uniqueness of solution u ∈ W2,p(Rn,C) follows from the a-priori estimate (1.7) that we just proved.
Therefore, we only prove the solvability of (1.2) in W2,p(Rn,C). We use the method of continuity
(see [22, Theorem 1.4.4, p. 15 and Theorem 6.4.1 p. 139] for instance). As this is standard, we only
provide some important steps in the proof. For fixed λ > N0

α0R2
0

and for each µ ∈ [0, 1], we define the
operator

Tµu = µLλu + (1 − µ)[−∆u + λα0u].

By simple calculations, we see that

Tµu = −

n∑
k,l=1

ãkl(x)Dklu(x) + λc̃(x)u(x),

where
ãkl(x) = µakl(x) + (1 − µ)δkl, c̃(x) = µc(x) + (1 − µ)α0

with δkl = 0 for k , l and δkk = 1, for k, l = 1, 2, · · · , n. Observe that the new coefficients (ãkl)n
k,l=1

and c̃ satisfy the conditions (1.1), (1.4), and (1.6). Therefore, by the a-priori estimate (1.7) that we
just proved, there is a constant C = C(Λ, n,R0, p) independent on µ such that∥∥∥D2u

∥∥∥
Lp(Rn) +

√
λα0 ‖Du‖Lp(Rn) + λα0 ‖u‖Lp(Rn) ≤ C ‖ f ‖Lp(Rn) ,

where u ∈ W2,p(Rn,C) is a solution of

Tµu = f in Rn

and for µ ∈ [0, 1]. On the other hand, by Theorem 2.2, we see that for every f ∈ Lp(Rn,C), there
exists unique solution u ∈ W2,p(Rn,C) of the equation

T0u = f in Rn.

Hence, by the method of continuity (see [22, Theorem 1.4.4, p. 15 and Theorem 6.4.1 p. 139] for
details), for every f ∈ Lp(Rn,C), there is a solution u ∈ W2,p(Rn,C) of the equation

T1u = f in Rn.

As T1 = Lλ, the proof of the theorem is completed. �

3. Schrödinger equations in divergence form

In this section, we prove Theorem 1.2. The proof is similar to that of Theorem 1.1 using equa-
tions with frozen coefficients and Fefferman-Stein sharp functions, see also [9, 10, 21–23]. To take
advantage of the imaginary part of the potentials, we freeze the spatial variables of the potentials.

3.1. Equations with constant coefficients. This section derives basic estimates for solutions of
second order divergence form elliptic equations with constant complex coefficients. We consider the
following equation

(3.1) −

n∑
j,l=1

Dl[a jlD ju] + λ[c1 + ic2]u = λ f + div[g(x)], in Rn,

where λ > 0 is a constant, f : Rn → C is a given measurable function, g = (g1, g2, · · · , gn) : Rn → Cn

is a given measurable vector field, and u : Rn → C is an unknown solution. Moreover, (a jl)n×n is a
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given n×n matrix of complex numbers, and c1, c2, λ are given constants. We say that u ∈ W1,p(Rn,C)
is a weak solution of (3.1) if

n∑
j,l=1

∫
Rn

a jlD ju(x)Dlϕ(x)dx + λ

∫
Rb

[c1 + ic2]u(x)ϕ(x)dx

= λ

∫
Rn

f (x)ϕ(x)dx −
n∑

k=1

∫
Rn

gk(x) · Dkϕ(x)dx,

for every ϕ ∈ C∞0 (Rn,C).
The main result of this subsection is the following theorem which is a special case of Theorem 1.2

when coefficients are constants.

Theorem 3.1. Let Λ ∈ (0, 1), α0 > 0 and (akl)n×n be a matrix of complex numbers satisfying the
conditions in (1.1). Then, for every real numbers c1, c2 satisfying (2.2) and for λ > 0, f ∈ Lp(Rn,C),
g ∈ Lp(Rn,C)n with some p ∈ (1,∞), there exists a unique weak solution u ∈ W1,p(Rn,C) of (3.1).
Moreover,

(3.2) ‖Du‖Lp(Rn) +
√
λα0 ‖u‖Lp(Rn) ≤ C(Λ, p, n)

[√ λ

α0
‖ f ‖Lp(Rn) + ‖g‖Lp(Rn)

]
.

As Theorem 3.1 is new and important in our approach, we prove it in the remaining part of the
section. We start with the proof of Theorem 3.1 when p = 2 in the following lemma.

