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Abstract. This paper studies regularity estimates in Lebesgue spaces for gradients of weak solutions of a
class of general quasilinear equations of p-Laplacian type in bounded domains with inhomogeneous conormal
boundary conditions. In the considered class of equations, the principals are vector field functions measurable
x-variable, and nonlinearly depending on both solution and its gradient. This class of equations consists
of the well-known class of degenerate p-Laplace equations for p > 1. Under some sufficient conditions,
we establish local interior, local boundary, and global W1,q-regularity estimates for weak solutions with q >

p, assuming that the weak solutions are in the John-Nirenberg BMO space. The paper therefore improves
available results because it removes the boundedness or continuity assumptions on solutions. Our results
also unify and cover known results for equations in which the principals are only allowed to depend on x-
variable and gradient of solution variable. More than that, this paper gives a method to treat non-homogeneous
boundary value problems directly without using any form of translations that is sometimes complicated due to
the nonlinearities.
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1. Introduction

This paper establishes local interior, local boundary, and global regularity estimates in Lebesgue spaces
for gradients of weak solutions of the following general class of nonlinear degenerate elliptic equations
with in-homogeneous conormal boundary condition

(1.1)
{

div [A(x, u,∇u)] = div [|F(x)|p−2F(x)] x ∈ Ω,
〈A(x, u,∇u) − |F|p−2F, ~ν〉 = |g(x)|p−2g(x) x ∈ ∂Ω,

where u is an unknown solution, p ∈ (1,∞) is fixed, Ω is a bounded domain in Rn with n ≥ 1 and with
sufficiently smooth boundary ∂Ω, ~ν is the outward normal vector on ∂Ω, g : ∂Ω→ R is a given measurable
function, 〈·, ·〉 is the inner product in Rn, and F : Ω → Rn is a given measurable vector field function.
Moreover, the principal

A = A(x, z, ξ) : Ω × K × (Rn \ {0}) −→ Rn

is a given vector field, where K ⊂ R is a given open interval which could be the same as R. We assume that
A(·, z, ξ) is measurable in Ω for every (z, ξ) ∈ K × (Rn \ {0}); A(x, ·, ξ) is Hölder continuous in K for a.e.
x ∈ Ω and for all ξ ∈ Rn \ {0}; and A(x, z, ·) is differentiable in Rn \ {0} for each z ∈ K and for a.e. x ∈ Ω.
We assume that there exist constants Λ > 0 and α ∈ (0, 1] such that A satisfies the following natural growth
conditions

〈∂ξA(x, z, ξ)η, η〉 ≥ Λ−1|ξ|p−2|η|2, for a.e. x ∈ Ω, ∀ z ∈ K, ∀ ξ, η ∈ Rn \ {0},(1.2)

|A(x, z, ξ)| + |ξ||∂ξA(x, z, ξ)| ≤ Λ|ξ|p−1, for a.e. x ∈ Ω, ∀ z ∈ K, ∀ ξ ∈ Rn \ {0},(1.3)

|A(x, z1, ξ) − A(x, z2, ξ)| ≤ Λ|ξ|p−1|z1 − z2|
α ∀ z1, z2 ∈ K, for a.e. x ∈ Ω, ∀ξ ∈ Rn \ {0}.(1.4)

Under the assumptions (1.2)–(1.4), the class of equations (1.1) contains the well-known p-Laplace equa-
tions. This general class of equations also appears in many models in applications such as thin film,
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non-Newtonian fluid mechanics and flow in porous media, elasticity and science of “smart materials”,
and emerging issues in biomathematics and biophysics related to degenerate and/or singular diffusion of
molecules on cell surfaces, see for example [10, p. 6-7] for citations, details and discussions regarding these
applications.

The most interesting feature in the class of equations (1.1) is that the principal A is only measurable in
x ∈ Ω, and it depends not only on ξ ∈ Rn \ {0}, but also on the z-variable in K. Our goal is to establish
the W1,q-regularity estimates of Calderón-Zygmund type for weak solutions of this class of equations. In
this line of research, we would like to point out that even with g = F = 0, the W1,q-regularity estimates
for solutions of the class of equation (1.1) are already challenging and not yet well understood. This is due
the fact that the Calderón-Zygmund theory relies heavily on the scaling invariance that is not available for
(1.1). One can see [45], for example, for the geometric intuition on the scaling invariances in the Calderón-
Zygmund theory. In a simpler setting in which A is independent on z ∈ K, the equation (1.1) is reduced to
the following class equations

(1.5) div [A(x,∇u)] = div [|F|p−2F] in Ω.

Though nonlinear, the class of equations (1.5) is invariant under the following natural scalings and dilations

(1.6) u 7→ u/λ, and u(x) 7→
u(rx)

r
, for all positive numbers r, λ.

Because of the availability of the homogeneity with respect to (1.6), the W1,q-regularity theory for weak
solutions of (1.5) is naturally expected. Consequently, though not trivial, this regularity theory has been
extensively studied for (1.5), see [3,4,7,12,14,16,17,23,24,32,38]. However, the homogeneity with respect
to (1.6) is not available for the class of equations (1.1) in which A is a vector field function of u-variable in
K. This fact presents a serious obstacle in obtaining W1,q-estimates for the weak solutions of (1.1) as they
do not generate enough estimates to carry out the proof by using existing methods.

In the recent work [22, 35], the W1,q-regularity estimates for weak solutions of equations of type (1.1)
are addressed. The W1,q-regularity estimates are established assuming that the considered solutions are
bounded. To overcome the loss of homogeneity that we mentioned, in [22, 35], we introduced some
“double-scaling parameter” technique. Essentially, we study an enlarged class of “double parameter” equa-
tions of the type (1.1). Then, by some compactness argument, we successfully applied the perturbation
method in [7] to tackle the problem. Careful analysis is required to ensure that all intermediate steps in
the perturbation process are uniformly with respect to the scaling parameters. See also the work [6, 15]
for some related results in which global regularity theory for weak bounded solutions is obtained. In the
mentioned papers [6, 22, 35], the boundedness assumption on the solutions is essential to initiate the study.
This is because the approach uses maximum principle for the unperturbed equations to implement the per-
turbation technique. We would like to refer also to [1] for which the W1,q-theory for parabolic equations of
type (1.1) is also achieved, but only for continuous weak solutions plus some other assumptions on A.

Motivated by [1, 6, 15, 22, 35, 36], in this paper we develop the following significant advancements:

(I) Unlike the mentioned results in [1, 6, 15, 22, 35], this paper develops the W1,q-regularity theory for
solutions of (1.1) that could be unbounded. In fact, we assume that our solutions are in BMO, the
John-Nirenberg space of functions with bounded mean oscillations. Obviously, replacing the L∞-
requirement by the BMO-requirement is valuable in many critical applications in which the a priori
L∞-estimates for solutions are not available. For example, when p = n, our weak W1,p-solutions
are already in BMO. Hence our results are applicable while the known results may be not. See also
the work [13] for the BMO-regularity estimates of solutions of equation of type (1.1).

(II) This paper also treats the non-homogeneous boundary condition, i.e. g , 0. In fact, as one will
find in the proof, instead of commonly using some type of translation to reduce the inhomogeneous
boundary value problem to the homogeneous one (see [1], for example), this paper perturbs the
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boundary data g directly. This method seems to be new, and much simpler compared to the tradi-
tional translation one. Moreover, it also avoids algebra complications when using the translation
due to the nonlinearity in the equations as in (1.1).

The main results in the paper are Theorem 1.1, Theorem 1.2 and Theorem 1.3 below. These results
generalize the results in [1,6,22,35,36]. They also recover the results in [3,4,7,12,14,16,17,23,24,32,38]
when A is independent on u-variable. More than that, this paper also simplifies many technical problems
in [22, 35], and allow the boundary condition to be non-homogeneous. Unlike [6, 22, 35] we only use “one
parameter” in the class of our equations. Precisely, we investigate the following class of equations

(1.7)

 div
[
A(x, λu,∇u)

]
= div [|F|p−2F], in Ω,

〈A(x, λu,∇u) − |F|p−2F, ~ν〉 = |g(x)|p−2g(x), on ∂Ω.

with some scaling parameter λ ≥ 0. The class of these equations is the smallest one that is invariant with
respect to the scalings and dilations in (1.6), which also includes (1.1). When λ = 0, the equation (1.7)
clearly becomes the equation (1.5). Therefore, Theorem 1.1, Theorem 1.2, and Theorem 1.3 recover known
results such as [3, 4, 7, 12, 14, 16, 17, 23, 24, 32, 38] regarding (1.5).

Now, some notations are introduced in order to state the main theorems of the paper. For each ρ > 0, y ∈
Rn, Bρ(y) denotes the ball in Rn with radius ρ and centered at y ∈ Rn. If y = 0, we write Bρ = Bρ(0).
Moreover, with a measurable set U ⊂ Rn, some ρ0 > 0, and a locally integrable function f : U → Rn, the
semi-norm of bounded mean oscillation of f is defined by

[[ f ]]BMO(U,ρ0) = sup
y∈U,0<ρ<ρ0

1
|Bρ(y) ∩ U |

∫
Bρ(y)∩U

| f (x) − f̄Bρ(y)∩U |dx, where

f̄Bρ(y)∩U =
1

|Bρ(y) ∩ U |

∫
Bρ(y)∩U

f (x)dx.

One of our results of the paper is the following global regularity estimate for weak solutions of the (1.7)
with the non-homogeneous boundary conditions.

Theorem 1.1. Let Λ,M > 0, q > p > 1, and α ∈ (0, 1]. Then, there exists a sufficiently small constant
Υ = Υ(Λ,M, α, p, q, n) > 0 such that the following statement holds true. Suppose that Ω is a C1-domain
and K is an open interval in R. Suppose also that A : Ω × K × (Rn \ {0}) −→ Rn is a Carathéodory map
satisfying (1.2)-(1.4) on Ω × K × (Rn \ {0}) and there is some ρ0 ∈ (0, 1) so that

(1.8) [[A]]BMO(Ω,ρ0) := sup
z∈K

ξ∈Rn\{0}

sup
0<ρ≤ρ0

y∈Ω

1
|Bρ(y) ∩Ω|

∫
Bρ(y)∩Ω

|A(x, z, ξ) − ĀBρ(y)∩Ω(z, ξ)|

|ξ|p−1 dx ≤ Υ.

Then, for every g ∈ Lq(∂Ω), F ∈ Lq(Ω,Rn), if u ∈ W1,p(Ω) is a weak solution of (1.7) satisfying
[[λu]]BMO(Ω,ρ0) ≤ M with some λ ≥ 0, the following regularity estimate holds∫

Ω

|∇u(x)|qdx ≤ C

∫
∂Ω

|g(x)|qdS (x) +

∫
Ω

|F(x)|qdx +

(∫
Ω

|∇u(x)|pdx
)q/p ,(1.9)

where C is a constant depending only on q, p, n, Λ, α, M,K, ρ0 and Ω.

Since local regularity estimates are useful in some problems because they only require information lo-
cally. Besides global regularity estimates as Theorem 1.1, the next two theorems on local regularity esti-
mates are also important results of the paper.

