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Abstract. We study the interior weighted Sobolev regularity for weak solutions of the quasilinear equations
of the form div A(x, u,∇u) = div F. The vector field A is allowed to be discontinuous in x, Hölder continuous
in u and its growth in the gradient variable is like the p-Laplace operator with 1 < p < ∞. We establish
interior weighted W1,q-regularity estimates for weak solutions to the equations for every q > p assuming
that the weak solutions are in the local John-Nirenberg BMO space. This paper therefore improves available
results because it replaces the boundedness or continuity assumption on weak solutions by the borderline
BMO one. Our regularity estimates also recover known results in which A is independent of the variable u.
Our regularity theory complements the classical C1,α- regularity theory developed by many mathematicians
including DiBenedetto and Tolksdorf for this general class of quasi-linear elliptic equations.
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1. Introduction

This paper establishes interior regularity estimates in weighted Sobolev spaces for weak solutions to the
following general quasi-linear p-Laplacian type equations

(1.1) div [A(x, u,∇u)] = div [|F|p−2F] in B2R,

where B2R is the ball in Rn centered at the origin and has radius 2R for some R > 0, F is a given measurable
vector field function, u is an unknown solution, and

A = A(x, z, ξ) : B2R × K × R
n −→ Rn

is a given vector field. We assume that A(·, z, ξ) is measurable in B2R for every (z, ξ) ∈ K × (Rn \ {0});
A(x, ·, ξ) Hölder continuous in K for a.e. x ∈ B2R and for all ξ ∈ Rn \ {0}; and A(x, z, ·) differentiable in
Rn \ {0} for each z ∈ K and for a.e. x ∈ B2R. Here, K is an open interval in R, which could be the same as
R. We assume in addition that there exist constants Λ > 0, α ∈ (0, 1], and 1 < p < ∞ such that A satisfies
the following natural growth conditions

〈∂ξA(x, z, ξ)η, η〉 ≥ Λ−1|ξ|p−2|η|2, for a.e. x ∈ B2R, ∀ z ∈ K, ∀ ξ, η ∈ Rn \ {0},(1.2)

|A(x, z, ξ)| + |ξ||∂ξA(x, z, ξ)| ≤ Λ|ξ|p−1, for a.e. x ∈ B2R, ∀ z ∈ K, ∀ ξ ∈ Rn \ {0},(1.3)

|A(x, z1, ξ) − A(x, z2, ξ)| ≤ Λ|ξ|p−1|z1 − z2|
α ∀ z1, z2 ∈ K, for a.e. x ∈ B2R, ∀ξ ∈ Rn \ {0}.(1.4)

Observe that under the conditions (1.2)–(1.4), the class of equations of the form (1.1) contains the well-
known p-Laplace equations.

The focus of this paper is to investigate the regularity in weighted Sobolev spaces for weak solutions u
of (1.1) when the nonlinearity of A depends on u as its variable. In this perspective, we would like to point
out that, on one hand, the C1,α-regularity theory for bounded, weak solutions of this class of equations has
been investigated extensively, see [7, 14, 15, 25–28, 37–39], assuming some regularity of A in both x and
z variables. On the other hand, when A is discontinuous in x or F is not sufficiently regular, one does not
expect those mentioned Schauder’s type estimates for weak solutions of (1.1) to hold, and it is natural to
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search for Lq- estimates for the gradients instead, see [15,22,25,28,29] for example. In this line of research,
we note that in case A = A0 for some A0 which is independent on the variable z ∈ K, the equation (1.1) is
reduced to

(1.5) div [A0(x,∇u)] = div [|F|p−2F] in B2R,

and the W1,q-regularity estimates of Calderón-Zygmund type for weak solutions to the class of equations
(1.5) has been studied by many authors, for example see [2,3,5,8–10,12,13,18,19,22,23,29,30]. However,
if A depends on the z-variable as in (1.1) and even with F = 0, the W1,q-regularity estimates become much
more challenging, and not very well-understood. This is due the fact that the Calderón-Zygmund theory
relies heavily on the scaling and dilation invariances of the considered class of equations, see [40] for the
geometric intuition of this fact. Since the class of equations (1.5) is invariant under the scalings:

(1.6) u 7→ u/λ, and u(x) 7→
u(rx)

r
, for all positive numbers r, λ,

the W1,q-regularity of Calderón-Zygmund for weak solutions of (1.5) is therefore naturally expected. Mean-
while, the invariant homogeneity with respect to (1.6) is no longer available for (1.1). This fact presents a
serious obstacle in obtaining W1,q-estimates for the weak solutions of (1.1) as they do not generate enough
estimates to carry out the proof by using existing methods.

In the recent work [17, 34], the W1,q-regularity estimates for weak solutions of (1.1) are addressed, and
the W1,q-regularity estimates are established assuming that the weak solutions are bounded. To overcome
the loss of the homogeneity that we mentioned, we introduced in [17, 34] some “double-scaling parame-
ter” technique. Essentially, we study an enlarged class of “double parameter” equations of the type (1.1).
Then, by some compactness argument, we successfully applied the perturbation method in [5] to tackle the
problem. Carefull analysis is required to ensure that all intermediate steps in the perturbation process are
uniformly with respect to the scaling parameters. See also [4, 35] for further implementation of this idea,
and the work [11] for some other related results in this line of research. In the papers [4, 17, 34], the a
priori boundedness assumption on the weak solutions is essential to start the investigation of W1,q-theory.
This is because the approach uses the maximum principle for the unperturbed equations to implement the
perturbation technique of [5]. We also would like to refer [1] for which the same W1,p-theory for parabolic
equations of type (1.1) is also achieved for continuous weak solutions.

A natural question arises from the mentioned work: Is it necessary to assume that solutions are bounded,
both for Sobolev regularity theory and Schauder’s regularity one? In this paper, we will give an answer
to this question in the Sobolev regularity setting. We particularly establish the W1,q-regularity estimates
for weak solutions of (1.1) by assuming that the solutions are in the BMO John-Nirenberg space, i.e. the
borderline case. This is achieved in Theorem 1.1 below. Our paper therefore generalizes all results in
[1,4,17,34]. More than that, this paper also simplifies many technical issues in [17,34], and gives a generic
approach to unify and treat both classes of equations (1.1) and (1.5) at the same time. Unlike [4,17,34] we
only use “one parameter” in the class of our equations. Precisely, we investigate the following equation

(1.7) div
[
A(x, λu,∇u)

]
= div [|F|p−2|F], in B2R,

with the parameter λ ≥ 0. The class of equations (1.7) is indeed the smallest one that is invariant with
respect to the scalings and dilation (1.6) and that includes (1.1). When λ = 0, the equation (1.7) clearly
becomes the equation (1.5). This paper therefore recovers known results such as [2, 3, 5, 8, 9, 12, 13, 18, 19,
29, 30] regarding the interior regularity of weak solutions of (1.5).

From now, the notation Aq with q ≥ 1 stands for the class of Muckenhoupt weights whose definition
will be recalled in Section 2.2. Also, BR(y) is the ball in Rn with radius R > 0 and centered at y ∈ Rn. For
simplicity, we also write BR = BR(0). Moreover, for some locally integrable function f : U → R with some
measurable set U ⊂ Rn and with ρ0 > 0, the BMO semi-norm of bounded mean oscillation of f is defined
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by

[[ f ]]BMO(U,ρ0) = sup
y∈U,0<ρ<ρ0

1
|Bρ(y)|

∫
Bρ(y)∩U

| f (x) − f̄Bρ(y)∩U |dx, where

f̄Bρ(y)∩U =
1

|Bρ(y)|

∫
Bρ(y)∩U

f (x)dx.

The main result of this paper is the following interior regularity estimates for weak solutions of (1.7) in
weighted Lebesgue spaces.