Lemma 3.2. Let Λ ∈ (0, 1), α0 > 0 and assume that the matrix (akl)n×n of complex numbers satisfies
(1.1). Moreover, let c1, c2 be real numbers satisfying (2.2) and λ > 0 be a given number. Then, for
every f ∈ L2(Rn,C) and g ∈ L2(Rn,C)n, there exists unique weak solution u ∈ W1,2(Rn,C) of (3.1).
Moreover,

‖Du‖L2(Rn) +
√
λα0 ‖u‖L2(Rn) ≤ C(Λ)

[√ λ

α0
‖ f ‖L2(Rn) + ‖g‖L2(Rn)].

Proof. The proof is similar to that of Lemma 2.3 and we only provide main steps. The existence and
uniqueness of weak solution can be done exactly as that in the proof of Lemma 2.3. Therefore, it
remains to prove the estimate in the lemma. By using density, we can assume that u, f are smooth
and compactly supported. By using u as a test function for (3.1), we obtain

n∑
j,l=1

∫
Rn

a jlDluD jūdx + λ[c1 + ic2]
∫
Rn
|u|2dx

= λ

∫
Rn

f (x)ū(x)dx −
n∑

k=1

∫
Rn

gk(x)Dku(x)dx.

(3.3)

Now, let ε > 0 be sufficiently small which will be determined. By taking the real part of (3.3) and
using Lemma 2.1, we see that

Λ

∫
Rn
|Du(x)|2dx + λc1

∫
Rn
|u(x)|2dx

≤ λ

∫
Rn
| f (x)||u(x)|dx +

∫
Rn
|g(x)||Du(x)|dx

≤ C(Λ)
[
λα0ε

∫
Rn
|u(x)|2dx +

λ

α0ε

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

]
+

Λ

2

∫
Rn
|Du(x)|2dx.
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Therefore, by cancelling similar terms, we obtain

Λ

2

∫
Rn
|Du(x)|2dx + λc1

∫
Rn
|u(x)|2dx

≤ C(Λ)
[
λα0ε

∫
Rn
|u(x)|2dx +

λ

α0ε

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

]
.

From this and as c1 ≥ 0, we infer that∫
Rn
|Du(x)|2dx ≤ C(Λ)

[
λα0ε

∫
Rn
|u(x)|2dx +

λ

α0ε

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

]
,

λc1

∫
Rn
|u(x)|2dx ≤ C(Λ)

[
λα0ε

∫
Rn
|u(x)|2dx +

λ

α0ε

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

](3.4)

Also, by taking a imaginary part of (3.3) and by using the boundedness condition of (akl)n×n in (1.1)
and Young’s inequality, we obtain

λc2

∫
Rn
|u|2dx ≤ Λ−1

∫
Rn
|∇u|2dx + λ

∫
Rn
| f (x)||u(x)|dx +

∫
Rn
|g(x)||Du(x)|dx

≤ [Λ−1 + 1]
∫
Rn
|Du|2dx +

λα0ε

2

∫
Rn
|u(x)|2dx +

λ

2α0ε

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx.

Then, combining the last estimate with (3.4), we can derive the following estimate

λ(c1 + c2)
∫
Rn
|u(x)|2dx ≤ C(Λ)

[
λα0ε

∫
Rn
|u(x)|2dx +

λ

α0ε

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

]
.

Since c1 + c2 ≥ α0, we can choose ε such that C(Λ)ε = 1/2 to obtain

(3.5) λα0

∫
Rn
|u|2dx ≤ C(Λ)

[
λ

α0

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

]
.

From (3.4) and (3.5), it follows that∫
Rn
|Du(x)|2dx ≤ C(Λ)

[
λ

α0

∫
Rn
| f (x)|2dx +

∫
Rn
|g(x)|2dx

]
.

This last estimate and (3.5) imply our desired estimate. �

We next state and prove an important result similar to that of Lemma 2.5.

Lemma 3.3. Let Λ ∈ (0, 1) and q ∈ (1,∞) be fixed. Then, there is C0 = C(Λ, q, n) > 0 such that the
following statement holds true. Suppose that ρ > 0 and assume that the conditions in (1.1) hod for
the matrix of complex numbers (akl)n×n. Assume also that (2.2) holds for two real numbers c1 and
c2. Suppose also that u ∈ W1,2(Bρ,C) is a weak solution of

−

n∑
j,l=1

D j[a jlDlu] + λ[c1 + ic2]u = 0 in Bρ,

with some λ > 0. Then, for every κ ∈ (0, 1/2), the following estimate hold?
Bκρ
|Du − (Du)Bκρ |dx ≤ κC0

?
Bρ
|Du(x)|qdx

1/q

,?
Bκρ
|u − (u)Bκρ |dx ≤ κC0

?
Bρ
|u(x)|qdx

1/q

.
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Proof. The proof is similar to that of Lemma 2.5. Note that by standard regularity theory, u ∈
C∞(Bρ,C). Therefore, we can apply Lemma 2.4. Because of this, the proof is now the same as that
of Lemma 2.5. �

Our next lemma gives the mean oscillation estimates for solutions u of the equation (3.1), which
is the same fashion as that of Lemma 2.6.