Theorem 1.2. Let Λ > 0,M > 0, q > p > 1, and α ∈ (0, 1]. Then, there exists a sufficiently small constant
δ̂0 = δ̂0(Λ,M, α, p, q, n) > 0 such that the following statement holds. For R ∈ (0, 1) and some open interval
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K ⊂ R, let A : B2R×K×(Rn\{0}) −→ Rn be a Carathéodory map satisfying (1.2)-(1.4) on B2R×K×(Rn\{0})
and

(1.10) [[A]]BMO(BR,R) := sup
z∈K

ξ∈Rn\{0}

sup
0<ρ≤R
y∈BR

1
|Bρ(y)|

∫
Bρ(y)

|A(x, z, ξ) − ĀBρ(y)(z, ξ)|

|ξ|p−1 dx ≤ δ̂0.

Then, for every F ∈ Lq(B2R,R
n), if u ∈ W1,p(B2R) is a weak solution of

div[A(x, λu,∇u)] = div[|F|p−2F] in B2R

with [[λu]]BMO(BR,R) ≤ M and some λ ≥ 0, the following regularity estimate holds?
BR

|∇u|qdx ≤ C

?
B2R

|F|qdx +

(?
B2R

|∇u|pdx
)q/p ,

where ĀBρ(y)(z, ξ) :=
>

Bρ(y) A(x, z, ξ) dx, and C is a constant depending only on q, q, Λ, α, M,K, and n.

Our next result is the local regularity estimate on the boundary ∂Ω. Instead of working on ∂Ω, we
assume that ∂Ω is sufficiently smooth so that part of ∂Ω is already flattened. In the next theorem, for
y = (y′, yn) ∈ Rn, and R > 0, we denote B′R(y′) the ball in Rn−1 of radius R and centered ad y′ ∈ Rn−1.
Moreover, we write the cylinders in Rn as

DR(y) = B′R(y′) × (yn − R, yn + R), D+
R(y) = B′R(y′) × (max{yn − R, 0}, yn + R).

When y = 0, we write D+
R = D+

R(0) and B′R = B′R(0′). Our local boundary regularity theory is stated in the
following theorem

Theorem 1.3. Let Λ,M > 0, q > p > 1, and α ∈ (0, 1]. Then, there exists a sufficiently small constant
δ = δ(Λ,M, α, p, q, n) > 0 such that the following statement holds true. Suppose that for some R ∈ (0, 1)
and some open interval K ⊂ R, A : D+

2R×K× (Rn \{0}) −→ Rn is a Carathéodory map satisfying (1.2)-(1.4)
on D+

2R × K × (Rn \ {0}) and

(1.11) [[A]]BMO(D+
R ,R) := sup

z∈K
ξ∈Rn\{0}

sup
0<ρ≤R
y∈D+

R

1
|Dρ(y) ∩ D+

2R|

∫
Dρ(y)∩D+

2R

|A(x, z, ξ) − ĀDρ(y)∩D+
2R

(z, ξ)|

|ξ|p−1 dx ≤ δ.

Then, for every g ∈ Lq(B′2R), F ∈ Lq(D+
2R,R

n), if u ∈ W1,p(D+
2R) is a weak solution of{

div[A(x, λu,∇u)] = div[|F(x)|p−2F(x)] in D+
2R,

〈A(x, λu,∇u) − |F|p−2F, ~en〉 = |g(x′)|p−2g(x′) on B′2R × {0},

satisfying [[λu]]BMO(D+
R ,R) ≤ M with some λ ≥ 0, the following regularity estimate holds?

D+
R

|∇u(x)|qdx ≤ C

?
B′2R

|g(x′)|qdx′ +
?

D+
2R

|F(x)|qdx +

?
D+

2R

|∇u(x)|pdx

q/p ,(1.12)

where C is a constant depending only on q, p, n, Λ, α, M,K, and where ~en = (0, 0, · · · , 0, 1) ∈ Rn.

Several remarks are emphasized regarding Theorem 1.1, Theorem 1.2, Theorem 1.3 . Firstly, note that
these theorems relax and do not require the solutions to be bounded as in [1, 6, 22, 35]. This is significant
and it is completely new even for the case g = 0, in comparison to the known work for both the Schauder’s
regularity theory in [11, 18, 20, 27–31, 42–44] and the Sobolev one in [1, 6, 22, 35] regarding weak solu-
tions of equations (1.1). To overcome the loss of boundedness of solutions from the assumption, instead
of applying maximum principle during the perturbation process as in [6, 22, 35], we directly derive and
carefully use some delicate analysis Hölder’s regularity estimates for solutions of the corresponding unper-
turbed equations, see the estimates (3.4), (4.6), and (4.15) for examples. The well-known reverse Hölder’s
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inequality and John-Nirenberg’s inequality also play a central role in our approach. See also similar re-
sults in [36] which only treat the interior estimates. Secondly, this paper also treats the non-homogeneous
boundary conditions. This is a non-trivial technical issue because it is quite complex due to nonlinearity to
reduce the non-homogeneous boundary problem (1.1) to the homogeneous boundary one using some type
of translation, see [1] for example. In this paper, instead of using the translation, we perturb the bound-
ary condition directly and treating it as the force terms. This idea is new but natural, and it also avoids
all complexity regarding the boundary translation that is due to the nonlinearity of the equations. Thirdly,
we note that when λ = 0 and g = 0, Theorem 1.1, Theorem 1.2, and Theorem 1.3 recovers all results
in [3, 4, 7, 12, 14, 16, 17, 23, 24, 32, 38] for the case that A is independent on z ∈ K. This paper therefore
unifies both W1,q-theories for (1.1) and (1.5). Lastly, observe that all papers such as [3–6,38], to cite a few,
regarding the W1,q-regularity estimates in non-smooth domains only establish globally regularity estimates.
Our paper provides not only global regularity estimates but also local interior and boundary ones. Our The-
orem 1.2, Theorem 1.3 can be considered as some high regularity estimates of Caccioppoli type which are
also extremely important for many practical purposes for which only local information is available. Cer-
tainly, our local regularity estimates imply the global ones by flattening the boundary and using partition of
unity, see the proof of Theorem 1.1. However, it is generally impossible to derive local estimates directly
from the global ones in [3–6, 38]. In this perspective, the contribution of this paper is therefore significant.

We conclude this section by outlining the organization of this paper. Section 2 reviews some definitions,
states and proves some preliminary results needed in the paper. Interior regularity estimates and the proof
of Theorem 1.2 are given in Section 3. Section 4, is about the regularity estimates near the boundary. The
proof of Theorem 1.3 is also given in this section. The proof of Theorem 1.1 is provided in Section 5. This
paper is then concluded with some important remarks given in Remark 5.3.

2. Definitions and preliminary results

2.1. Scaling invariances and weak solutions. Let λ′ ≥ 0, and let us consider a function u ∈ W1,p
loc (U) for

some open, bounded set U ⊂ Rn satisfying{
div [A(y, λ′u,∇u)] = div [|F|p−2F] in U,

〈A(y, λ′u,∇u) − |F|p−2F, ~ν〉 = |g(y)|p−2g(y), on ∂U

in the sense of distribution. Then for some fixed λ > 0, the rescaled function

(2.1) v(x) =
u(x)
λ

for x ∈ U, λ > 0

solves the equation {
div [Â(x, λ̂v,∇v)] = div [|F̂|p−2F̂] in U,

〈Â(x, λ̂v,∇v) − |F̂|p−2F̂, ~ν〉 = |ĝ|p−2ĝ, on ∂U

in the distributional sense for λ̂ = λλ′ ≥ 0. Here, Aλ : U × K × (Rn \ {0})→ Rn is defined by

(2.2) Â(x, z, ξ) =
A(x, z, λξ)
λp−1 and F̂(x) =

F(x)
λ

, ĝ(x) =
g(x)
λ
.

Remark 2.1. It is clear that if A : U × K × (Rn \ {0}) −→ Rn satisfies conditions (1.2)–(1.4) on U × K ×
(Rn \ {0}), then the rescaled vector field Â : U × K × (Rn \ {0}) −→ Rn defined in (2.2) also satisfies the
structural conditions (1.2)–(1.4) with the same constants Λ, p, α.

Let us now give the precise definition of weak solutions that is used throughout the paper.

Definition 2.2. Let K ⊂ R be an interval, let Λ > 0, p > 1, α ∈ (0, 1]. Also, let Ω ⊂ Rn be open, and
bounded with sufficiently smooth boundary ∂Ω, and A : U × K × (Rn \ {0}) −→ Rn satisfies conditions
(1.2)–(1.4) on Ω.
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(i) For every F ∈ Lp(Ω;Rn) and λ ≥ 0, a function u ∈ W1,p
loc (Ω) is called a weak solution of

div
[
A(x, λu,∇u)

]
= div[|F|p−2F], in Ω

if λu(x) ∈ K for a.e. x ∈ Ω, and∫
U

〈
A(x, λu,∇u),∇ϕ

〉
dx =

∫
U
〈|F|p−2F,∇ϕ〉 dx ∀ ϕ ∈ C∞0 (Ω).

(ii) For every F ∈ Lp(Ω;Rn), g ∈ W1,p(Ω), and λ ≥ 0, a function u ∈ W1,p(Ω) is a weak solution of
(1.7) if λu(x) ∈ K for a.e. x ∈ Ω, and

(2.3)
∫

Ω

〈
A(x, λu,∇u),∇ϕ

〉
dx =

∫
Ω

〈|F|p−2F,∇ϕ〉 dx +

∫
∂Ω

|g(x)|p−2g(x)ϕ(x)dS (x).

for every ϕ ∈ W1,p(Ω), where dS (x) is the surface measure of ∂Ω. Here, C∞0 (Ω) is the set of all smooth
compactly supported functions in Ω, Lp(Ω,Rn) is the Lebesgue space consists all measurable functions
f : Ω → Rn such that | f |p is integrable on Ω, and W1,p(Ω) is the standard Sobolev space on Ω. Moreover,
〈·, ·〉 is the Euclidean inner product in Rn.

2.2. Some simple energy estimates. We derive some elementary estimates which will be used later.

Lemma 2.3. Let Λ > 0, p > 1, and let U ⊂ Rn be a bounded open set, and let K be an interval in R.
Assume that A : U×K× (Rn \ {0}) −→ Rn satisfies (1.2) - (1.3) on U×K× (Rn \ {0}). Then for any functions
u, v ∈ W1,p(U) and any nonnegative function φ ∈ C(U), it holds that

(i) If 1 < p < 2, then for every τ > 0,∫
U
|∇u − ∇v|pφ dx ≤ τ

∫
U
|∇u|pφ dx

+ C(Λ, p)τ
p−2

p

∫
U
〈A(x, u,∇u) − A(x, u,∇v),∇u − ∇v〉φ dx.

(ii) If p ≥ 2, then∫
U
|∇u − ∇v|pφ dx ≤ C(Λ, p)

∫
U
〈A(x, u,∇u) − A(x, u,∇v),∇u − ∇v〉φ dx.