Theorem 1.1. Let Λ > 0,M > 0, p, q > 1, γ ≥ 1, and α ∈ (0, 1]. Then, there exists a sufficiently
small constant δ = δ(p, q, n,Λ,M, γ, α) > 0 such that the following statement holds true. Assume that
A : B2R × K × R

n −→ Rn is a Carathéodory map satisfying (1.2)-(1.4) and

(1.8) [[A]]BMO(BR,R) := sup
0<ρ≤R

sup
y∈BR

1
|Bρ(y)|

∫
Bρ(y)

[
sup
z∈K

ξ∈Rn\{0}

|A(x, z, ξ) − ĀBρ(y)(z, ξ)|

|ξ|p−1

]
dx ≤ δ,

for some R > 0 and for some open interval K ⊂ R. Then, for every F ∈ Lp(B2R,R
n), if u is a weak solution

of
div[A(x, λu,∇u)] = div[|F|p−2F] in B2R

with [[λu]]BMO(BR,R) ≤ M for some λ ≥ 0, the following weighted regularity estimate holds∫
BR

|∇u|pqω(x)dx ≤ C
[∫

B2R

|F|pqω(x)dx + ω(B2R)
(

1
|B2R|

∫
B2R

|∇u|pdx
)q]

,

as long as its right hand side is finite, where ω ∈ Aq with [ω]Aq ≤ γ, ĀBρ(y)(z, ξ) :=
>

Bρ(y) A(x, z, ξ) dx, and
C is a constant depending only on q, p, n, Λ, α, M,K,R, and γ.

We emphasize that the significant contribution in Theorem 1.1 is that it relaxes and do not requires the
considered weak solutions to be bounded as in [1,4,17,34]. This is completely new even for the case ω = 1,
in comparison to the known work that we already mentioned for both the Schauder’s regularity theory and
the Sobolev one regarding weak solutions of (1.1). Certainly, removing the boundedness assumption on
solutions and replacing it by the condition that weak solutions are in BMO is valuable in the critical cases
in which the L∞-bound for solutions are not available, see [8] for example. When p = n, our weak solutions
are in W1,n, hence they are in BMO by the Sobolev imbedding theorem. Therefore, in this case, our theorem
is applicable directly while results [1, 4, 17, 34] may be not. Note that M is not required to be small, our
[[λu]]BMO(BR,R) is not necessary small. When λ = 0, the condition [[λu]]BMO(BR,R) ≤ M is certainly held for
every function u. Therefore, Theorem 1.1 recovers results in [2, 3, 5, 9, 12, 13, 18, 19, 30] in which the case
that A is independent on z ∈ K is studied. This paper therefore unifies W1,q-regularity estimates for both
(1.1) and (1.5). We also would like to note that the fact that A is defined in z ∈ K only is important in many
applications. A simple example is K = (0,∞), meaning that (1.2)-(1.4) only hold for positive solution u. In
the study of cross-diffusion equations in [17], K = (0,M0) for some M0 > 0.

We remark that the smallness condition (1.8) on the mean oscillation of A with respect to x-variable is
necessary as there is a counterexample provided in [31] for linear equations. In this regard, we also would
like to point out that in the work [10], regularity estimates for weak solutions of equations with measurable
coefficients that are small in partial BMO-semi norm are established.

This paper follows the perturbation approach [5] and makes use of Hardy-Littlewood maximal function,
see also [2,4,17,34,35,40]. One can also find in the work [10,11,22,23] for a similar perturbation approach
which uses Fefferman-Stein sharp function. To overcome the loss of boundedness of solutions due to
our assumption, instead of applying maximum principle during the perturbation process as in the known
work, we directly derive and delicately use Hölder’s regularity estimates for solutions of the corresponding
homogeneous equations, see the estimates (3.4) and (3.15) for example. The well-known John-Nirenberg’s
theorem and reverse Hölder’s inequality also play very important role in our approach.
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We now conclude this section by outlining the organization of this paper. Section 2 reviews some def-
initions, and some known results needed in the paper. Intermediate steps in the approximation estimates
required in the proof of Theorem 1.1 are established and proved in Section 3. The last section, Section 4
gives the proof of Theorem 1.1.

2. Definitions and preliminaries

2.1. Scaling invariances, and definitions of weak solutions. Let λ′ ≥ 0, and let us consider a function
u ∈ W1,p

loc (U) satisfying

div [A(x, λ′u,∇u)] = div [|F|p−2F] in U,

in the sense of distribution, for some open bounded set U ⊂ Rn. Then for some fixed λ > 0, the rescaled
function

(2.1) v(x) =
u(x)
λ

for x ∈ U

solves the equation

div [Â(x, λ̂v,∇v)] = div [|F̂|p−2F̂] in U

in the distributional sense, where λ̂ = λλ′ ≥ 0, and Â : U × K × Rn → Rn is defined by

(2.2) Â(x, z, ξ) =
A(x, z, λξ)
λp−1 and F̂(x) =

F(x)
λp−1 .

Remark 2.1. If A : U ×K×Rn −→ Rn satisfies the conditions (1.2)–(1.4) on U ×K×Rn, then the rescaled
vector field Â : U × K × Rn −→ Rn defined in (2.2) also satisfies the structural conditions (1.2)–(1.4) with
the same constants Λ, p, and α. Moreover, [[A]]BMO(U,ρ0) = [[Â]]BMO(U,ρ0) for any ρ0 > 0.

In this paper, C∞0 (U) is the set of all smooth compactly supported functions in U, Lp(U,Rn) with 1 ≤
p < ∞ is the Lebesgue space consists all measurable functions f : U → Rn such that | f |p is integrable on
U, and W1,p(U) is the standard Sobolev space on U. Moreover, 〈·, ·〉 is the Euclidean inner product in Rn.
Let us now recall the definitions of weak solutions that we use throughout the paper.

Definition 2.2. Let K ⊂ R be an interval, let Λ > 0, p > 1, α ∈ (0, 1]. Also, let U ⊂ Rn be an open bounded
set in Rn with sufficiently smooth boundary ∂U, and let A : U×K×Rn −→ Rn satisfy conditions (1.2)–(1.4)
on U × K × Rn.

(i) For every F ∈ Lp(U;Rn) and λ ≥ 0, a function u ∈ W1,p
loc (U) is called a weak solution of

div
[
A(x, λu,∇u)

]
= div[|F|p−2F], in U

if λu(x) ∈ K for a.e. x ∈ U, and∫
U

〈
A(x, λu,∇u),∇ϕ

〉
dx =

∫
U
〈|F|p−2F,∇ϕ〉 dx ∀ ϕ ∈ C∞0 (U).

(ii) For every F ∈ Lp(U;Rn), g ∈ W1,p(U), and λ ≥ 0, a function u ∈ W1,p(U) is a weak solution of{
div [A(x, λu,∇u)] = div [|F|p−2F], in U,

u = g, on ∂U,

if λu(x) ∈ K for a.e. x ∈ U, u − g ∈ W1,p
0 (U), and∫

U

〈
A(x, λu,∇u),∇ϕ

〉
dx =

∫
U
〈F,∇ϕ〉 dx ∀ ϕ ∈ C∞0 (U).
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2.2. Muckenhoupt weights, weighted inequalities, and crawling ink-spots lemma. This section recalls
several analysis results and definitions that are needed in the paper. Firstly, we recall the definition of Ap-
Muckenhoupt class of weights introduced in [33].

Definition 2.3. Let 1 ≤ p < ∞, a non-negative, locally integrable function ω : Rn → [0,∞) is said to be in
the class Ap of Muckenhoupt weights if

[ω]Ap := sup
balls B⊂Rn

(?
B
ω(x)dx

) (?
B
ω(x)

1
1−p dx

)p−1

< ∞, if p > 1,

[ω]A1 := sup
balls B⊂Rn

(?
B
ω(x)dx

) ∥∥∥ω−1
∥∥∥

L∞(B) < ∞ if p = 1.

It turns out that the class of Ap-Muckenhout weights satisfies the reverse Hölder’s inequality and the
doubling properties. In particular, a measure of any Ap-weight is comparable with the Lebesgue measure
in some sense. This is in fact a well-known result due to R. Coifman and C. Fefferman [6], and it is an
important ingredient in the paper.

Lemma 2.4 ( [6]). For 1 < p < ∞, the following statements hold true
(i) If µ ∈ Ap, then for every ball B ⊂ Rn and every measurable set E ⊂ B,

µ(B) ≤ [µ]Ap

(
|B|
|E|

)p

µ(E).

(ii) If µ ∈ Ap with [µ]Ap ≤ γ for some given γ ≥ 1, then there is C = C(γ, n) and β = β(γ, n) > 0 such
that

µ(E) ≤ C
(
|E|
|B|

)β
µ(B),

for every ball B ⊂ Rn and every measurable set E ⊂ B.
Observe that in the above statement and in this paper, the following notation is used

|U | =
∫

U
dx, µ(U) =

∫
U
µ(x)dx,

for every measurable set U ⊂ Rn.

Secondly, we state a standard result in measure theory.

Lemma 2.5. Assume that g ≥ 0 is a measurable function in a bounded subset U ⊂ Rn. Let θ > 0 and N > 1
be given constants. If µ is a weight function in Rn, then for any 1 ≤ p < ∞

g ∈ Lp(U, µ)⇔ S :=
∑
j≥1

N p jµ({x ∈ U : g(x) > θN j}) < ∞.