Lemma 3.4. For a given constant Λ ∈ (0, 1), there exists C = C(Λ, n) such that the following
statement holds. Suppose that the matrix (a jl)n×n of complex numbers satisfies (1.1). Suppose also
that two given numbers c1, c2 satisfy (2.2), f ∈ L2(Bρ(x0),C), g ∈ L2(Bρ(x0),C)n. Then, if u ∈
W1,2(Bρ(x0),C) is a weak solution of

−

n∑
j,l=1

Dl[a jD ju] + λ[c1 + ic2]u = λ f + div[g], in Bρ(x0)

for some x0 ∈ R
n, some ρ > 0 and some λ > 0, the following estimates hold?

Bκρ(x0)
|U − (U)Bκρ(x0)|dx

≤ C

κ ?
Bρ(x0)

|U(x)|2dx
1/2

+ κ−
n
2

√
λα−1

0

?
Bρ(x0)

| f (x)|2dx
1/2

+ κ−
n
2

?
Bρ(x0)

|g(x)|2dx
1/2 ,

for every κ ∈ (0, 1/4) and for U = Du or for U =
√
λα0u.

Proof. The proof is similar to that of Lemma 2.6, but instead we useLemma 3.2 and Lemma 3.3. By
using the translation x 7→ x − x0, we can assume that x0 = 0. Let η ∈ C∞0 (Bρ) be a standard cut-off

function which satisfies
η = 1, on Bρ/2.

Then, let w ∈ W1,2(Rn,C) be the solution of the equation

(3.6) −

n∑
j,l=1

Dl[a jlD jw] + λ[c1 + ic2]w = η(x)λ f (x) + div[η(x)g(x)] in Rn,

whose existence is assured by Lemma 3.2. Then, by writing W = (Dw,
√
λα0w), we can infer from

Lemma 3.2 that?
Bκρ
|W |2dx

1/2

≤
C(Λ, n)

κ
n
2

√λα−1
0

?
Bρ
| f (x)|2dx

1/2

+

?
Bρ
|g(x)|2dx

1/2 , and?
Bρ
|W |2dx

1/2

≤ C(Λ, n)

√λα−1
0

?
Bρ
| f (x)|2dx

1/2

+

?
Bρ
|g(x)|2dx

1/2 .
(3.7)

Now, let v = u − w and we see that v is a weak solution of the equation

−

n∑
j,l=1

Dl[a jlD jv] + λ[c1 + ic2]v = 0 in Bρ/2.

Again, by writing V = (Dv,
√
λα0v), we can apply Lemma 3.3 for V to see that

(3.8)
?

Bκρ
|V(x) − (V)Bκρ |dx ≤ κC0

?
Bρ/2
|V(x)|2dx

1/2

, ∀ κ ∈ (0, 1/4).
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Recall that ?
Bκρ
|U − (U)Bκρ |dx ≤ 2

?
Bκρ
|U − c|dx, ∀c ∈ R.

Then, by taking c = (V)Bκρ , and using the triangle inequality and Hölder’s inequality, we see that?
Bκρ
|U − (U)Bκρ |dx ≤ 2

?
Bκρ
|U − (V)Bκρ |dx

≤ 2

?
Bκρ
|V − (V)Bκρ |dx +

?
Bκρ
|W |2dx

1/2 .
From this, the first estimate in (3.7), and from (3.8), we see that?

Bκρ
|U − (U)Bκρ |dx

≤ C

κ ?
Bρ/2
|V(x)|2dx

1/2

+ κ−
n
2

√
λα−1

0

?
Bρ
| f (x)|2dx

1/2

+ κ−
n
2

?
Bρ
|g(x)|2dx

1/2
≤ C

κ ?
Bρ/2
|U(x)|2dx

1/2

+ κ

?
Bρ/2
|W(x)|2dx

1/2

+ κ−
n
2

√
λα−1

0

?
Bρ
| f (x)|2dx

1/2

+ κ−
n
2

?
Bρ
|g(x)|2dx

1/2 .
Now, using the second estimates in (2.23), we can control the second term on the right hand side of
the last estimate and infer that?