Proof. This lemma is well-known, see [42, Lemma 1] and [35, Lemma 3.1]. Observe that from (1.2), the
following monotonicity property of A holds true〈

A(x, z, ξ) − A(x, z, η), ξ − η
〉
≥

{
γ0|ξ − η|

p, if p ≥ 2,
γ0

(
|ξ| + |ξ − η|)p−2|ξ − η|2 if 1 < p < 2,(2.4)

for all (x, z) ∈ U ×K and for all ξ, η ∈ Rn \ {0}, where γ0 = γ0(Λ, p) > 0 is a constant. From this, the lemma
is trivial when p ≥ 2. On the other hand, if 1 < p < 2, then the lemma follows directly from [35, Lemma
3.1]. For details of the proof, see [36, Lemma 2.10]. �

Lemma 2.4 (Caccioppoli’s type estimates). Let Λ > 0, p > 1 be fixed, and let A : D+
r ×K× (Rn \ {0})→ Rn

satisfy (1.2)-(1.3) on D+
r × K × (Rn \ {0}) for some r > 0. Assume that v ∈ W1,p(D+

r ) is a weak solution of{
div [A(x, v,∇v)] = 0 in D+

r ,
〈A(x, v,∇v), ~en〉 = 0 on B′r × {0},

it holds that for every k ∈ R∫
D+

r

|∇v|pφ(x)pdx ≤ C(Λ, p)
∫

D+
r

|v − k|p|∇φ(x)|pdx, ∀ φ ∈ C1
0(Dr), φ ≥ 0.
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Proof. Using (v − k)φp as a test function, we obtain with some ε > 0,∫
D+

r

〈A(x, v,∇v) − A(x, v, 0),∇v〉φpdx

= −p
∫

D+
r

〈A(x, v,∇v),∇φ〉(v − k)φp−1dx ≤ C(Λ, p)
∫

D+
r

|∇v|p−1φp−1|∇φ||v − k|dx

≤
1
4

∫
D+

r

|∇v|pφp(x)dx + C(Λ, p)
∫

D+
r

|v − k|p|∇φ|pdx.

Now, by Lemma 2.3, it follows that∫
D+

r

|∇u|pφpdx ≤
1
4

∫
D+

r

|∇u|pφpdx + C(Λ, p)
∫

D+
r

〈A0(x,∇v) − A0(x, 0),∇vφp〉dx

≤
1
2

∫
D+

r

|∇v|pφpdx + C(Λ, p)
∫

D+
r

|v − k|p|∇φ|pdx.

Then, by cancelling similar terms, we obtain∫
D+

r

|∇v|pφ(x)pdx ≤ C(Λ, p)
∫

D+
r

|v − k|p|∇φ(x)|pdx.

The proof is therefore complete. �

2.3. Hölder regularity of weak solutions of homogeneous p-Laplacian type equations. We recall some
results on Hölder’s regularity for weak solutions of p-Laplacian type equations which will be needed in the
paper. These results are consequences of the well-known, and classical De Giorgi-Nash-Möser theory. Our
first lemma is about the interior Hölder’s regularity estimates, whose proof, for example, can be found
in [21, Theorem 7.6] or [27, Theorem 1.1, p. 251].

Lemma 2.5. Let Λ > 0, p > 1, and let A0 : Br × (Rn \ {0}) → Rn be a Carathéodory map satisfying
(1.2)-(1.3) on Br × (Rn \ {0}) with some r > 0. If v ∈ W1,p(Br) is a weak solution of the equation

div [A0(x,∇v)] = 0, in Br

Then, there exists C0 > 0 depending only on Λ, n and p such that

‖v‖L∞(B5r/6) ≤ C0

[?
Br

|v|pdx
]1/p

.

Moreover, there exists β ∈ (0, 1) depending only on Λ, n, p and on ‖v‖L∞(B5r/6) such that

|v(x) − v(y)| ≤ C0 ‖v‖L∞(B5r/6)

(
|x − y|

r

)β
, ∀ x, y ∈ B2r/3.

The following result can be derived from the classical result in [27, Theorem 1.1, p. 251], see also in [21,
Theorem 7.8].

Lemma 2.6. Let Λ > 0, p > 1 and r > 0. Let A0 : D+
r × (Rn \ {0}) → Rn be a Carathéodory map and

satisfy (1.2)-(1.3) on D+
r × (Rn \ {0}). Assume that v ∈ W1,p(D+

r ) is a weak solution of the equation{
div [A0(x,∇v)] = 0, in D+

r ,
〈A0(x,∇v), ~en〉 = 0, on B′r × {0}.

Then, there exists C0 > 0 depending only on Λ, n and p such that

‖v‖L∞(D+
5r/6) ≤ C0

[?
D+

r

|v|pdx
]1/p

.
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Moreover, there exists β ∈ (0, 1) depending only on Λ, n, p and on ‖v‖L∞(D+
5r/6) such that

|v(x) − v(y)| ≤ C0 ‖v‖L∞(D+
5r/6)

(
|x − y|

r

)β
, ∀ x, y ∈ D

+

2r/3.

2.4. Meyers-Gehring’s self-improving regularity estimates. We need the following classical results on
self-improving regularity estimates for weak solutions of p-Laplacian type equations. The following two
lemmas are due to N. Meyers and A. Elcrat in [34, Theorem 1, Theorem 2]. These results can be also found
in [25, Theorem 1.1].

Lemma 2.7. Let Λ > 0, p > 1. Then, there exists p0 = p0(Λ, n, p) > p such that the following statement
holds. Suppose that A0 : Br× (Rn \{0})→ Rn is a Carathéodory map satisfying (1.2)-(1.3) on Br× (Rn \{0})
with some r > 0. If v ∈ W1,p(Br) is a weak solution of the equation

div [A0(x,∇v)] = 0, in Br

then, for every p1 ∈ [p, p0], there exists a constant C = C(Λ, p1, p, n) > 0 such that(?
B2r/3

|∇v|p1dx
)1/p1

≤ C
(?

Br

|∇v|pdx
)1/p

.

The following result is a special case of [34, Theorem 1, Theorem 2].

Lemma 2.8. For every Λ > 0, p > 1, there exists p0 = p0(Λ, n, p) > p such that the following statement
holds. Suppose thatA0 : D+

r ×(Rn\{0})→ Rn be a Carathéodory map satisfying (1.2)-(1.3) on D+
r ×(Rn\{0})

for some r > 0, and suppose that v ∈ W1,p(D+
r ) is a weak solution of the equation{

div [A0(x,∇v)] = 0 in D+
r ,

〈A0(x,∇v), ~en〉 = 0 on B′r × {0}.

Then, for every p1 ∈ [p, p0], there exists a constant C = C(Λ, p1, p, n) > 0 such that?
D+

2r/3

|∇v|p1dx

1/p1

≤ C
(?

D+
r

|∇v|pdx
)1/p

.

2.5. Some simple approximation estimates. We state and prove two simple approximation estimates
which are commonly used many papers such as [3–5, 38] for the class of equations of the type (1.5) in
which the vector field A is independent on u-variable. These approximation estimates will be used as
intermediate steps for the proof of our main theorems.

Lemma 2.9. Let Λ > 0, p > 1 be fixed. Then, for every ε ∈ (0, 1), there exists sufficiently δ0 =

δ0(ε,Λ, n, p) ∈ (0, ε) such that the following holds. Assume that A0 : B2R × (Rn \ {0}) → Rn such that
(1.2)–(1.4) hold on B2R × (Rn \ {0}), and

[[A0]]BMO(BR,R) = sup
ξ∈Rn\{0}

sup
x∈BR

0<ρ<R

1
|Bρ(x)|

∫
Bρ(x)

|A0(y, ξ) − Ā0,Bρ(x)(ξ)|

|ξ|p−1 dy ≤ δ0.

Then, for every x0 ∈ BR and ρ ∈ (0,R/2), if w ∈ W1,p(B2ρ(x0)) is a weak solution of

div [A0(x,∇w)] = 0, in B2ρ(x0),

satisfying
1

|B2ρ(x0)|

∫
B2ρ(x0)

|∇w|pdx ≤ 1,

then there is h ∈ W1,p(B7ρ/4(x0)) such that the following estimate holds

1
|B7ρ/4(x0)|

∫
B7ρ/4(x0)

|∇w − ∇h|pdx ≤ ε p, ‖∇h‖L∞(B3ρ/2(x0)) ≤ C(Λ, n, p).
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Proof. We skip the proof because it is the same is that of Lemma 2.10 below. �

In the next lemma, for each cylinder Dρ(x0) in Rn, the following notation is used

Tρ(x0) = ∂D+
ρ (x0) ∩ (Rn−1 × {0}).

Lemma 2.10. Let Λ > 0, p > 1 be fixed. Then, for every ε ∈ (0, 1), there exists a sufficiently small number
δ̄0 = δ̄0(ε,Λ, n, p) ∈ (0, ε) such that the following holds. Assume that A0 : D+

2R × (Rn \ {0})→ Rn such that
(1.2)–(1.4) hold on D+

2R × (Rn \ {0}) for some R > 0, and

[[A0]]BMO(D+
R ,R) = sup

ξ∈Rn\{0}
sup
x∈D+

R
0<ρ<R

1
|Dρ(x)|

∫
Dρ(x)∩D+

2R

|A0(y, ξ) − Ā0,Dρ(x)∩D+
2R

(ξ)|

|ξ|p−1 dy ≤ δ̄0.

Then, for every x0 = (x′0, xn0) ∈ D+
R and ρ ∈ (0,R/2), if w ∈ W1,p(D+

2ρ(x0)) is a weak solution of{
div [A0(x,∇w)] = 0 in D+

2ρ(x0),
〈A0(x,∇w), ~en〉 = 0 on T2ρ(x0) if T2ρ(x0) , ∅

and if
1

|D2ρ(x0)|

∫
D+

2ρ(x0)
|∇w|pdx ≤ 1,

then there is h ∈ W1,p(D+
7ρ/4(x0)) such that the following estimate holds

(2.5)
1

|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx ≤ ε p, ‖∇h‖L∞(D+

3ρ/2(x0)) ≤ C(Λ, n, p).

Proof. The proof is fundamental and we provide it for completeness. Let us denote

a(ξ) =
1

|D+
7ρ/4(x0)|

∫
D+

7ρ/4(x0)
A0(x, ξ)dx, Θ(x, ξ) =

|A0(x, ξ) − a(ξ)|
|ξ|p−1 , ξ ∈ Rn \ {0}.

Let h ∈ W1,p(D+
7ρ/4(x0)) be the weak solution of

(2.6)


div [a(∇h)] = 0 in D+

7ρ/4(x0),
h = w on ∂D+

7ρ/4(x0) \ T7ρ/4(x0) and
〈a(∇h), ~en〉 = 0 on T7ρ/4(x0) if T7ρ/4(x0) , ∅.

Observe that the existence of h can be obtained by using standard theory in calculus of variations. Since
w − h ∈ W1,p(D+

7ρ/4(x0)) and w − h = 0 on ∂D+
7ρ/4(x0) \ T7ρ/4(x0) in the sense of trace, we can use w − h as

a test function for the equations of w and h to obtain∫
D+

7ρ/4(x0)
〈a(∇w) − a(∇h),∇w − ∇h〉dx =

∫
D+

7ρ/4(x0)
〈a(∇w) − A0(x,∇w),∇w − ∇h〉dx.