Moreover, there exists a constant C > 0 depending only on θ,N and p. such that

C−1S ≤ ‖g‖pLp(U,µ) ≤ C(µ(U) + S ),

where Lp(U, µ) is the weighted Lesbesgue space with norm

‖g‖Lp(U,µ) =

(∫
U
|g(x)|pµ(x)dx

)1/p

.

Thirdly, we discuss the Hardy-Littlewood maximal operator and its boundedness in weighted spaces.
For a given locally integrable function f : Rn → R, the Hardy-Littlewood maximal function is defined as

(2.3) M f (x) = sup
ρ>0

?
Bρ(x)
| f (y)|dy, x ∈ Rn.
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For a function f that is defined on a bounded domain U, we write

MU f (x) =M( fχU)(x),

where χU is the characteristic function of the set U. The following boundedness of Hardy-Littlewood
maximal operatorM : Lq(Rn, ω)→ Lq(Rn, ω) is classical.

Lemma 2.6. Let γ ≥ 1, and ω ∈ Aq with [ω]Aq ≤ γ. The followings hold.
(i) Strong (q, q): Let 1 < q < ∞, then there exists a constant C = C(γ, q, n) such that

‖M‖Lq(Rn,ω)→Lq(Rn,ω) ≤ C.

(ii) Weak (1, 1): There exists a constant C = C(n) such that for any λ > 0, we have∣∣∣∣{x ∈ Rn :M( f ) > λ
}∣∣∣∣ ≤ C

λ

∫
Rn
| f |dx.

Finally, we recall the following important lemma that is needed in this paper. This lemma is usually
referred to “crawling ink-spots” lemma, which is originally due to N. V. Krylov and M. V. Safonov, see
[24, 36].

Lemma 2.7 (crawling ink-spots). Suppose ω ∈ Aq with [ω]Aq ≤ γ for some 1 < q < ∞ and some γ ≥ 1.
Suppose also that R > 0, and suppose that C,D are measurable sets satisfying C ⊂ D ⊂ BR. Assume that
there are ρ0 ∈ (0,R/2), and 0 < ε < 1 such that the followings hold

(i) ω(C) < εω(Bρ0(y)) for almost every y ∈ BR, and
(ii) for all x ∈ BR and ρ ∈ (0, ρ0), if ω(C ∩ Bρ(x)) ≥ εω(Bρ(x)), then Bρ(x) ∩ BR ⊂ D.

Then
ω(C) ≤ ε1ω(D), for ε1 = ε20nqγ2.

2.3. Hölder regularity, and self-improving regularity. We recall some classical regularity results that
are needed in the paper. The first result is about the interior Hölder’s regularity for weak solutions of
homogeneous p-Laplacian type equations (1.5). This result is indeed a consequence of the well-known De
Giorgi-Nash-Moser theory, see [16, Theorem 7.6] and [25, Theorem 1.1, p. 251].

Lemma 2.8. Let Λ > 0, p > 1, and let A0 : Br × R
n → Rn be a Carathéodory map and satisfy (1.2)-(1.3)

on Br × R
n with some r > 0. If v ∈ W1,p(Br) is a weak solution of the equation

div [A0(x,∇v)] = 0, in Br.

Then, there is C0 > 0 depending only on Λ, n, p such that

‖v‖L∞(B5r/6) ≤ C0

(?
Br

|v|pdx
)1/p

.

Moreover, there exists a constant β ∈ (0, 1) depending only on Λ, n, p and ‖v‖L∞(B5r/6) such that

|v(x) − v(y)| ≤ C0 ‖v‖L∞(B5r/6)

(
|x − y|

r

)β
, ∀ x, y ∈ B2r/3.

We now recall a classical result on self-improving regularity estimates for weak solutions of p-Laplacian
type equations. The following result is due to N. Meyers and A. Elcrat in [32, Theorem 1] (see also [8]).
For the parabolic version of this result, see [20].

Lemma 2.9. Let Λ > 0, p > 1. Then, there exists p0 = p0(Λ, n, p) > p such that the following statement
holds true. Suppose that A0 : B2r ×R

n → Rn is a Carathéodory map satisfying (1.2)-(1.3) on B2r ×R
n with

some r > 0. If v ∈ W1,p(B2r) is a weak solution of the equation

div [A0(x,∇v)] = 0, in B2r
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then, for every p1 ∈ [p, p0], there exists a constant C = C(Λ, p1, p, n) > 0 such that(
1
|Br |

∫
Br

|∇v|p1dx
)1/p1

≤ C
(

1
|B2r |

∫
B2r

|∇v|pdx
)1/p

.

2.4. Some simple energy estimates. In this section we derive some elementary estimates which will be
used frequently in the paper.

Lemma 2.10. Let Λ > 0, p > 1, and let U ⊂ Rn be a bounded open set, and let K be an interval in
R. Assume that A : U × K × Rn −→ Rn satisfies (1.2) - (1.3) on U × K × Rn. Then for any functions
u, v ∈ W1,p(U) and any nonnegative function φ ∈ C(U), it holds that

(i) If 1 < p < 2, then for every τ > 0,∫
U
|∇u − ∇v|pφ dx ≤ τ

∫
U
|∇u|pφ dx

+ C(Λ, p)τ
p−2

p

∫
U
〈A(x, u,∇u) − A(x, u,∇v),∇u − ∇v〉φ dx.

(ii) If p ≥ 2, then∫
U
|∇u − ∇v|pφ dx ≤ C(Λ, p)

∫
U
〈A(x, u,∇u) − A(x, u,∇v),∇u − ∇v〉φ dx.

Proof. This lemma is well-known, see [37, Lemma 1] and [34, Lemma 3.1]. However, because it is im-
portant and also for completeness, we provide the proof. We first claim that from (1.2), the following
monotonicity property of A holds true〈

A(x, z, ξ) − A(x, z, η), ξ − η
〉
≥

{
γ0|ξ − η|

p, if p ≥ 2,
γ0

(
|ξ| + |ξ − η|)p−2|ξ − η|2 if 1 < p < 2,(2.4)

for all (x, z) ∈ U × K and for all ξ, η ∈ Rn \ {0}, where γ0 = γ0(Λ, p) > 0 is a constant. To prove the claim,
observe that for each (x, z) ∈ U × K and each ξ, η ∈ Rn \ {0}, we can write

〈A(x, z, ξ) − A(x, z, η), ξ − η〉 =

∫ 1

0
〈Aξ(x, z, ξ + t(η − ξ))(ξ − η), ξ − η〉dt,(2.5)

where Aξ(x, z, ·) is the matrix of partial derivatives of A with respect to the third componental variable in
Rn \ {0} of A. It follows from (1.2) that

(2.6) 〈Aξ(x, z, ξ + t(η − ξ))(ξ − η), ξ − η〉 ≥ Λ−1|ξ + t(η − ξ)|p−2|ξ − η|2.

Then, if p ∈ (1, 2), we see that |ξ + t(η − ξ)| ≤ |ξ| + |ξ − η| and therefore,

〈A(x, z, ξ) − A(x, z, η), ξ − η〉 ≥ Λ−1(|ξ| + |ξ − η|)p−2|ξ − η|2.

Hence, the second estimate in (2.4) is proved. On the other hand, when p ≥ 2, by (2.5)-(2.6), we see that

〈A(x, z, ξ) − A(x, z, η), ξ − η〉 ≥ Λ−1|ξ − η|2
∫ 1/4

0
|ξ + t(η − ξ)|p−2dt.

We may now assume without loss of generality that |ξ − η| , 0 and |η| ≤ |ξ|. Let us define t0 =
|ξ|
|ξ−η| . Note

that if |ξ − η| ≤ 2|ξ|, then t0 ≥ 1
2 and

|ξ + t(η − ξ)| ≥ ||ξ| − t|ξ − η|| = |t − t0||ξ − η| ≥
1
4
|ξ − η|, ∀ t ∈ (0, 1/4).

Otherwise, we have |η| ≤ |ξ| ≤ 1
2 |ξ − η| and then

|ξ + t(η − ξ)| = |(1 − t)(ξ − η) + η| ≥ (1 − t)|ξ − η| − |η| ≥
3
4
|ξ − η| −

1
2
|ξ − η| =

1
4
|ξ − η|, ∀t ∈ (0, 1/4).
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Hence, in conclusion, we have |ξ + t(η − ξ)| ≥ |ξ − η|/4 for all t ∈ (0, 1/4) and therefore,

〈A(x, z, ξ) − A(x, z, η), ξ − η〉 ≥
1

4p−1Λ
|ξ − η|p.