Bκρ
|U − (U)Bκρ |dx

≤ C

κ ?
Bρ
|U(x)|2dx

1/2

+ κ−
n
2

√
λα−1

0

?
Bρ
| f (x)|2dx

1/2

+ κ−
n
2

?
Bρ
|g(x)|2dx

1/2 ,
where C is a constant depending only on Λ and n. The proof of the lemma is therefore completed. �

Proof of Theorem 3.1. From Lemma 3.4, the proof of Theorem 3.1 follows exactly the same as that
of Theorem 2.2. We therefore skip it. �

Remark 3.5. As in Remark 2.8, Theorem 3.1 is still valid if the second condition in (2.2) is replaced
by c1 + |c2| ≥ α0.

3.2. Equations with measurable coefficients. This section provides the proof of Theorem 1.2. To
this end, we first apply Theorem 3.1 to establish an improved version of Lemma 3.4.

Lemma 3.6. For a given constant Λ ∈ (0, 1) and q ∈ (1,∞), there exists C = C(Λ, q, n) such that the
following statement holds. Suppose that the matrix (a jl)n×n of complex numbers satisfies the condi-
tions in (1.1). Suppose also that c1, c2 are fixed numbers satisfying (2.2), and f ∈ Lq(Bρ(x0),C), g ∈
Lq(Bρ(x0),C)n. Then, if u ∈ W1,q(Bρ(x0)) is a weak solution of

−

n∑
j,l=1

Dl[a jlD ju] + λ[c1 + ic2]u = λ f + div[g] in Bρ(x0),
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for some x0 ∈ R
n, some ρ > 0 and some λ > 0, the following estimates hold?

Bκρ(x0)
|U − (U)Bκρ(x0)|dx

≤ C

κ ?
Bρ(x0)

|U(x)|qdx
1/q

+ κ−
n
q

√
λα−1

0

?
Bρ(x0)

| f (x)|qdx
1/q

+

?
Bρ(x0)

|g(x)|qdx
1/q ,

for every κ ∈ (0, 1/4) and for U = Du or for U =
√
λα0u.

Proof. Similar to that of Lemma 2.9, but we use Theorem 3.1 and Lemma 3.3 instead of Theorem
2.2 and Lemma 2.5. We therefore skip the proof. �

From Lemma 3.6 we can establish the following result on the mean oscillation of solutions that is
similar to Lemma 2.10.

Lemma 3.7. Let Λ ∈ (0, 1) and assume that (1.1) and (1.4) hold. Let q ∈ (1,∞), p ∈ (q,∞) and
assume that f ∈ Lq(Bρ(x0),C), g ∈ Lq((Bρ(x0),C))n and assume also that u ∈ W1,p(Bρ(x0),C) is a
weak solution of

−

n∑
j,k=1

Dk[a jk(x)D ju] + λ[c1(x) + ic2(x)]u(x) = λ f (x) + div[g], in Bρ(x0),

with some λ > 0. Then, for every κ ∈ (0, 1/4), it holds that?
Bκρ(x0)

|U(x) − (U)Bκρ(x0)|dx

≤ C

κ ?
Bρ(x0)

|U(x)|qdx
1/q

+ κ−
n
q [a#

ρ(x0)]
1
q−

1
p

?
Bρ(x0)

|Du(x)|pdx
1/p

+
√
λα0κ

− n
q [c̃#

ρ(x0)]
1
p−

1
q

?
Bρ(x0)

|u(x)|pdx
1/p

+ κ−n/q
√
λα−1

0

?
Bρ(x0)

| f (x)|qdx
1/q

+κ−n/q
?

Bρ(x0)
|g(x)|qdx

1/q ,
where C = C(Λ, p, q, n), U = Du or U =

√
λα0u, and c̃(x) =

c(x)
α0

.

Proof. Let us denote

f̃ (x) = f (x) + [(c)Bρ(x0) − c(x)]u(x), g̃k = gk(x) +

n∑
j=1

[a jk(x) − (a jk)Bρ(x0)]D ju(x).

Then, we see that u is a weak solution of

−

n∑
k=1

Dk[(a jk)Bρ(x0)D ju] + λ(c)Bρ(x0)u = λ f̃ (x) + div[g̃(x)].

From (1.4), it follows that (c1)Bρ(x0) ≥ 0 and (c1)Bρ(x0) + (c2)Bρ(x0) ≥ α0. Then, we can apply Lemma
3.6 to infer that?