We now consider the case 1 < p < 2 as the case p ≥ 2 can be done similarly and much simpler. Let
τ ∈ (0, 1) be a number to be determined. By Lemma 2.3, it follows that∫

D+
7ρ/4(x0)

|∇w − ∇h|pdx

≤ τ

∫
D+

7ρ/4(x0)
|∇w|pdx + C(Λ, p)τ

p−2
p

∫
D+

7ρ/4(x0)
〈a(∇w) − a(∇h),∇w − ∇h〉dx

≤ τ

∫
D+

2ρ(x0)
|∇w|pdx + C(Λ, p)τ

p−2
p

∫
D+

7ρ/4(x0)
〈a(∇w) − A0(x,∇w),∇w − ∇h〉dx

≤ τ

∫
D+

2ρ(x0)
|∇w|pdx + C(Λ, p)τ

p−2
p

∫
D+

7ρ/4(x0)
Θ(x,∇w)|∇w|p−1|∇w − ∇h|dx.
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Then, by applying the Hölder’s inequality, and Young’s inequality to the last term on the right hand side of
the last estimate, we have∫

D+
7ρ/4(x0)

|∇w − ∇h|pdx

≤ τ

∫
D+

2ρ(x0)
|∇w|pdx +

1
2

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx + C(Λ, p)τ

p−2
p−1

∫
D+

7ρ/4(x0)
Θ(x,∇w)

p
p−1 |∇w|pdx.

By cancelling similar terms, and using the fact Θ(x,∇w) ∈ (0, 2Λ) and the assumption in the lemma, we
infer that

1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx

≤ C(Λ, n, p)

 τ

|D2ρ(x0)|

∫
D+

2ρ(x0)
|∇w|pdx +

τ
p−2
p−1

|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
Θ(x,∇w)|∇w|pdx


≤ C(Λ, n, p)

τ +
τ

p−2
p−1

|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
Θ(x,∇w)|∇w|pdx

 .
Now, for some number p1 > p which is sufficiently close to p, and some γ > 1 such that 1

γ + 1
p1/p = 1. We

then apply Hölder’s inequality to the last term on the right hand side of the last estimate to obtain

1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx

≤ C(Λ, n, p)

τ + τ
p−2
p−1

 1
|D+

7ρ/4(x0)|

∫
D+

7ρ/4(x0)
Θ(x,∇w)γdx

1/γ  1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w|p1dx


p

p1


≤ C(Λ, n, p)

τ + τ
p−2
p−1 [A0]1/γ

BMO(D+
R ,R)

 1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w|p1dx


p

p1

 .
From this, and Lemma 2.8, it follows that

1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx ≤ C0(Λ, n, p)

τ +
τ

p−2
p−1 [[A0]]1/γ

BMO(D+
R ,R)

|D2ρ(x0)|

∫
D+

2ρ(x0)
|∇w|pdx

 .
Then, by the assumption in the lemma, we obtain

1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx ≤ C0(Λ, n, p)

[
τ + τ

p−2
p−1 [[A0]]1/γ

BMO(D+
R ,R)

]
.

From this and by taking τ such that C0(Λ, n, p)τ = ε p/2 and then choosing δ̄0 sufficiently small so that

C0(Λ, n, p)τ
p−2
p−1 δ̄

1
γ

0 ≤ ε
p/2,

we have
1

|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇w − ∇h|pdx ≤ ε p.
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This proves the first estimate in (2.5). From this last estimate, the triangle inequality, the assumption in the
lemma, and the fact that ε ∈ (0, 1), we see that 1

|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇h|pdx

1/p

≤

 1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇h − ∇w|pdx

1/p

+

 1
|D7ρ/4(x0)|

∫
D+

7r/4(x0)
|∇w|pdx

1/p

≤ ε + C(n, p)

 1
|D2ρ(x0)|

∫
D+

2ρ(x0)
|∇w|pdx

1/p

≤ C(n, p).

From this and the classical theory on Lipschitz regularity estimate for weak solution h of the constant
coefficient equation (2.6) (see [2, 9–11, 21, 27, 42–44]), it holds that

‖∇h‖L∞(D+
3ρ/2(x0)) ≤ C(Λ, n, p)

 1
|D7ρ/4(x0)|

∫
D+

7ρ/4(x0)
|∇h|pdx

1/p

≤ C(Λ, n, p),

which is the second estimate in (2.5). The proof is therefore complete. �

2.6. Hardy-Littlewood maximal function and crawling ink-spots lemma. This section recalls several
analysis results, definitions needed in the paper. For completeness, we firstly recall the Hardy-Littlewood
maximal operator and its boundedness in Lp-space. For a given locally integrable function f , we define the
weighted Hardy-Littlewood maximal function as

(2.7) M f (x) = sup
ρ>0

?
Dρ(x)
| f (y)|dy,

For functions f that are defined on a bounded domain, we define

MΩ f (x) =M( fχΩ)(x).

The following classical result is well-known, see for examples [19, 41].

Lemma 2.11. The followings hold.
(i) Strong (q, q): Let 1 < q < ∞, then there exists a constant C = C(q, n) such that

‖M‖Lq(Rn)→Lp(Rn) ≤ C.

(ii) Weak (1, 1): There exists a constant C = C(n) such that for any λ > 0, we have∣∣∣∣{x ∈ Rn :M( f ) > λ
}∣∣∣∣ ≤ C

λ

∫
Rn
| f |dx.

Secondly, the following standard result in measure theory is also needed in the paper.

Lemma 2.12. Assume that g ≥ 0 is a measurable function in a bounded subset U ⊂ Rn. Let θ > 0 and
N > 1 be given constants. Then for any 1 ≤ p < ∞

g ∈ Lp(U)⇔ S :=
∑
j≥1

N p j|{x ∈ U : g(x) > θN j}| < ∞.

Moreover, there exists a constant C > 0 depending only on θ,N and p. such that

C−1S ≤ ‖g‖pLp(U) ≤ C(|U | + S ).

Finally, we recall the following important lemma that is needed in this paper. This lemma is usually referred
to “crawling ink-spots” lemma, which is originally due to N. V. Krylov and M. V. Safonov, see [26, 40].

Lemma 2.13 (crawling ink-spots). Let R > 0, and assume that C,D are measurable sets satisfying C ⊂
D ⊂ BR. Assume also that there are κ0 ∈ (0,R/2), and 0 < ε < 1 such that
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(i) |C| < ε|Bκ0 |, and
(ii) for all x ∈ BR and ρ ∈ (0, κ0), if |C ∩ Bρ(x)| ≥ ε|Bρ(x)|, then Bρ(x) ∩ BR ⊂ D.

Then, there exists ε1 = C0(n)ε for some constant C0(n) > 0 such that

|C| ≤ ε1|D|.

The same conclusions also hold if we replace balls by cylinders or by upper-half cylinders.

3. Interior regularity gradient estimates and proof of Theorem 1.2

In this section, let A : B2R × K × (Rn \ {0}) → Rn satisfy (1.2)–(1.4) on B2R × K × (Rn \ {0}) for some
R > 0. We study a weak solution u ∈ W1,p(B2R) of the parameter equation

(3.1) div[A(x, λu,∇u)] = div[|F|p−2F], in B2R,

with the parameter λ ≥ 0. Our goal in this section is to prove Theorem 1.2. Our approach is based on
the perturbation technique introduced in [7] together with the “scaling parameter” technique introduced
in [22, 35]. The approach is also influenced by the recent developments [3, 4, 6, 37, 45].

3.1. Interior approximation estimates. In our first step, we freeze u in A, and then approximate the
solution u of (3.1) by a solution of the corresponding homogeneous equations with frozen u coefficient as
in [1, 6].

Lemma 3.1. Let Λ,M > 0, p > 1 and α ∈ (0, 1] be fixed. Then, for every ε ∈ (0, 1), there exists a sufficiently
small number δ1 = δ1(ε,Λ, n, p) ∈ (0, ε) such that the following holds. Assume that A : B2R×K×(Rn\{0})→
Rn satisfies(1.2)–(1.4) on B2R × K × (Rn \ {0}) for some R > 0 and some open set K ⊂ R, and assume that
F ∈ Lp(B2R,R

n) satisfies ?
Br(x0)

|F|pdx ≤ δp
1 ,

with some x0 ∈ BR and some r ∈ (0,R). Suppose also that u ∈ W1,p(B2R) is a weak solution of (3.1)
satisfying ?

Br(x0)
|∇u|pdx ≤ 1, and [[λu]]BMO(BR,R) ≤ M,

for some λ ≥ 0. Then,

(3.2)
?

Br(x0)
|∇u − ∇v|pdx ≤ ε p,

where v ∈ W1,p(Br) is the weak solution of

(3.3)
{

div [A(x, λu,∇v)] = 0, in Br(x0),
v = u, on ∂Br(x0).

Moreover, it also holds that

(3.4) λ

(?
Br(x0)

|v − ūBr(x0)|
pdx

)1/p

≤ C(n, p)[M + rλε], and
(?

Br(x0)
|∇v|pdx

)1/p

≤ 2.

Proof. We first note that the existence of weak solution v of (3.3) follows from the standard theory in
calculus of variations as A0(x, ξ) := A(x, λu(x), ξ) satisfies all assumptions in (1.2)–(1.4), see [21] for
example. Therefore, we only need to prove the estimates (3.2), and (3.4). Take v − u ∈ W1,p

0 (Br(x0)) as a
test function for the equation (3.3), we obtain∫

Br(x0)
〈A(x, λu,∇v),∇u − ∇v〉dx = 0.
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Similarly, we can use v − u as a test function for the equation for (3.1) to see that∫
Br(x0)
〈A(x, λu,∇u),∇u − ∇v〉dx =

∫
Br(x0)
〈|F|p−2F,∇u − ∇v〉dx.

Therefore,

(3.5)
∫

Br(x0)
〈A(x, λu,∇u) − A(x, λu,∇v),∇v − ∇u〉dx =

∫
Br(x0)
〈|F|p−2F,∇u − ∇v〉dx.

Then, it follows from Lemma 2.3, and (3.5), that for each τ ∈ (0, 1),∫
Br(x0)

|∇u − ∇v|pdx

≤ τ

∫
Br(x0)

|∇u|pdx + C(Λ, τ, p)
∫

Br(x0)
〈A(x, λu,∇u) − A(x, λu,∇v),∇v − ∇u〉dx

≤ τ

∫
Br(x0)

|∇u|pdx + C(Λ, τ, p)
∫

Br(x0)
|〈|F|p−2F,∇u − ∇v〉|dx

≤ τ

∫
Br(x0)

|∇u|pdx +
1
2

∫
Br(x0)

|∇u − ∇v|pdx + C(Λ, τ, p)
∫

Br(x0)
|F(x)|pdx,

where we have used Hölder’s inequality and Young’s inequality in the last estimate. By cancelling similar
terms in the last estimate, we obtain

(3.6)
?

Br(x0)
|∇u − ∇v|pdx ≤ 2τ

?
Br(x0)

|∇u|pdx + C(Λ, τ, p)
?