This proves the first estimate in (2.4) when p ≥ 2, and also completes the proof of (2.4).
Finally, observe that from (2.4), (ii) becomes trivial. Therefore, it remains to prove (i) with 1 < p < 2.

In this case, for each ξ, η ∈ Rn \ {0}, and for each τ ∈ (0, 1), we can use Young’s inequality to obtain

|ξ − η|p = (|ξ| + |ξ − η|)
p(2−p)

2 (|ξ| + |ξ − η|)
p(p−2)

2 |ξ − η|p

≤
τ

3−p (|ξ| + |ξ − η|)p + Cpτ
p−2

p (|ξ| + |ξ − η|)p−2|ξ − η|2.

From this and (2.4), we infer that

|ξ − η|p ≤ τ|ξ|p + Cpτ
p−2

p (|ξ| + |ξ − η|)p−2|ξ − η|2

≤ τ|ξ|p + C(Λ, p)τ
p−2

p 〈A(x, z, ξ) − A(x, z, η), ξ − η〉.

Then (i) follows and the proof of Lemma 2.10 is complete. �

Lemma 2.11 (Caccioppoli’s type estimates). Let Λ > 0, p > 1 be fixed. Then, for every r > 0, every
A0 : Br × R

n satisfying (1.2)-(1.3) on Br × R
n, if v ∈ W1,p(Br) is a weak solution of

div [A0(x,∇v)] = 0, in Br,

then, it holds that∫
Br

|∇v|pφ(x)pdx ≤ C(Λ, p)
∫

Br

|v − k|p|∇φ(x)|pdx, ∀ φ ∈ C1
0(Br), φ ≥ 0,

and for all k ∈ R.

Proof. Since (v − k)φ ∈ W1,p
0 (Br), we can use it as a test function. This together with Hölder’s inequality,

and Young’s inequality, we can infer that∫
Br(x0)
〈A0(x,∇v) − A0(x, 0),∇v〉φpdx = −p

∫
Br(x0)
〈A0(x,∇v),∇φ〉(v − k)φp−1dx

≤ C(Λ, p)
∫

Br(x0)
|∇v|p−1φp−1|∇φ||v − k|dx

≤
1
4

∫
Br(x0)

|∇v|pφp(x)dx + C(Λ, p)
∫

Br(x0)
|v − k|p|∇φ|pdx.

Now, by Lemma 2.10, it follows that∫
Br(x0)

|∇v|pφpdx ≤
1
4

∫
Br(x0)

|∇v|pφpdx + C(Λ, p)
∫

Br(x0)
〈A0(x,∇v) − A0(x, 0),∇vφp〉dx

≤
1
2

∫
Br(x0)

|∇v|pφpdx + C(Λ, p)
∫

Br(x0)
|v − k|p|∇φ|pdx.

Therefore, ∫
Br(x0)

|∇v|pφ(x)pdx ≤ C(Λ, p)
∫

Br(x0)
|v − k|p|∇φ(x)|pdx,

as desired. �
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2.5. A known approximation estimate. We recall a known approximation estimate established in [2, 3]
and many other papers for the solutions of equations of the type (1.5) in which the vector field A0 is
independent on the variable z ∈ K. This approximation estimate will be used in some intermediate step for
the proof of Theorem 1.1.

Lemma 2.12. Let Λ > 0, p > 1 be fixed. Then, for every ε ∈ (0, 1), there exists sufficiently small number
δ0 = δ0(ε,Λ, n, p) ∈ (0, ε) such that the following holds. Assume that A0 : B2R × R

n → Rn such that
(1.2)–(1.3) hold, and

sup
ξ∈Rn

ξ,0

sup
x∈B2R
0<ρ<R

1
|Bρ(x)|

∫
Bρ(x)

|A0(y, ξ) − Ā0,Bρ(x)|

|ξ|p−1 dy ≤ δ0.

Then, for every x0 ∈ BR and r ∈ (0,R/2) and for G ∈ Lp(B2R,R
n), if w ∈ W1,p(B2r(x0)) is a weak solution

of
div [A0(x,∇w)] = div [|G|p−2G], in B2r(x0),

satisfying
1

|B2r(x0)|

∫
B2r(x0)

|∇w|pdx ≤ 1,

and if
1

|B2r(x0)|

∫
B2r(x0)

|G|pdx ≤ δp
0 ,

then there is h ∈ W1,p(B7r/4(x0)) such that the following estimate holds

1
|B7r/4(x0)|

∫
B7r/4(x0)

|∇w − ∇h|pdx ≤ ε p, ‖∇h‖L∞(B3r/2(x0)) ≤ C(Λ, n, p).

3. Interior approximation estimates

In this section, let A : B2R ×K ×R
n → Rn satisfy (1.2)–(1.4) on B2R ×K ×R

n for some R > 0 and some
open interval K ⊂ R. We study the weak solutions u ∈ W1,p(B2R) of the scaling parameter equation

(3.1) div[A(x, λu,∇u] = div[|F|p−2F], in B2R,

with the parameter λ ≥ 0. Our goal in this section is to provide necessary estimates for proving Theorem
1.1. Our approach is based on the perturbation technique introduced in [5] together with the “scaling
parameter” technique introduced in [17, 34]. The approach is also influenced by the recent developments,
see [1–4, 35]. In our first step, we freeze u in A, and then approximate the solution u of (3.1) by a solution
of the corresponding homogeneous equations with the frozen u coefficient as in [1, 4].

Lemma 3.1. Let Λ,M > 0, p > 1 be fixed and κ ∈ (0, 1]. Then, for every small ε ∈ (0, 1), there exists
a sufficiently small number δ1 = δ1(ε,Λ, n, p, κ) ∈ (0, ε) such that the following holds. Assume that A :
B2R×K×R

n → Rn satisfies(1.2)–(1.4) with some K ⊂ R and some R > 0, and assume that F ∈ Lp(B2R,R
n)

satisfies ?
Br(x0)

|F|pdx ≤ δp
1 ,

some x0 ∈ BR and some r ∈ (0,R). Suppose also that u ∈ W1,p(B2R) is a weak solution of (3.1) satisfying?
Br(x0)

|∇u|pdx ≤ 1, and λ

(?
Br(x0)

|u − ūBr(x0)|
p
)1/p

≤ M,

for some λ ≥ 0. Then,

(3.2)
?

Br(x0)
|∇u − ∇v|pdx ≤ ε pκn,
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where v ∈ W1,p(Br) is the weak solution of

(3.3)
{

div [A(x, λu,∇v)] = 0, in Br(x0),
v = u − ūBr(x0), on ∂Br(x0).

Moreover, it also holds that

(3.4) λ

(?
Br(x0)

|v|pdx
)1/p

≤ C(n, p)[M + λrεκ
n
p ].

Proof. Note that for Ã0(x, ξ) := A(x, λu(x), ξ). We see that Ã0 is independent on the variable z ∈ K, and it
satisfies the assumptions (1.2)–(1.3). The equation (3.3) is written as

(3.5)
{

div [Ã0(x,∇v)] = 0, in Br(x0),
v = u − ūBr(x0), on ∂Br(x0),

and we note that the existence of weak solution v of (3.5) follows from the standard theory in calculus of
variation. Therefore, it remains to prove the estimates (3.2), and (3.4). Since v−[u− ūBr(x0)] ∈ W1,p

0 (Br(x0)),
we can take it as a test function for the equation (3.3), we obtain∫

Br(x0)
〈A(x, λu,∇v),∇u − ∇v〉dx = 0.

Similarly, we can use v − [u − ūBr(x0)] as a test function for the equation for (3.1) to see that∫
Br(x0)
〈A(x, λu,∇u),∇u − ∇v〉dx =

∫
Br(x0)
〈|F|p−2F,∇u − ∇v〉dx.

It then follows from these two identies that

(3.6)
∫

Br(x0)
〈A(x, λu,∇u) − A(x, λu,∇v),∇v − ∇u〉dx =

∫
Br(x0)
〈|F|p−2F,∇u − ∇v〉dx.