Bκρ(x0)
|U − (U)Bκρ(x0)|dx

≤ C(Λ, n)

κ ?
Bρ
|U(x)|qdx

1/q

+ κ−
n
q

√
λα−1

0

?
Bρ
| f̃ (x)|qdx

1/q

+ κ−
n
q

?
Bρ
|g̃(x)|qdx

1/q ,
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for every κ ∈ (0, 1/4) and for U = Du or U =
√
λα0u. From this, the proof can be done exactly the

same as that of Lemma 2.9 and we then skip it. �

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1 and we only outline some main
steps. As in the proof of Theorem 1.1, it is sufficient to prove the estimate (1.9) for u ∈ C∞(Rn,C).

Step I. We prove that there is ρ0 = ρ0(Λ, n, p) > 0 and sufficiently small such that if spt(u) ⊂
Rn−1 × (x̂n − R0ρ0, x̂n + R0ρ0) for some x̂n ∈ R, then (1.9) holds. The proof of this claim can be done
exactly the same as that of Step I in the proof of Theorem 1.1 in which we use Lemma 3.7 instead
of Lemma 2.10 .

Step II. We use partition of unity to remove the condition on the smallness of the support of the
solution u. Let ξ ∈ C∞0 (−R0ρ0,R0ρ0) be the standard non-negative cut-off function satisfying

(3.9)
∫
R
ξp(s)ds = 1 and |ξ′| ≤

2
R0ρ0

.

For any s ∈ R, let ws(x) = u(x)ξ(xn − s) where x = (x′, xn) ∈ Rn−1 × R. We observe that for each
fixed s, ws is a weak solution of

(3.10) Qλws(x) = λ f̃s(x) + divg̃s(x) x ∈ Rn,

where

f̃s(x) = f (x)ξ(xn − s) −
ξ′(xn − s)

λ

[
gn(x) +

n∑
l=1

anl(x)Dlu(x))
]
,

g̃s(x) = g(x)ξ(xn − s) − u(x)ξ′(xn − s)an(x), x = (x′, xn) ∈ Rn−1 × R,

(3.11)

where an(x) = (a1n(x), a2n(x), . . . , ann(x)). As spt(ws) ∈ Rn−1× (s−R0ρ0, s+R0ρ0), by applying Step
I to the equation (3.10), we obtain

(3.12) ‖Dws‖Lp(Rn) +
√
λα0 ‖ws‖Lp(Rn) ≤ C(Λ, n, p)

[√
λα−1

0

∥∥∥ f̃s
∥∥∥

Lp(Rn) + ‖g̃s‖Lp(Rn)

]
.

Since ρ0 depends only on Λ, n, p, it follows from (3.9), (3.11), and the boundedness of (akl)n×n in
(1.1) that

√
λα−1

0

(∫
R
‖ f̃s‖

p
Lp(Rn) ds

) 1
p

≤ C(Λ, n, p)
[√

λα−1
0 ‖ f ‖Lp(Rn) +

1
R0
√
λα0

(
‖g‖Lp(Rn) + ‖Du‖Lp(Rn)

)]

and (∫
R
‖g̃s‖

p
Lp(Rn) ds

) 1
p

≤ C(Λ, n, p)
[
‖g‖Lp(Rn) +

1
R0
‖u‖Lp(Rn)

]
.
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From (3.12) and the last two estimates, we can follow the calculation as in Step II of the proof of
Theorem 1.1 to conclude that

‖Du‖Lp(Rn) +
√
λα0 ‖u‖Lp(Rn)

≤ C(Λ, n, p)

√λα−1
0

(∫
R
‖ f̃s‖

p
Lp(Rn) ds

) 1
p

+

(∫
R
‖g̃s‖

p
Lp(Rn) ds

) 1
p

+
1

R0
‖u‖Lp(Rn)


≤ C0(Λ, n, p)

[√
λα−1

0 ‖ f ‖Lp(Rn) +
(
1 +

1
R0
√
λα0

)
‖g‖Lp(Rn)(3.13)

+
1

R0
√
λα0
‖Du‖Lp(Rn) +

1
R0
‖u‖Lp(Rn)

]
.

Now, we choose N0 = 4C2
0 where C0 = C0(Λ, p, n) is the number defined in (3.13). Then, for all

λ > N0
α0R2

0
, it can be deduced from (3.13) that

‖Du‖Lp(Rn) +
√
λα0 ‖u‖Lp(Rn) ≤ C(Λ, n, p)

[√
λα−1

0 ‖ f ‖Lp(Rn) + ‖g‖Lp(Rn)

]
.

The proof is then completed. �
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