Br(x0)
|F(x)|pdx.

Now, choose τ = ε p/4, and then choose δ1 = δ1(ε,Λ, n, p) ∈ (0, ε) sufficiently small such that C(Λ, τ, p)δp <
ε p/2, the estimate (3.2) follows. It remains to prove (3.4). By the Poincaré’s inequality, we see that(?

Br(x0)
|v − ūBr(x0)|

pdx
)1/p

≤

(?
Br(x0)

|v − u|pdx
)1/p

+

(?
Br(x0)

|u − ūBr(x0)|
pdx

)1/p
≤

C(n, p)r
(?

Br(x0)
|∇v − ∇u|pdx

)1/p

+

(?
Br(x0)

|u − ūBr(x0)|
pdx

)1/p .
Therefore,

λ

(?
Br(x0)

|v − ūBr(x0)|
pdx

)1/p

≤ C(n, p)[M + rλε],

which is the first estimate in (3.4). Meanwhile, the second estimate in (3.4) follow directly from (3.2), the
assumption in the lemma, and the triangle inequality. The proof of the lemma is therefore complete. �

Our next step is the most delicate one. We approximate the solution u by the solution w of

(3.7)
{

div [A(x, λūBκ̄r(x0),∇w)] = 0, in Bκ̄r(x0),
w = v, on ∂Bκ̄r(x0),

where v is the weak solution of (3.3) and κ̄ ∈ (0, 1/3) is a sufficiently small number that will be determined.
The following lemma is the most important one in our approach.

Lemma 3.2. Let Λ,M > 0, p > 1 and α ∈ (0, 1] be fixed, and let ε ∈ (0, 1). There exist sufficiently small
numbers κ̄ = κ̄(Λ,M, p, n, α, ε) ∈ (0, 1/3) and δ2 = δ2(ε,Λ,M, n, α, p) ∈ (0, ε) such that the following holds.
Assume that A : B2R × R × (Rn \ {0})→ Rn satisfies (1.2)–(1.4), and assume that F ∈ Lp(B2R,R

n) and?
Br(x0)

|F|pdx ≤ δp
2 ,
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some x0 ∈ B1, some r ∈ (0,R). Then, for every λ ≥ 0, if u ∈ W1,p(B2R) is a weak solution of (3.1) satisfying?
Br(x0)

|∇u|pdx ≤ 1,
?

B2κ̄r(x0)
|∇u|pdx ≤ 1, and λ[[u]]BMO(BR,R) ≤ M,

it holds that ?
Bκ̄r(x0)

|∇v − ∇w|pdx ≤ ε p, and
(?

Bκ̄r(x0)
|∇w|pdx

)1/p

≤ C0(n, p).

where w is the weak solution of (3.7).

Proof. We skip the proof of this lemma as it is similar and much simpler than that of Lemma 4.2 in the next
section. �

Summarizing our efforts, we can prove the following proposition which is the main result of the subsec-
tion.

Proposition 3.3. Let Λ,M > 0, p > 1 and α ∈ (0, 1] be fixed. Then, for every ε ∈ (0, 1), there exist
sufficiently small numbers κ̄ = κ̄(Λ,M, p, n, α, ε) > 0 and δ′ = δ′(ε,Λ,M, α, n, p) ∈ (0, ε) such that the
following holds. Assume that A : B2R × K × (Rn \ {0}) → Rn such that (1.2)–(1.4) hold and (1.10) holds
with δ̂0 replaced by δ′, and assume that

1
|B4r(x0)|

∫
B4r(x0)

|F|pdx ≤ (δ′)p,

for some x0 ∈ BR and some r ∈ (0,R/4). Then, for every λ ≥ 0, if u ∈ W1,p(B2R) is a weak solution of (3.1)
satisfying

1
|B4r(x0)|

∫
B4r(x0)

|∇u|pdx ≤ 1,
1

|B8κ̄r(x0)|

∫
B4κ̄r(x0)

|∇u|pdx ≤ 1, and [[λu]]BMO(BR,R) ≤ M,

then there is h ∈ W1,p(B7κ̄r/2(x0)) such that the following estimate holds

(3.8)
1

|B7κ̄r/2(x0)|

∫
B7κ̄r/2(x0)

|∇u − ∇h|pdx ≤ ε p, ‖∇h‖L∞(B3κ̄r(x0)) ≤ C(Λ, n, p).

Proof. The proof is the same as that of Proposition 4.3 in the next section, using Lemma 2.9 and Lemma
3.2. We skip it. �

Proof of Theorem 1.2. Once Proposition 3.3 is established, the proof of Theorem 1.2 becomes routine,
using Lemma 2.13, and some iteration technique. Indeed, the proof is similar to that of Theorem 1.3 which
will be given in Subsection 4.3. We therefore skip the proof. �

4. Boundary regularity gradient estimates and proof of Theorem 1.3

This section proves Theorem 1.3. We recall that for some x0 = (x′0, x
0
n) ∈ Rn, and some fixed R > 0, we

denote the upper-half cylinder in Rn as

D+
2R(x0) = B′2R(x′0) × (max{xn0 − 2R, 0}, xn0 + 2R),

where B′2R(x′0) = {x′ ∈ Rn−1 : |x′ − x′0| < 2R} is the ball in Rn−1 centered at x′0 with radius 2R. We also write

T2R(x0) = ∂D+
2R(x0) ∩

(
Rn−1 × {0}

)
.

Note that if T2R(x0) , ∅, then T2R(x0) = B′2R(x′) × {0}. When x0 = 0, we also write D+
2R = D+

2R(0), B′2R =

B′2R(0′) and T2R = T2R(0) for simplicity.
For every λ ≥ 0, we investigate a weak solution u ∈ W1,p(D+

2R) of the following equation in upper-half
cylinder

(4.1)
{

div [A(x, λu,∇u)] = div [|F|p−2F], in D+
2R,

〈A(x, λu,∇u) − |F|p−2F, ~en〉 = |g(x′)|p−2g(x′), on T2R.
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By weak solution of (4.1), we mean that u ∈ W1,p(D+
2R), λu(x) ∈ K for a.e. x ∈ D+

2R and

(4.2)
∫

D+
2R

〈A(x, λu,∇u),∇ϕ〉dx =

∫
B′2R

|g(x′)|p−2g(x′)ϕ(x′, 0)dx′ +
∫

D+
2R

〈|F|p−2F,∇ϕ〉dx,

for all ϕ ∈ C∞0 (D2R). Our approach is based on the perturbation technique using freezing coefficient
equations. To this end, we employ the “scaling parameter” technique introduced in [22, 35, 36]. The
approach is also influenced by the recent developments [3, 4, 6, 36, 37, 45].

4.1. Boundary approximation estimates. We begin with the following lemma which perturbs the force
terms and provides comparison estimates in energy spaces for our solution u of (4.1) with the solution v of
its corresponding homogeneous equation, i. .e equation (4.5) below.

Lemma 4.1. Let Λ,M > 0, p > 1 and α ∈ (0, 1] be fixed. Then, for every ε ∈ (0, 1), there exists δ̄1 =

δ̄1(ε,Λ, n, p) > 0 and sufficiently small such that the following statement holds. Assume that A : D+
2R ×K×

(Rn \ {0})→ Rn satisfies (1.2)–(1.4) on D+
2R × K × (Rn \ {0}), and assume that

1
|Dr(x0)|

∫
D+

r (x0)
|F|pdx +

1
|B′r(x′0)|

∫
B′r(x′0)

|g(x′)|pdx′ ≤ δ1,

for some x0 = (x′0, xn0) ∈ D+
R and r ∈ (0,R). Then, for every λ ≥ 0, if u ∈ W1,p(D+

2R) is a weak solution of
(4.1) satisfying

(4.3)
1

|Dr(x0)|

∫
D+

r (x0)
|∇u|pdx ≤ 1, and λ

(
1

|D+
r (x0)|

∫
D+

r (x0)
|u − ūD+

r (x0)|
pdx

)1/p

≤ M,

then

(4.4)
1

|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx ≤ ε p,

where v ∈ W1,p(D+
r (x0)) is the weak solution of

(4.5)


div [A(x, λu,∇v)] = 0 in D+

r (x0),
v = u − ūD+

r (x0) on ∂D+
r (x0) \ Tr(x0), and

〈A(x, λu,∇v), ~en〉 = 0 on Tr(x0) if Tr(x0) , ∅.

Moreover, it holds that

(4.6) λ

(
1

|Dr(x0)|

∫
D+

r (x0)
|v|pdx

)1/p

≤ C(n, p)[εrλ + M], and
(

1
|Dr(x0)|

∫
D+

r (x0)
|∇v|pdx

)1/p

≤ 2.

Proof. If Tr(x0) = ∅, the lemma follows directly from Lemma 3.1 with cylinders replacing balls. Therefore,
we only need to consider the case that Tr(x0) , ∅. By taking A0(x, ξ) = A(x, λu(x), ξ), we see that A0 is
independent on z ∈ K and satisfies all conditions in (1.2)–(1.3) on D+

2R × (Rn \ {0}). Therefore, the existence
of the weak solution v of (4.6) follows from the standard theory in calculus of variations. Moreover, since
v − [u − ūD+

r (x0)] ∈ W1,p(D+
r (x0)) and v − [u − ūD+

r (x0)] = 0 on ∂D+
r (x0) \ Tr(x0) in the sense of trace, we can

use v − [u − ūD+
r (x0)] as a test function for the equation (4.5) and then obtain

(4.7)
∫

D+
r (x0)
〈A(x, λu,∇v),∇u − ∇v〉dx = 0.

Similarly, we can also use v − [u − ūD+
r (x0)] as a test function for the equation (4.1) and infer that∫

D+
r (x0)
〈A(x, λu,∇u),∇u − ∇v〉dx

=

∫
B′r(x′0)

|g(x′)|p−2g(x′)[v(x′, 0) − u(x′, 0) + ūD+
r (x0)]dx′ +

∫
D+

r (x0)
〈|F|p−2F,∇u − ∇v〉dx,
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The last estimate and (4.7) together yield

∫
D+

r (x0)
〈A(x, λu,∇u) − A(x, λu,∇v),∇u − ∇v〉dx

=

∫
B′r(x′0)

|g(x′)|p−2g(x′)[v(x′, 0) − u(x′, 0) + ūD+
r (x0)]dx′ +

∫
D+

r (x0)
〈|F|p−2F,∇u − ∇v〉dx.

From this, we can proceed as in the proof of Lemma 3.1 with some modification due to the availability of
the boundary term g. We only need to consider the case 1 < p < 2 as the case p ≥ 2 can be done similarly
but much simpler. For some τ ∈ (0, 1) to be determined, from Lemma 2.3, and by using the conditions
(1.2)–(1.4), we infer that

∫
D+

r (x0)
|∇u − ∇v|pdx

≤ τ

∫
D+

r (x0)
|∇u|pdx + C(Λ, τ)

∫
D+

r (x0)
〈A(x, λu,∇u) − A(x, λu,∇v),∇u − ∇v〉dx

= τ

∫
D+

r (x0)
|∇u|pdx + C(Λ, τ)

∫
B′r(x′0)

|g(x′)|p−2g(x′)[v(x′, 0) − u(x′, 0) + ūD+
r (x0)]dx′

+

∫
D+

r (x0)
〈|F|p−2F,∇u − ∇v〉dx

]
.