We only need to consider the case 1 < p < 2 because the case p ≥ 2 is similar, and simpler. It follows from
(i) of Lemma 2.10, Remark 2.1, and (3.6), that for each τ ∈ (0, 1),∫

Br(x0)
|∇u − ∇v|pdx

≤ τ

∫
Br(x0)

|∇u|pdx + C(Λ, τ, p)
∫

Br(x0)
〈A(x, λu,∇u) − A(x, λu,∇v),∇v − ∇u〉dx

≤ τ

∫
Br(x0)

|∇u|pdx + C(Λ, τ, p)
∫

Br(x0)
|〈|F|p−2F,∇u − ∇v〉|dx

≤ τ

∫
Br(x0)

|∇u|pdx +
1
2

∫
Br(x0)

|∇u − ∇v|pdx + C(Λ, τ, p)
∫

Br(x0)
|F|pdx,

where in the last step, we have used Hölder’s inequality and Young’s inequality. Hence, by cancelling
similar terms, we obtain?

Br(x0)
|∇u − ∇v|pdx ≤ 2τ

?
Br(x0)

|∇u|pdx + C(Λ, τ, p)
?

Br(x0)
|F|pdx.

Now, choose τ = ε pκn/4, and then choose δ1 = δ1(ε,Λ, n, p, κ) ∈ (0, ε) sufficiently small such that
C(Λ, τ, p)δp < ε pκn/2, the estimate (3.2) follows. It remains to prove (3.4). By Poincaré’s inequality,
we see that(?

Br(x0)
|v|pdx

)1/p

≤ C(p)

(?
Br(x0)

|v − [u − ūBr(x0)]|pdx
)1/p

+

(?
Br(x0)

|u − ūBr(x0)|
pdx

)1/p
≤ C(n, p)

r (?
Br(x0)

|∇v − ∇u|pdx
)1/p

+

(?
Br(x0)

|u − ūBr(x0)|
pdx

)1/p .
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From this and since κ ∈ (0, 1), it follows that

λ

(?
Br(x0)

|v|pdx
)1/p

≤ C(n, p)[M + rλεκ
n
p ]

as desired. �

Next, we approximate the solution u by the solution w of the following equation whose principal part is
a vector field that is independent on w and has small oscillation with respect to x-variable

(3.7)
{

div [A(x, λūBκr(x0),∇w)] = 0, in Bκr(x0),
w = v, on ∂Bκr(x0),

where v is the weak solution of (3.3) and κ ∈ (0, 1/3) sufficiently small to be determined. Our next result is
in the same fashion as that of Lemma 3.1.

Lemma 3.2. Let Λ,M > 0, p > 1 and α ∈ (0, 1] be fixed, and let ε ∈ (0, 1). There exist positive, sufficiently
small numbers κ = κ(ε,Λ,M, p, n, α) ∈ (0, 1/3) and δ2 = δ2(ε,Λ,M, n, α, p) ∈ (0, ε) such that the following
holds. Assume that A : B2R × K × R

n → Rn satisfies (1.2)–(1.4) with some R > 0 and some open interval
K ⊂ R, and assume that F ∈ Lp(B2R,R

n) and?
Br(x0)

|F|pdx ≤ δp
2 ,

some x0 ∈ BR and some r ∈ (0,R/2). Then, for every λ > 0, if u ∈ W1,p(B2R) is a weak solution of (3.1)
satisfying ?

B2κr(x0)
|∇u|pdx ≤ 1,

?
Br(x0)

|∇u|pdx ≤ 1, and [[λu]]BMO(BR,R) ≤ M,

it holds that

(3.8)
(?

Bκr(x0)
|∇u − ∇w|pdx

)1/p

≤ ε, and
(?

Bκr
|∇w|pdx

)1/p

≤ C0(n, p).

where w is the weak solution of (3.7).

Proof. For a given sufficiently small ε > 0, let ε′ ∈ (0, ε/2) and κ ∈ (0, 1/3) both sufficiently small and
depending on ε,Λ,M, n, α, p which will be determined. Then, let δ2 = δ1(ε′,Λ, n, p, κ) > 0, where δ1 is
defined as in Lemma 3.1. Let v be the solution of (3.3). By using Lemma 3.1, we see that?

Br(x0)
|∇u − ∇v|pdx ≤ (ε′)pκn, and λ

(?
Br(x0)

|v|pdx
)1/p

≤ C(n, p)[rε′λκ
n
p + M].(3.9)

Observe also that the first inequality in (3.9), the assumption in the lemma, and the fact that both ε and κ
are small imply that(?

B2κr(x0)
|∇v|pdx

)1/p

≤

(?
B2κr(x0)

|∇u − ∇v|pdx
)1/p

+

(?
B2κr(x0)

|∇u|pdx
)1/p

≤

(
1

2nκn

?
Br(x0)

|∇u − ∇v|pdx
)1/p

+

(?
B2κr(x0)

|∇u|pdx
)1/p

≤
ε′

2n/p + 1 ≤ 2.

(3.10)

On the other hand, from the Caccioppli’s type estimate in Lemma 2.11, (3.9) and κ ∈ (0, 1/3), we also see
that (

1
|B2κr(x0)|

∫
B2κr(x0)

|∇v|pdx
)1/p

≤
C(Λ, n, p)

(1 − 2κ)rκ
n
p

(
1

|Br(x0)|

∫
Br(x0)

|v|pdx
)1/p

≤ C(Λ, n, p)
[
ε′ + M(λκ

n
p r)−1

]
.

(3.11)
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Now, let w be the weak solution of (3.7). As in the proof of Lemma 3.1, the existence of w is assured.
Therefore, it remains to prove the estimate (3.8). Take w − v ∈ W1,p

0 (Bκr(x0)) as a test function for the
equation (3.7) and the equation (3.3), we obtain

(3.12)
∫

Bκr(x0)
〈A(x, λu,∇v),∇w − ∇v〉dx =

∫
Bκr(x0)

〈A(x, λūBκr(x0),∇w),∇w − ∇v〉dx = 0.

Again, we only need to consider the case 1 < p < 2, as p ≥ 2 can be done similarly using (ii) of Lemma
2.10. From now on, for simplicity, we write û = u − ūBκr(x0). We can use (i) of Lemma 2.10, the condition
(1.4), and (3.12) to obtain with some τ > 0 sufficiently small to be determined,

∫
Bκr(x0)

|∇v − ∇w|pdx

≤ τ

∫
Bκr(x0)

|∇v|pdx + C(Λ, p)τ
p−2

p

∫
Bκr(x0)

〈A(x, λūBκr(x0),∇v) − A(x, λūBκr(x0),∇w),∇v − ∇w〉dx

≤ τ

∫
Bκr(x0)

|∇v|pdx + C(Λ, p)τ
p−2

p

∫
Bκr(x0)

〈A(x, λūBκr(x0),∇v) − A(x, λu,∇v),∇v − ∇w〉dx

≤ τ

∫
Bκr(x0)

|∇v|pdx + C(Λ, p)τ
p−2

p

∫
Bκr(x0)

|λû|α|∇v|p−1|∇v − ∇w|dx

≤
1
2

∫
Bκr(x0)

|∇v − ∇w|pdx + τ

∫
Bκr(x0)

|∇v|pdx + C(Λ, p)τ
p−2
p−1

∫
Bκr(x0)

|λû|
αp
p−1 |∇v|pdx,

where in the last step, we have used the Hölder’s inequality and Young’s inequality. Hence, by cancelling
similar terms, we obtain

1
|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx

≤
2τ

|Bκr(x0)|

∫
Bκr(x0)

|∇v|pdx +
C(Λ, p)τ

p−2
p−1

|Bκr(x0)|

∫
Bκr(x0)

|λû|
αp
p−1 |∇v|pdx.

For q1 > p and sufficiently close to p depending only on Λ, p, we write q1 =
αpp1

(p−1)(p1−p) > p. Then, using
the Hölder’s inequality, the self-improving regularity estimate (i.e. Lemma 2.9), and (3.10), we obtain

1
|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx

≤
2τ

|Bκr(x0)|

∫
Bκr(x0)

|∇v|pdx

+ C(Λ, p)τ
p−2
p−1

(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|q1

) p1−p
p1

(
1

|Bκr(x0)|

∫
Bκr(x0)

|∇v|p1dx
) p

p1

≤ C(Λ, n, p)

2τ + τ
p−2
p−1

(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|q1dx
) p1−p

p1

 ( 1
|B2κr(x0)|

∫
B2κr(x0)

|∇v|pdx
)
.
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Now, from the well-known John-Nirenberg’s theorem, we further write
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|q1dx =
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|p/2|λû|q1−p/2dx

≤

(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
)1/2 (

1
|Bκr(x0)|

∫
Bκr(x0)

|λû|2q1−pdx
)1/2

≤ C(n, α, p)[[λu]]
q1−

p
2

BMO(BR,R)

(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
)1/2

= C(n,M, α, p)
(

1
|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
)1/2

.

Therefore,
1

|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx

≤ C(Λ, n, α, p)

2τ + τ
p−2
p−1

(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
) p1−p

2p1

 ( 1
|B2κr(x0)|

∫
B2κr(x0)

|∇v|pdx
)
.

(3.13)

From (3.11) and [[λu]]BMO(B2R,R) ≤ M, we can take τ = 1/2 in (3.13) to particularly obtain(
1

|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx
)1/p

≤ C(Λ,M, n, α, p)
(

1
|B2κr(x0)|

∫
B2κr(x0)

|∇v|pdx
)1/p

≤ C1(Λ,M, n, p)
[
ε′ + M(rκ

n
pλ)−1

]
.

Hence, if εκ
n
p λr

4MC1(Λ,M,n,p) ≥ 1, we choose ε′ sufficiently small so that

C1(Λ, n, p)ε′ < ε/4.

Then, (
1

|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx
)1/p

≤ ε/2.

From this, the first estimate in (3.9) and the triangle inequality, the first estimate of (3.8) follows. Therefore,
it remains to consider the case

(3.14) λκ
n
p rε ≤ 4MC1(Λ,M, n, p).

In this case, we first note that from our choice that ε′ ≤ ε, we particularly have

λκ
n
p ε′r ≤ C(Λ,M, n, p).

Then, it follows from the second estimate in (3.9) that

λ

(
1

|Br(x0)|

∫
Br(x0)

|v|pdx
)1/p

≤ C(Λ,M, n, p).

On the other hand, from (3.3), and the scaling invariances discussed in Subsection 2.1, we observe that
ṽ(x) = λv(x − x0) is a weak solution of

div [Â0(x,∇ṽ)] = 0, in Br,

where Â0(x, ξ) = λp−1A(x − x0, λu(x − x0), λ−1ξ) for all x ∈ Br, ξ ∈ R
n. From this and Remark 2.1, we

can apply the Hölder’s regularity theory in Lemma 2.8 for the solution ṽ to find that there is β ∈ (0, 1)
depending only on Λ,M, n, p such that

λ ‖v‖L∞(B5r/6(x0)) ≤ C(Λ,M, n, p), and λ|v(x) − v(y)| ≤ C(Λ,M, p, n)κβ, ∀ x, y ∈ Bκr(x0).(3.15)
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The estimate (3.15), (3.10), and (3.13) imply that

1
|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx

≤ C(Λ,M, n, α, p)

2τ + τ
p−2
p−1

(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
) p1−p

2p1

 .(3.16)

On the other hand, for v′ = v + ūBκr , we can write

1
|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx

≤ C(p)
[

1
|Bκr(x0)|

∫
Bκr(x0)

|λ(u − v′)|pdx +
1

|Bκr(x0)|

∫
Bκr(x0)

|λ(v′ − v̄′Bκr(x0))|pdx

+
1

|Bκr(x0)|

∫
Bκr(x0)

|λ(ūBκr(x0) − v̄′Bκr(x0))|pdx

≤ C(n, p)
[

1
κn|Br(x0)|

∫
Br(x0)

|λ(u − v′)|pdx +
1

|Bκr(x0)|

∫
Bκr(x0)

|λ(v − v̄Bκr(x0))|pdx
]
.

Since u − v′ ∈ W1,2
0 (Br(x0)), we can use the Poincaré’s inequality for the first term in the right hand side of

the last estimate to obtain(
1

|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
)1/p

≤ C(Λ, n, p)

λr

κ
n
p

(
1

|Br(x0)|

∫
Br(x0)

|∇u − ∇v|pdx
)1/p

+ λ sup
x,y∈Bκr(x0)

|v(x) − v(y)|

 ,
From this estimate, (3.9), and (3.15), we infer that(

1
|Bκr(x0)|

∫
Bκr(x0)

|λû|pdx
)1/p

≤ C(Λ, p, n)
[
λrε′ + κβ

]
.

From this, we can control the estimate in (3.16) as

1
|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx ≤ C(Λ,M, n, α, p)
[
2τ + τ

p−2
p−1

(
λrε′ + κβ

]) p(p1−p)
2p1

]
.

Then, combining this last estimate with (3.14), we obtain

1
|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx ≤ C2(Λ,M, α, p, n)
(
τ + τ

p−2
p−1

[ ε′
εκ

n
p

+ κβ
] p(p1−p)

2p1

)
.

We firstly choose τ > 0 so that

C2(Λ,M, n, α, p)τ =
1
2

(
ε

2

)p
.

Next, we choose κ sufficiently small depending only on Λ, n, α, p and ε so that

κβ ≤
1
2

 (ε/2)p

4C2(Λ,M, p, α, n)τ
p−2
p−1


2p1

p(p1−p)

and finally we choose ε′ ∈ (0, ε/2) and sufficiently small so that

ε′ ≤
κ

n
p ε

2

 (ε/2)p

4C2(Λ,M, p, α, n)τ
p−2
p−1


2p1

p(p1−p)

.
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From these choices, it follows that(
1

|Bκr(x0)|

∫
Bκr(x0)

|∇v − ∇w|pdx
)1/p

≤ ε/2.

The first estimate (3.8) then holds thanks to this estimate, the first estimate in (3.9), and the triangle in-
equality.

Finally, to complete the proof, it remains to verify the second estimate of (3.8). By using the triangle
inequality, the assumption of the lemma and the fact that ε ∈ (0, 1), we see that(?

Bκr(x0)
|∇w|pdx

)1/p

≤

(?
Bκr(x0)

|∇w − ∇u|pdx
)1/p

+

(?
Bκr(x0)

|∇u|pdx
)1/p

≤ ε +

(
2n
?

B2κr(x0)
|∇u|pdx

)1/p

≤ ε + 2
n
p ≤ 1 + 2

n
p = C0(n, p).

The proof is therefore complete. �

Summerizing the efforts, we can state and prove the main result of the section.

Proposition 3.3. Let Λ > 0, p > 1 and α ∈ (0, 1] be fixed. Then, for every ε ∈ (0, 1), there exist sufficiently
small numbers κ = κ(ε,Λ,M, p, n, α) ∈ (0, 1/2] and δ = δ(ε,Λ,M, α, n, p) ∈ (0, ε) such that the following
holds. Assume that A : B2R × K × R

n → Rn such that (1.2)–(1.4) and (1.8) hold for some R > 0 and some
open interval K ⊂ R, and assume that ?

B2r(x0)
|F|pdx ≤ δp,

for some x0 ∈ BR and some r ∈ (0,R/2). Then, for every λ ≥ 0, if u ∈ W1,p(B2R) is a weak solution of (3.1)
satisfying ?

B4κr(x0)
|∇u|pdx ≤ 1,

?
B2r(x0)

|∇u|pdx ≤ 1, and [[λu]]BMO(BR,R) ≤ M,

then there is h ∈ W1,p(B7κr/4(x0)) such that the following estimate holds

(3.17)
?

B7κr/4(x0)
|∇u − ∇h|pdx ≤ ε p, ‖∇h‖L∞(B3κr/2(x0)) ≤ C(Λ, n, p).

Proof. For given ε, let

δ = min{δ0(ε/[2C0(n, p)],Λ, n, p), δ2(ε/2,Λ,M, α, p)},

where δ0 is defined in Lemma 2.12, δ2 is defined in Lemma 3.2, and C0(n, p) > 1 is a constant defined
in (3.8). We now prove our Proposition 3.2 with this choice of δ, κ. Note that since both numbers δ̂0, δ2
are independent on λ, so do δ, κ. If λ = 0, then our proposition follows directly from Lemma 2.12 with G
replaced by F and for κ = 1/2. Also, when λ > 0, let κ be a number defined as in Lemma 3.2. Then, our
proposition follows directly by applying Lemma 3.2 with r replaced by 2r, Lemma 2.12 with G = 0 and r
replaced by 2κr, and the triangle inequality. �

4. Level set estimates and proof of Theorem 1.1

4.1. Level set estimates. Recall that the Hardy-Littlewood maximal functionM( f ) is defined in (2.3), and
MU( f ) = M( fχU) for an open set U and its characteristic function χU . Our first result of this subsection
is the following important lemma on the density of the level sets of solution u of (3.1).