≤ τ

∫
D+

r (x0)
|∇u|pdx + C(Λ, τ)

∫
B′r(x′0)

|g(x′)|p−1|v(x′, 0) − u(x′, 0) + ūD+
r (x0)|dx′

+

∫
D+

r (x0)
|F|p−1|∇u − ∇v|dx

]
≤

1
2

∫
D+

r (x0)
|∇u − ∇v|pdx + τ

∫
D+

r (x0)
|∇u|pdx

+ C(Λ, τ)

∫
D+

r (x0)
|F|pdx +

∫
B′r(x′0)

|g(x′)|p−1|v(x′, 0) − u(x′, 0) + ūD+
r (x0)|dx′

 ,
where we have used Hölder’s inequality and Young’s inequality in our last step. This estimate and the first
assumption in (4.3) imply that

1
|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx

≤ 2τ +
C(Λ, τ)
|Dr(x0)|

∫
D+

r (x0)
|F|pdx +

∫
B′r(x′0)

|g(x′)|p−1|[v(x′, 0) − u(x′, 0) + ūD+
r (x0)|dx′

 .
We now control the last term in the right hand side of the above estimate. With some sufficiently small
τ′ > 0 such that τ′C(n, p) = 1/2 for some universal constant C(n, p) > 0 to be determined, we can use the
Hölder’s inequality, Young’s inequality, Poincaré-Sobolev’s inequality, and the Sobolev trace inequality to
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see that

C(Λ, τ)
|Dr(x0)|

∫
B′r(x′0)

|g(x′)|p−1|v(x′, 0) − u(x′, 0) + ūB+
r (x0)|dx′

=
C(Λ, n, τ)

r

?
B′r(x′0)

|g(x′)|p−1|v(x′, 0) − u(x′, 0) + ūB+
r (x0)|dx′

≤ C(Λ, p, n, τ, τ′)
?

B′r(x′0)
|g(x′)|pdx′ +

τ′

rp

?
B′r(x′0)

|v(x′, 0) − u(x′, 0) + ūB+
r (x0)|

pdx′

≤ C(Λ, p, n, τ, τ′)
?

B′r(x′0)
|g(x′)|pdx′ +

C(n, p)τ′

|Dr(x0)|

∫
D+

r (x0)
|∇u(x) − ∇v(x)|pdx

≤ C(Λ, p, n, τ)
?

B′r(x′0)
|g(x′)|pdx′ +

1
2|Dr(x0)|

∫
D+

r (x0)
|∇u(x) − ∇v(x)|pdx.

Therefore,

1
|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx ≤ 4τ + C(Λ, n, p, τ)

 1
|Dr(x0)|

∫
D+

r (x0)
|F|pdx +

?
B′r(x′0)

|g(x′)|pdx′
 .

Hence, by choosing τ = ε p/8, and δ̄1 > 0 sufficiently small such that C(Λ, n, p, τ)δ̄1 < ε
p/2, we obtain

1
|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx ≤ ε p,

and this proves (4.4). We finally need to prove (4.6). Observe that(
1

|Dr(x0)|

∫
Dr(x0)

|v|pdx
)1/p

≤

(
1

|Dr(x0)|

∫
D+

r (x0)
|v − [u − ūD+

r (x0)]|pdx
)1/p

+

(
1

|Dr(x0)|

∫
D+

r (x0)
|u − ūD+

r (x0)|
pdx

)1/p

.

Since v − [u − ūD+
r (x0)] = 0 on ∂D+

r (x0) \ Tr(x0) in the sense of trace, we can use the Poincaré’s inequality
for the first term in the right hand side of the above inequality to obtain(

1
|Dr(x0)|

∫
D+

r (x0)
|v|pdx

)1/p

≤ C(n, p)

r (
1

|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx

)1/p

+

(
1

|Dr(x0)|

∫
D+

r (x0)
|u − ūD+

r (x0)|
pdx

)1/p
≤ C(n, p)

rε +

(
1

|D+
r (x0)|

∫
D+

r (x0)
|u − ūD+

r (x0)|
pdx

)1/p ,
where in the last step, we used the fact that 1

2 |Dr(x0)| ≤ |D+
r (x0)| ≤ |Dr(x0)|. From this and the second

assumption in (4.3), it follows that

λ

(
1

|Dr(x0)|

∫
D+

r (x0)
|v|pdx

)1/p

≤ C(n, p)[rελ + M].
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This proves the first estimate in (4.6). To prove the second estimate, we use the triangle inequality, (4.4)
and the assumption in the lemma to obtain(

1
|Dr(x0)|

∫
D+

r (x0)
|∇v|pdx

)1/p

≤

(
1

|Dr(x0)|

∫
D+

r (x0)
|∇v − ∇u|pdx

)1/p

+

(
1

|Dr(x0)|

∫
D+

r (x0)
|∇u|pdx

)1/p

≤ ε + 1.

From this and as ε ∈ (0, 1), the second estimate in (4.6) follows. The proof is therefore complete. �

Our next step is the most delicate one in the approach. In this step, we will compare the solution u of
(4.1) by a solution w of the following equation

(4.8)


div [A(x, λūD+

κr(x0),∇w)] = 0, in D+
κr(x0),

w = v, on ∂D+
κr(x0) \ Tκr(x0),

〈A(x, λūB+
κr(x0),∇w), ~en〉 = 0, on Tκr(x0) if Tκr(x0) , ∅.

where v is defined in Lemma 4.1 and κ ∈ (0, 1/3) is a sufficiently small constant. The following lemma is
the most important one in the approach.

Lemma 4.2. Let Λ,M > 0, p > 1 and α ∈ (0, 1] be fixed. Then, for every ε ∈ (0, 1), there exist sufficiently
small numbers κ = κ(Λ,M, α, n, p, ε) ∈ (0, 1/3) and δ̄2 = δ̄2(ε,Λ,M, α, n, p) ∈ (0, ε) such that the following
holds. Assume that A : D+

2R × K × (Rn \ {0})→ Rn such that (1.2)–(1.4) hold on D+
2R × K × (Rn \ {0}), and

assume that
1

|Dr(x0)|

∫
D+

r (x0)
|F(x)|pdx +

1
|B′r(x′0)|

∫
B′r(x′0)

|g(x′)|pdx′ ≤ δ2,

for some x0 = (x′, xn0) ∈ D+
R and r ∈ (0,R). Then, for every λ ≥ 0, if u ∈ W1,p(D+

2R) is a weak solution of
(4.1) satisfying

1
|Dr(x0)|

∫
D+

r (x0)
|∇u|pdx ≤ 1,

1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇u|pdx ≤ 1, and [[λu]]BMO(D+

R ,R) ≤ M,

then the following estimate holds

(4.9)
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇u − ∇w|pdx ≤ ε p, and

(
1

|Dκr(x0)

∫
Dκr(x0)

|∇w|p
)1/p

≤ C0(n, p).

where w ∈ W1,p(D+
κr(x0)) is the weak solution of (4.8).

Proof. For a given sufficiently small ε > 0, let ε′ ∈ (0, ε/2) and κ ∈ (0, 1/3) be sufficiently small numbers
depending on ε,Λ,M, n, α, p which will be determined. Then, let δ̄2 = δ̄1(ε′κ

n
p ,Λ, n, p), where δ̄1 is defined

in Lemma 4.1. By applying Lemma 4.1, there is v ∈ W1,p(D+
r (x0)) such that(

1
|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx

)1/p

≤ ε′κ
n
p , and

λ

(
1

|Dr(x0)|

∫
D+

r (x0)
|v|pdx

)1/p

≤ C(n, p)[rε′κ
n
pλ + M].

(4.10)

Moreover, (
1

|Dr(x0)|

∫
D+

r (x0)
|∇v|pdx

)1/p

≤ 2.
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In the above estimates, we would like to note that if xn0 > r, then D+
r (x0) = Dr(x0). From the first estimate

in (4.10), the triangle inequality and the assumption of the lemma, it follows that 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇v|pdx

1/p

≤

 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇v − ∇u|pdx

1/p

+

 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇u|pdx

1/p

≤

(
1

(2κ)n|Dr(x0)|

∫
D+

r (x0)
|∇v − ∇u|pdx

)1/p

+ 1 ≤
ε′

2n/p + 1 ≤ 2.

Consequently, we have obtained the following important estimates

(4.11)
(

1
|Dr(x0)|

∫
D+

r (x0)
|∇v|pdx

)1/p

≤ 2, and

 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇v|pdx

1/p

≤ 2.

We may assume now that λ > 0 as the case λ = 0 is much simpler. From the standard Caccioppli’s type
estimates (see Lemma 2.4) and the second estimate in (4.10), we see that 1

|D2κr(x0)|

∫
D+

2κr(x0)
|∇v|pdx

1/p

≤
C(Λ, n, p)

(1 − 2κ)κ
n
p r

(
1

|Dr(x0)|

∫
D+

r (x0)
|v|pdx

)1/p

≤ C(Λ, n, p)
[
ε′ + M(λrκ

n
p )−1

]
,

(4.12)

where in the last estimate, we used the fact that κ ∈ (0, 1/3) to control the factor 1 − 2κ. Now, let w be the
weak solution of (4.8), whose existence follows from standard theory in calculus of variations. It remains
to prove the estimate (4.9). We only need to consider the case 1 < p < 2, since the case p ≥ 2 is similar,
and simpler. Since w− v ∈ W1,p(D+

κr(x0)) and w− v = 0 on ∂D+
κr(x0)) \ Tκr(x0) in the sense of trace, we can

take w − v as a test function for the equation (4.8) and the equations (4.5) to obtain

(4.13)
∫

D+
κr(x0)
〈A(x, λu,∇v),∇w − ∇v〉dx =

∫
D+
κr(x0)
〈A(x, λūD+

κr(x0),∇w),∇w − ∇v〉dx = 0.

From this and Lemma 2.3, we infer that∫
D+
κr(x0)
|∇v − ∇w|pdx

≤
1
4

∫
D+
κr(x0)
|∇v|pdx + C(n, p)

∫
D+
κr(x0)
〈A(x, λūD+

κr(x0),∇v) − A(x, λūD+
κr(x0),∇w),∇v − ∇w〉dx

=
1
4

∫
D+
κr(x0)
|∇v|pdx + C(n, p)

∫
D+
κr(x0)
〈A(x, λūD+

κr(x0),∇v),∇v − ∇w〉dx

≤
1
4

∫
D+
κr(x0)
|∇v|pdx + C(Λ, n, p)

∫
D+
κr(x0)
|∇v|p−1|∇v − ∇w|dx

≤ C(Λ, n, p)
∫

D+
κr(x0)
|∇v|pdx +

1
2

∫
D+
κr(x0)
|∇v − ∇w|pdx.