Lemma 4.1. Let Λ,M be positive numbers, p, γ > 1, α ∈ (0, 1], and let ε > 0 sufficiently small. Then
there exist sufficiently large number N = N(Λ, n, p) ≥ 1 and there exist two positive sufficiently small
numbers κ = κ(ε,Λ,M, p, n, γ, α) ∈ (0, 1/2] and δ = δ(ε,Λ,M, p, n, γ, α) ∈ (0, ε) such that the following
statement holds. Suppose that A : B2R × K × R

n → Rn such that (1.2)–(1.4) and (1.8) hold for some R > 0
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and some open interval K ⊂ R. Suppose also that u ∈ W1,p(B2R) is a weak solution of (3.1) satisfying
[[λu]]BMO(BR,R) ≤ M with some λ ≥ 0. If y ∈ BR and ρ ∈ (0, κ0) such that

Bρ(y) ∩
{
BR :MB2R(|∇u|p) ≤ 1

}
∩

{
BR :MB2R(|F|p) ≤ δp

}
, ∅,

for κ0 = min
{
1,R

}
κ/6, then

(4.1) ω
({

x ∈ BR :MB2R(|∇u|p) > N
}
∩ Bρ(y)

)
≤ εω(Bρ(y)),

for ω ∈ Aq with [ω]Aq ≤ γ and q > 1.

Proof. The proof is standard using Proposition 3.3. However, as Proposition 3.3 is stated differently com-
pared to the other similar approximation estimates in the literature, details of the proof of this lemma is
required. For a given ε > 0, let ε′ > 0 be a positive number to be determined depending only on ε,Λ, n, p
and γ. Then, let κ = κ(ε′,Λ,M, p, n, α) and δ = δ(ε′,Λ,M, p, n, α) be the numbers defined in Proposition
3.3. We prove the lemma with this choice of δ, κ. By the assumption, we can find

(4.2) x0 ∈ Bρ(y) ∩
{
BR :MB2R(|∇u|p) ≤ 1

}
∩

{
BR :MB2R(|F|p) ≤ δp

}
.

Let r = κ−1ρ ∈ (0,R/6). Since ρ ∈ (0, κ0) and κ is sufficiently small, B4r(y) ⊂ B5r(x0) ⊂ B2R. From this and
(4.2), it follows that ?

B4r(y)
|∇u|pdx ≤

|B5r(x0)|
|B4r(y)|

?
B5r(x0)

|∇u|pdx ≤
(
5
4

)n

,?
B4r(y)

|F|pdx ≤
|B5r(x0)|
|B4r(y)|

?
B5r(x0)

|F|pdx ≤
(
5
4

)n

δp.

Moreover, we also have B8ρ(y) ⊂ B9ρ(x0) ⊂ B2R and therefore?
B8κr(y)

|∇u|pdx =

?
B8ρ(y)

|∇u|pdx ≤
|B9ρ(x0)|
|B8ρ(y)|

?
B9ρ(x0)

|∇u|pdx ≤
(
9
8

)n

.

Hence, all conditions in Proposition 3.3 are satisfied with some suitable scaling. From this, and our choice
of κ, δ, we can apply Proposition 3.3 to find a function h ∈ W1,p(B 7ρ

2
(y)) satisfying?

B 7ρ
2

(y)
|∇u − ∇h|pdx ≤ (ε′)p

(
3
2

)n

, ‖∇h‖L∞(B3ρ(y)) ≤ C∗(Λ, n, p),

where in the above estimates, we have used the fact that κr = ρ. Let us now denote

N = max
{
2pCp

∗ , 2
n
}
,

and we will prove (4.1) with this choice of N. To this end, we will firstly prove that

(4.3)
{
x ∈ Bρ(y) :MB 7ρ

2
(y)(|∇u − ∇h|p)(x) ≤ Cp

∗

}
⊂

{
x ∈ Bρ(y) :MB2R(|∇u|p)(x) ≤ N

}
.

To prove this statement, let x be a point in the set on the left side of (4.3), and we shall verify that

(4.4) MB2R(|∇u|p)(x) ≤ N.

Let ρ′ > 0 be any number. If ρ′ < 2ρ, then Bρ′(x) ⊂ B3ρ(y) ⊂ B2R, and it follows that?
Bρ′ (x)

|∇u(z)|pdz

1/p

≤

?
Bρ′ (x)

|∇u(z) − ∇h(z)|pdz

1/p

+

?
Bρ′ (x)

|∇h(z)|pdz

1/p

≤
(
MB7ρ/2(y)(|∇u − ∇h|p)(x)

)1/p
+ ‖∇h‖L∞(B3ρ(y)) ≤ 2C∗ ≤ N1/p.
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On the other hand, if ρ′ ≥ 2ρ, we note that Bρ′(x) ⊂ B2ρ′(x0), and it follows from this and (4.2) that

1
|Bρ′(x)|

∫
Bρ′ (x)∩B2R

|∇u(z)|pdz ≤
|B2ρ′(x0)|
|Bρ′(x)|

1
|B2ρ′(x0)|

∫
B2ρ′ (x0)∩B2R

|∇u(z)|pdz ≤ 2n ≤ N.

Hence, (4.4) is verified and therefore (4.3) is proved. Observe that (4.3) is in fact equivalent to

(4.5)
{
x ∈ Bρ(y) :MB2R(|∇u|p)(x) > N

}
⊂ E :=

{
x ∈ Bρ(y) :MB7ρ/2(y)(|∇u − ∇h|p)(x) > Cp

∗

}
.

On the other hand, from the weak type (1,1) estimate of Hardy-Littlewood maximal function, see Lemma
2.6, it is true that

|E|
|Bρ(y)|

≤
C(n)
Cp
∗

?
B7ρ/2(y)

|∇u − ∇h|pdz ≤ C1(Λ, n, p)(ε′)p.

From this and the doubling property of Aq-weights as in (ii) of Lemma 2.4, it follows

ω(E)
ω(Bρ(y))

≤ C(n, γ)
(
|E|
|Bρ(y)|

)β
≤ C′(Λ, n, p, γ)(ε′)pβ,

for some β = β(γ, n) > 0. Therefore, by choosing ε′ depending on ε,Λ, n, p, γ such that

C′(Λ, n, p, γ)(ε′)pβ = ε,

we obtain
ω(E) ≤ εω(Bρ(y)).

From this estimate and the definition of E in (4.5), the estimate (4.1) follows and the proof is complete. �

The following level set estimate is a direct corollary of Lemma 4.1 and Lemma 2.7, which is also the
main result of the subsection.

Lemma 4.2. Let Λ,M be positive numbers, p, γ > 1, α ∈ (0, 1], and let ε > 0 be sufficiently small. Then
there exists a sufficiently large number N = N(Λ, n, p) ≥ 1, and there exists a sufficiently small number
δ = δ(ε,Λ,M, p, n, α) ∈ (0, ε) such that the following statement holds. Assume that A : B2R ×K×R

n → Rn

such that (1.2)–(1.4) and (1.8) hold for some R > 0 and some open interval K ⊂ R. Suppose also that for
any λ ≥ 0, if u ∈ W1,p(B2R) is a weak solution of (3.1) satisfying

(4.6) [[λu]]BMO(BR,R) ≤ M, ω({BR :MB2R(|∇u|p) > N}) ≤ εω(Bκ0(y)), ∀ y ∈ BR,

for some ω ∈ Aq, for some q > 1 and [ω]Aq ≤ γ. Then with ε1 defined in Lemma 2.7,

ω
({

BR :MB2R(|∇u|p) > N
})

≤ ε1
[
ω
({

BR :MB2R(|∇u|p) > 1
})

+ ω
({

BR :MB2R(|F|p) > δp
})]
,

(4.7)

where κ0 is defined in Lemma 4.1.

Proof. Let N, κ0, δ be defined as in Lemma 4.1. We apply Lemma 2.7 with

C =
{
x ∈ BR :MB2R(|∇u|p)(x) > N

}
,

and
D =

{
x ∈ BR :MB2R(|∇u|p)(x) > 1

}
∪

{
x ∈ BR :MB2R(|F|p)(x) > δp

}
.