Then, by cancelling similar terms, we obtain∫
D+
κr(x0)
|∇v − ∇w|pdx ≤ C(Λ, n, p)

∫
D+
κr(x0)
|∇v|pdx.
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This last estimate together with (4.12) imply that

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

)1/p

≤ C(Λ, n, p)

 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇v|pdx

1/p

≤ C1(Λ, n, p)
[
ε′ + M(κ

n
p rλ)−1

]
.

Therefore, if MC1(Λ,n,p)

κ
n
p rλ

≤ ε/4, we choose ε′ ∈ (0, ε/2) and sufficiently small such that

C1(Λ, n, p)(ε′)p < ε/2,

and then obtain (
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

)1/p

≤ ε/2,

From this, the first estimate in (4.10), and the triangle inequality, it follows that

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇u − ∇w|pdx

)1/p

≤

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇u − ∇v|pdx

)1/p

+

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

)1/p

≤

(
1

κn|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx

)1/p

+ ε/2 ≤ ε′ + ε/2 ≤ ε,

which gives the first estimate in (4.9). Therefore, it remains to consider the case

(4.14) λrκ
n
p ε ≤ 4C1(Λ, n, p)M.

In this case, we note that from our choice that ε′ ∈ (0, ε/2), we particularly have

λε′κ
n
p r ≤ C(Λ,M, n, p).

Then, it follows from (4.10) that

λ

(
1

|Dr(x0)|

∫
D+

r (x0)
|v|pdx

)1/p

≤ C(Λ,M, n, p).

From this, with Remark 2.1, and with some suitable scaling of the equation (4.5), we can apply the Hölder’s
regularity theory (Lemma 2.5 and Lemma 2.6) for the solution v̂ := λv. We then find that there is β ∈ (0, 1)
depending only on Λ,M, n, p such that

(4.15) |v̂(x) − v̂(y)| ≤ C(Λ,M, p, n)
(
|x − y|

r

)β
, ∀ x, y ∈ D+

2r/3(x0).
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From now on, for simplicity, we write û = u − ūD+
κr(x0) where ūD+

κr(x0) =
>

D+
κr(x0) u(x)dx. We can use Lemma

2.3, the condition (1.4) of the vector field A, and (4.13) to obtain with some τ > 0 sufficiently small,∫
D+
κr(x0)
|∇v − ∇w|pdx

≤ τ

∫
D+
κr(x0)
|∇v|pdx + C(Λ, p)τ

p−2
p

∫
D+
κr(x0)
〈A(x, λūD+

κr(x0),∇v) − A(x, λūD+
κr(x0),∇w),∇v − ∇w〉dx

≤ τ

∫
D+
κr(x0)
|∇v|pdx + C(Λ, p)τ

p−2
p

∫
D+
κr(x0)
〈A(x, λūD+

κr(x0),∇v) − A(x, λu,∇v),∇v − ∇w〉dx

≤ τ

∫
D+
κr(x0)
|∇v|pdx + C(Λ, p)τ

p−2
p

∫
D+
κr(x0)

[λû]α|∇v|p−1|∇v − ∇w|dx

≤
1
2

∫
D+
κr(x0)
|∇v − ∇w|pdx + τ

∫
D+
κr(x0)
|∇v|pdx + C(Λ, p)τ

p−2
p−1

∫
D+
κr(x0)
|λû|

αp
p−1 |∇v|pdx,

where we have used Hölder’s inequality and Young’s inequality in our last step of the above estimates. By
cancelling similar terms in the last estimate, we infer that

1
|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

≤
2τ

|Dκr(x0)|

∫
D+
κr(x0)
|∇v|pdx +

C(Λ, p)τ
p−2
p−1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|

αp
p−1 |∇v|pdx.

For q1 > p and sufficiently close to p depending only on Λ, n and p, we write q0 =
αpp1

(p−1)(p1−p) > p. Then,
using the Hölder’s inequality, and the self-improving regularity estimates, Lemma 2.7 and Lemma 2.8, we
obtain

1
|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

≤
2τ

|Dκr(x0)|

∫
D+
κr(x0)
|∇v|pdx

+ C(Λ, p)τ
p−2
p−1

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|q0

) p1−p
p1

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇v|p1dx

) p
p1

≤ C(Λ, n, p)

τ + τ
p−2
p−1

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|q0dx

) p1−p
p1


 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇v|pdx


Now, by applying Hölder’s inequality and the well-known John-Nirenberg’s inequality, we see that

1
|Dκr(x0)|

∫
D+
κr(x0)
|λû|q0dx =

1
|Dκr(x0)|

∫
D+
κr(x0)
|û|p/2|λû|q0−p/2dx

≤

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx

)1/2 (
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|2q0−pdx

)1/2

≤ C(n, p, q0)[[λu]]
q0−

p
2

BMO(D+
R ,R)

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx

)1/2

≤ C(Λ,M, α, n, p)
(

1
|Dκr(x0)|

∫
D+
κr(x0)

∣∣∣∣λû|pdx
)1/2

.
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Therefore,

1
|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

≤ C(Λ,M, n, α, p)

τ + τ
p−2
p−1

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx

) p1−p
2p1


 1
|D2κr(x0)|

∫
D+

2κr(x0)
|∇v|pdx

 .
This and the second estimate in (4.11) imply that

1
|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

≤ C(Λ,M, n, α, p)

τ + τ
p−2
p−1

(
1

|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx

) p1−p
2p1

 .(4.16)

On the other hand, note that with û = u − ūD+
κr(x0), we can write

1
|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx =

1
|Dκr(x0)|

∫
D+
κr(x0)
|λ(û − ûD+

κr(x0))|
pdx

≤ C(p)
[

1
|Dκr(x0)|

∫
D+
κr(x0)
|λ(û − v)|pdx +

1
|Drκ(x0)|

∫
D+
κr(x0)
|λ(v − v̄D+

κr(x0))|pdx

+
1

|Dκr(x0)|

∫
D+
κr(x0)
|λ(ûD+

κr(x0) − v̄D+
κr(x0))|pdx

≤ C(n, p)
[

1
κn|Dr(x0)|

∫
D+

r (x0)
|λ(û − v)|pdx +

1
|D+

κr(x0)|

∫
D+
κr(x0)
|v̂ − ¯̂vD+

κr(x0))|pdx
]
.

Then, by using the Poincaré’s inequality to the first term on the right hand side of the last estimate, we
obtain (

1
|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx

)1/p

≤ C(Λ, n, p)

λr

κ
n
p

(
1

|Dr(x0)|

∫
D+

r (x0)
|∇u − ∇v|pdx

)1/p

+ sup
x,y∈D+

κr(x0)

|v̂(x) − v̂(y)|

 .
This last estimate, the first estimate in (4.10), and (4.15) together imply that(

1
|Dκr(x0)|

∫
D+
κr(x0)
|λû|pdx

)1/p

≤ C(Λ, p, n)
[
(λr)ε′ + κβ

]
.

From this last estimate, the estimate (4.16) can be written as

1
|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx ≤ C(Λ,M, n, α, p)

[
τ + τ

p−2
p−1

(
λrε′ + κβ

) p(p1−p)
2p1

]
.

From this estimate and (4.14), we can further imply that

1
|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx ≤ C2(Λ,M, α, p, n)

(
τ + τ

2−p
p−1

[ ε′
εκ

n
p

+ κβ
] p(p1−p)

2p1

)
.

Then, we first choose τ > 0 such that

C2(Λ,M, n, α, p)τ =
1
2

(
ε

2

)p
.
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Then, we chose κ ∈ (0, 1/3) sufficiently small such that

κβ ≤
1
2

 (ε/2)p

2C2(Λ,M, n, α, p)τ
p−2
p−1


2p1

p(p1−p)

and then choose ε′ ∈ (0, ε/2) so small such that

ε′

εκ
n
p
≤

1
2

 (ε/2)p

2C2(Λ,M, n, α, p)τ
p−2
p−1


2p1

p(p1−p)

.

From these choices, we obtain (
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇v − ∇w|pdx

)1/p

≤ ε/2.

From this, we then use the triangle inequality and the first estimate in (4.10) to derive the estimate(
1

|Dκr(x0)|

∫
D+
κr(x0)
|∇u − ∇w|pdx

)1/p

≤ ε.

This completes the proof of the first estimate in (4.9). To prove the second estimate in (4.9), we use triangle
inequality and the assumption in the lemma to see that(

1
|Dκr(x0)

∫
D+
κr(x0)
|∇w|pdx

)1/p

≤

(
1

|Dκr(x0)

∫
D+
κr(x0)
|∇w − ∇u|pdx

)1/p

+

(
1

|Dκr(x0)

∫
D+
κr(x0)
|∇u|pdx

)1/p

≤ ε +

 2n

|D2κr(x0)|

∫
D+

2κr(x0)
|∇u|pdx

1/p

≤ 1 + 2n/p = C0(n, p).

The proof of the lemma is now complete. �

Now, we can state and prove the following important result, which is the main result of the subsection.

Proposition 4.3. Let Λ,M > 0, p > 1 be fixed. Then, for every ε ∈ (0, 1), there exist sufficiently small
numbers κ = κ(Λ,M, p, α, n, ε) ∈ (0, 1/3) and δ = δ(ε,Λ,M, α, n, p) ∈ (0, ε) such that the following holds.
Assume that A : D+

2R × K × R
n → Rn such that (1.2)–(1.4) and (1.11) hold, and

1
|D4r(x0)|

∫
D+

4r(x0)
|F(x)|pdx +

1
|B′4r(x′0)|

∫
B′4r(x′0)

|g(x′)|pdx′ ≤ δp,

for some x0 = (x′0, xn0) ∈ D+
R and some r ∈ (0,R/4). Then, for every λ ≥ 0, if u ∈ W1,p(D+

2R) is a weak
solution of (4.1) satisfying

1
|D4r(x0)|

∫
D+

4r(x0)
|∇u|pdx ≤ 1,

1
|D8κr(x0)|

∫
D+

8κr(x0)
|∇u|pdx ≤ 1, and [[λu]]BMO(D+

R ,R) ≤ M,

then there is h ∈ W1,p(D+
7κr/2(x0)) such that the following estimate holds

(4.17)

 1
|D7κr/2(x0)|

∫
D+

7κr/2(x0)
|∇u − ∇h|pdx

1/p

≤ ε, ‖∇h‖L∞(D+
3κr(x0)) ≤ C(Λ, n, p).

Proof. For a given ε ∈ (0, 1), let

δ = min
{
δ̄0(ε/[2C0(n, p)],Λ, n, p), δ̄2(ε/[2(8/7)n/p],Λ,M, α, p)

}
,

where δ̄0 and δ̄2 are the numbers defined in Lemma 2.10, and Lemma 4.2, respectively. Moreover, C0(n, p)
is the number defined in (4.9). Also, let κ = κ(Λ,M, p, α, n, ε) ∈ (0, 1/3) be the number defined in Lemma
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4.2. We now prove our result with this choice of δ and κ. From the assumptions we can apply Lemma 4.2
with r replaced by 4r to find w ∈ W1,p(D+

4κr(x0)), which is the weak solution of (4.8) satisfying 1
|D4κr(x0)|

∫
D+

4κr(x0)
|∇u − ∇w|pdx

1/p

≤
ε

2(8/7)n/p , and(
1

|D4κr(x0)

∫
D4κr(x0)

|∇w|p
)1/p

≤ C0(n, p).