Observe that by the second condition in (4.6), (i) of Lemma 2.7 is satisfied. On the other hand, by Lemma
4.1, (ii) of Lemma 2.7 holds true. Therefore, both conditions of Lemma 2.7 are valid, and (4.7) follows
directly from Lemma 2.7. �
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4.2. Proof of the interior W1,q-regularity estimates. From the Lemma 4.2 and an iterating procedure,
we obtain the following lemma

Lemma 4.3. Let Λ,M, p, α, ε,N, δ, κ, κ0 be as in Lemma 4.2. Also, let A,R be as in Lemma 4.2. Then, for
any λ ≥ 0, if u ∈ W1,p(B2R) is a weak solution of (3.1) satisfying

[[λu]]BMO(BR,R) ≤ M, and ω({BR :MB2R(|∇u|p) > N}) ≤ εω(Bκ0(y)), ∀ y ∈ BR,

for some ω ∈ Aq with q > 1 and [ω]Aq ≤ γ, then with ε1 defined as in Lemma 2.7, and for any k ∈ N, the
following estimate holds

ω
({

BR :MB2R(|∇u|p) > Nk
})
≤ εk

1ω
({

BR :MB2R(|∇u|p) > 1
})

+

k∑
i=1

εi
1ω

({
BR :MB2R(|F|p) > δpNk−i

})
.

(4.8)

Proof. The proof is based induction on k ∈ N, and an iteration of Lemma 4.2. See, for example, [35, Lemma
4.10]. �

We now can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof now is quite standard. However, we include it here for completeness, and
for the transparency regarding the role of the scaling parameter λ. Let N = N(Λ, p, n) be defined as in
Lemma 4.3. For q > 1, we denote choose ε > 0 and sufficiently small and depending only on Λ, n, p, q and
γ such that

ε1Nq = 1/2,
where ε1 is defined in Lemma 4.3. With this ε, we can now choose

δ = δ(ε,Λ,M, p, q, n, α), κ = κ(ε,Λ,M, p, q, n, γ, α), κ0 = min
{
1,R

}
κ/6

as determined by Lemma 4.3. Assume that the assumptions of Theorem 1.1 hold with this choice of δ. For
λ ≥ 0, let us assume that u is a weak solution of (3.1) satisfying [[λu]]BMO(BR) ≤ M, and let

(4.9) E = E(λ,N) =
{
BR :MB2R(|∇u|p) > N

}
.

We now prove the estimate in Theorem 1.1 with the following additional assumption that

(4.10) ω(E) ≤ εω(Bκ0(y)), ∀ y ∈ BR.

Let us now consider the sum

S =

∞∑
k=1

Nqkω
({

BR :MB2R(|∇u|p) > Nk
})
.

From (4.10), we can apply Lemma 4.3 to obtain

S ≤
∞∑

k=1

Nkq
k∑

i=1

εi
1ω

({
BR :MB2R(|F|p) > δpNk−i

})
+

∞∑
k=1

(
Nqε1

)k
ω
({

BR :MB2R(|∇u|p) > 1
})
.

By Fubini’s theorem, the above estimate can be rewritten as

S ≤
∞∑
j=1

(Nqε1) j
∞∑

k= j

Nq(k− j)ω
({

BR :MB2R(|F|p) > δpNk− j
})

+

∞∑
k=1

(
Nqε1

)k
ω
({

BR :MB2R(|∇u|p) > 1
})
.

(4.11)

Observe that
ω
({

BR :MB2R(|∇u|p) > 1
})
≤ ω

(
BR

)
.

From this, the choice of ε, and Lemma 2.5, and (4.11) it follows that

S ≤ C
[∥∥∥MB2R(|F|p)

∥∥∥q
Lq(BR,ω) + ω(BR)

]
.
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Applying the Lemma 2.5 again, we infer that∥∥∥MB2R(|∇u|p)
∥∥∥q

Lq(BR,ω) ≤ C
[∥∥∥MB2R(|F|p)

∥∥∥q
Lq(B2R,ω) + ω(BR)

]
.

Also, by the Lesbegue’s differentiation theorem, it is true that

|∇u(x)|p ≤ MB2R(|∇u|p)(x), a.e x ∈ BR.

Hence,
‖∇u‖pq

Lpq(BR,ω) ≤ C
[∥∥∥MB2R(|F|p)

∥∥∥q
Lq(BR,ω) + ω(BR)

]
.

From this and Lemma 2.6, it follows that

(4.12) ‖∇u‖Lpq(BR,ω) ≤ C
[
‖F‖Lpq(B2R,ω) + ω(BR)1/q

]
.

Summarizing the efforts, we conclude that (4.12) holds true as long as u is a weak solution of (3.1) for
λ ≥ 0 and (4.10) holds.

It now remains to remove the additional assumption (4.10). To this end, assume all assumptions in
Theorem 1.1 holds, and let u be a weak solution of (3.1) with some λ ≥ 0. Let µ > 0 sufficiently large to be
determined, and let λ′ = λµ ≥ 0, uµ = u/µ, and Fµ = F/µ. We note that uµ is a weak solution of

(4.13) div[Â(x, λ′uµ,∇uµ)] = div[|Fµ|p−2Fµ], in B2R,

where

Â(x, z, ξ) =
A(x, z, µξ)
µp−1 .

Note that by Remark 2.1, Â satisfies all (1.2)-(1.4) with the same constants Λ, p, α. Moreover, Â also
satisfies (1.8). We then denote

Eµ =
{
BR :MB2R(|∇uµ|p) > N

}
.

and we assume that

(4.14) K0 =

(
1
|B2R|

∫
B2R

|∇u|pdx
)1/p

> 0.

We claim that we can choose µ = CK0 with some sufficiently large constant C depending only on Λ,M,
p, q, n and R/κ0 such that

(4.15) ω(EM) ≤ εω(Bκ0(y)), ∀ y ∈ BR.

If this holds, we can apply (4.12) for uµ which is a weak solution of (4.13) to obtain∥∥∥∇uµ
∥∥∥

Lpq(BR,ω) ≤ C
[∥∥∥Fµ

∥∥∥
Lpq(B2R,ω) + ω(BR)1/q

]
.

Then, by multiplying this equality with µ, we obtain

‖∇u‖Lpq(BR,ω) ≤ C
[
‖F‖Lpq(B2R,ω) + ω(BR)1/qK0

]
.

The proof of Theorem 1.1 is therefore complete if we can prove (4.15). To this end, using the doubling
property of ω ∈ Aq as in (i) of Lemma 2.4, we have

ω(Eµ)
ω(Bκ0(y))

=
ω(Eµ)
ω(B2R)

ω(B2R)
ω(Bκ0(y))

≤ γ
ω(Eµ)
ω(B2R)

(
2R
κ0

)nq

.

From this, and using (ii) of Lemma 2.4 again, we can find β = β(γ, n) > 0 such that

(4.16)
ω(Eµ)

ω(Bκ0(y))
≤ C(γ, n)

(
2R
κ0

)nq (
|Eµ|

|B2R|

)β/p

.
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Now, by the definition of Eµ, and the weak type (1-1) estimate for maximal function, we see that

|Eµ|

|B2R|
=

∣∣∣∣{BR :MB2R(|∇u|p) > Nµp
}∣∣∣∣/|B2R|

=
C(n, p)

Nµp
1
|B2R|

∫
B2R

|∇u|pdx ≤
C(p, n)K p

0

Nµp ,

where K0 is defined in (4.14). From this estimate and (4.16), it follows that

ω(Eµ)
ω(Bκ0(y))

≤ C∗(Λ, γ, p, n)
(
2R
κ0

)nq (
K0

µ

)β
.

Now, we choose µ such that

µ = K0

[
ε−1C∗(Λ, γ, p, n)

(
2R
κ0

)nq]1/β

then it follows that
ω(Eµ) ≤ εω(Bκ0(y)), ∀ y ∈ BR.

This proves (4.15) and completes the proof of Theorem 1.1. �

Acknowledgement. T. Phan’s research is supported by the Simons Foundation, grant # 354889. The
author would like to thanks anonymous referees for valuable comments and suggestions which significantly
improve the presentation of the paper.

References
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[21] T. Kilpeläinen, P. Koskela. Global integrability of the gradients of solutions to partial differential equations. Nonlinear Anal.
23 (1994), no. 7, 899-909.

[22] N.V. Krylov, Parabolic and elliptic equations with VMO coefficients. Comm. Partial Differ. Equ. 32(1-3), 453-475 (2007).
[23] N.V. Krylov, Lectures On Elliptic and Parabolic Equations in Sobolev Spaces. American Mathematical Society, 2008.
[24] N. V. Krylov, M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure. (Russian)

Dokl. Akad. Nauk SSSR 245 (1979), no. 1, 18-20.
[25] O. Ladyzhenskaya and N. Uralt́seva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Tech-

nica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.
[26] J. Lewis. Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32 (1983),

no. 6, 849–858.
[27] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988), no. 11, 1203–

1219.
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