(4.18)

Now, let A0(x, ξ) = A(x, ūD+
4κr(x0), ξ) for all x ∈ D+

2R and ξ ∈ Rn \ {0}. We then apply Lemma 2.10 with
ρ = 2κr and some suitable scaling to find a function h ∈ W1,p(D+

7κr/2(x0)) satisfying

(4.19)

 1
|D7κr/2(x0)|

∫
D+

7κr/2(x0)
|∇w − ∇h|pdx

1/p

≤ ε/2, and ‖∇h‖L∞(D+
3κr(x0)) ≤ C(Λ, n, p).

Then, from (4.18), (4.19), and the triangle inequality, we obtain 1
|D7κr/2(x0)|

∫
D+

7κr/2(x0)
|∇u − ∇h|pdx

1/p

≤

 1
|D7κr/2(x0)|

∫
D+

7κr/2(x0)
|∇u − ∇w|pdx

1/p

+

 1
|D7κr/2(x0)|

∫
D+

7κr/2(x0)
|∇w − ∇h|pdx

1/p

≤ (8/7)n/p

 1
|D4κr(x0)|

∫
D+

4κr(x0)
|∇u − ∇w|pdx

1/p

+ ε/2 ≤ ε.

The proof is therefore complete. �

4.2. Boundary level set estimates. Recall that the Hardy-Littlewood maximal functionM( f ) is defined
in (2.7). Moreover, if f is defined only in U, we writeMU( f ) = M( fχU), where χU is the characteristic
function of a measurable set U ⊂ Rn. Also recall that B′ρ(x′) is the ball in Rn−1 centered at x′ ∈ Rn−1 and
with radius ρ > 0. Our first result of this subsection is the following important lemma on the density of the
level sets of |∇u| for a weak solution u of (4.1).

Lemma 4.4. Let Λ > 0,M > 0, p > 1 and α ∈ (0, 1] be fixed, and let ε ∈ (0, 1). Then there exist sufficiently
large number N = N(Λ, n, p) ≥ 1 and two sufficiently small numbers κ = κ(Λ,M, p, α, n, ε) ∈ (0, 1/3)
and δ = δ(ε,Λ,M, p, α, n) ∈ (0, ε) such that the following statement holds. Suppose that A : D+

2R × K ×
(Rn \ {0}) → Rn such that (1.2)–(1.4) and (1.11) hold for some R > 0 and some open interval K ⊂ R.
Suppose that u ∈ W1,p(D+

2R) is a weak solution of (4.1) satisfying [[λu]]BMO(D+
R ,R) ≤ M with some λ ≥ 0. If

y = (y′, yn) ∈ D+
R and ρ ∈ (0, κ0) such that

Dρ(y) ∩
{
x ∈ D+

R :MD+
2R

(|∇u|p)(x) ≤ 1
}
∩

∩
{
x = (x′, xn) ∈ D+

R :MD+
2R

(|F|p)(x) +MB′2R
(g)(x′) ≤ δp

}
, ∅,

for κ0 = min
{
1,R

}
κ/6, then

(4.20)
∣∣∣∣{x ∈ D+

R :MD+
2R

(|∇u|p) > N
}
∩ Dρ(y)

∣∣∣∣ ≤ ε|Dρ(y)|.

Proof. The proof is standard using Proposition 4.3. However, as Proposition 4.3 is stated differently com-
pared to other similar available approximation estimates in the literature, details of the proof of this lemma
is required. For a given ε ∈ (0, 1), let ε′ > 0 be sufficiently small to be determined depending only on ε,Λ, n
and p. Then, let κ = κ(Λ,M, p, α, n, ε′) and δ = δ(ε′,Λ,M, p, n, α) be the numbers defined in Proposition
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4.3. We prove the lemma with this choice of δ, κ. By the assumption, we can find x0 = (x′0, xn0) ∈ Dρ(y)∩D+
R

such that

(4.21) MD+
2R

(|∇u|p)(x0) ≤ 1 and MD+
2R

(|F|p)(x0) +MB′2R
(|g|p)(x′0) ≤ δp.

Let r = κ−1ρ ∈ (0,R/6), and we plan to use Proposition 4.3 with this r. Therefore, we need to show that all
conditions in Proposition 4.3 hold. Since ρ ∈ (0, κ0) and κ is sufficiently small, we see that

D+
4r(y) ⊂ D+

5r(x0) ⊂ D+
2R, and B′4r(y

′) ⊂ B′5r(x′0) ⊂ B′2R.

From this and (4.21), it follows that

1
|D4r(y)|

∫
D+

4r(y)
|∇u|pdx ≤

|D5r(x0)|
|D4r(y)|

1
|D5r(x0)|

∫
D+

5r(x0)
|∇u|pdx ≤

(
5
4

)n

,

and

1
|D4r(y)|

∫
D+

4r(y)
|F|pdx +

1
|B′4r(y

′)|

∫
B′4r(y′)

|g(x′)|pdx′

≤
|D5r(x0)|
|D4r(y)|

1
|D5r(x0)|

∫
D+

5r(x0)
|F|pdx +

|B′5r(x′0)|

|B′4r(y
′)|

1
|B′5r(x′0)|

∫
B′5r(x′0)

|g(x′)|pdx′

≤

(
5
4

)n

MD+
2R

(|∇u|p)(x0) +

(
5
4

)n−1

MB′2R
(|g|p)(x′0) ≤

(
5
4

)n

δp,

Moreover, since ρ = κr ∈ (1,R/18), we can check that D+
8ρ(y) ⊂ D+

9ρ(x0) ⊂ D+
2R and therefore it follows

from (4.21) that

1
|D8κr(y)|

∫
D+

8κr(y)
|∇u|pdx =

1
|D8ρ(y)|

∫
D+

8ρ(y)
|∇u|pdx

≤
|D9ρ(x0)|
|D8ρ(y)|

1
|D9ρ(x0)|

∫
D9ρ(x0)∩D+

2R

|∇u|pdx ≤
(
9
8

)n

.

Hence, all conditions in Proposition 4.3 are satisfied when taking the scaling u 7→ ũ := u/(5/4)n into
consideration. From this, Lemma 2.1, and our choice of κ, δ, we can apply Proposition 4.3 for ũ and then
scale back to u find a function h ∈ W1,p(D+

7ρ
2

(y)) satisfying

1
|D 7ρ

2
(y)|

∫
D+

7ρ
2

(y)
|∇u − ∇h|pdx ≤ (ε′)p

(
5
4

)n

, and ‖∇h‖L∞(D+
3ρ(y)) ≤ C∗(Λ, n, p).

Let us now denote N = max
{
2pCp

∗ , 2n
}
, and we will prove (4.20) with this choice of N. To this end, we will

firstly prove that

(4.22)
{
x ∈ Dρ(y) ∩ D+

R :MD+
7ρ
2

(y)(|∇u − ∇h|p)(x) ≤ Cp
∗

}
⊂

{
x ∈ Dρ(y) ∩ D+

R :MD+
2R

(|∇u|p)(x) ≤ N
}
.

To prove this statement, let x be a point in the set on the left side of (4.22), and we shall verify that

(4.23) MD+
2R

(|∇u|p)(x) ≤ N.
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Let ρ′ > 0 be any number. If ρ′ < 2ρ, then Dρ′(x) ∩ D+
2R ⊂ D3ρ(y) ∩ D+

2R ⊂ D+
2R, and it follows that 1

|Dρ′(x)|

∫
Dρ′ (x)∩D+

2R

|∇u(z)|pdz

1/p

=

 1
|Dρ′(x)|

∫
D+
ρ′

(x)
|∇u(z)|pdz

1/p

≤

 1
|Dρ′(x)|

∫
Dρ′ (x)∩D+

7ρ/2(y)
|∇u(z) − ∇h(z)|pdz

1/p

+

 1
|Dρ′(x)|

∫
D+
ρ′

(x)
|∇h(z)|pdz

1/p

≤

(
MD+

7ρ/2(y)(|∇u − ∇h|p)(x)
)1/p

+ ‖∇h‖L∞(D+
3ρ(y)) ≤ 2C∗ ≤ N1/p.

On the other hand, if ρ′ ≥ 2ρ, we note that Dρ′(x) ∩ D+
2R ⊂ D2ρ′(x0) ∩ D+

2R, and it follows from this and
(4.21) that

1
|Dρ′(x)|

∫
Dρ′ (x)∩D+

2R

|∇u(z)|pdz ≤
|D2ρ′(x0)|
|Dρ′(x)|

1
|D+

2ρ′(x0)|

∫
D+

2ρ′ (x0)∩D+
2R

|∇u(z)|pdz ≤ 2n ≤ N.

Hence, (4.23) is verified and therefore (4.22) is proved. Observe that (4.22) is in fact equivalent to

(4.24)
{
x ∈ Dρ(y) ∩ D+

R :MD+
2R

(|∇u|p)(x) > N
}
⊂ E :=

{
x ∈ Dρ(y) ∩ D+

R :MD+
7ρ/2(y)(|∇u − ∇h|p)(x) > Cp

∗

}
.

On the other hand, from the weak type (1,1) estimate of Hardy-Littlewood maximal function, see Lemma
2.11, it is true that

|E|
|Dρ(y)|

≤
C(n)

Cp
∗ |D7ρ/2(y)|

∫
D+

7ρ/2(y)
|∇u − ∇h|pdz ≤ C1(Λ, n, p)(ε′)p.

Then, by choosing ε′ depending on ε,Λ, n, p such that C1(Λ, n, p)(ε′)p = ε, we obtain |E| ≤ ε|Dρ(y)|. From
this estimate and the definition of E in (4.24), the estimate (4.20) follows and the proof is complete. �

Our level set estimate is the following result, which is the main result of the section.

Lemma 4.5. Let Λ > 0,M > 0, p > 1 and α ∈ (0, 1] be fixed, and let ε ∈ (0, 1). Then there exist sufficiently
large number N = N(Λ, n, p) ≥ 1 and two sufficiently small numbers κ = κ(Λ,M, p, α, n, ε) ∈ (0, 1/3) and
δ = δ(ε,Λ,M, p, α, n) ∈ (0, ε) such that the following statement holds. For some R > 0 and some open
interval K ⊂ R, assume that A : D+

2R ×K× (Rn \ {0})→ Rn such that (1.2)–(1.4) and (1.11) hold. Then, for
any λ ≥ 0, if u ∈ W1,p(D+

2R) is a weak solution of (4.1) satisfying

(4.25) [[λu]]BMO(D+
R ,R) ≤ M,

∣∣∣{D+
R :MD+

2R
(|∇u|2) > N

}∣∣∣ ≤ ε|Dκ0 |,

for κ0 = min{1,R}κ/6, then with ε1 defined in Lemma 2.13,∣∣∣∣{D+
R :MD+

2R
(|∇u|p > N

}∣∣∣∣
≤ ε1

[∣∣∣∣{D+
R :MD+

2R
(|∇u|p) > 1

}∣∣∣∣
+

∣∣∣∣{x = (x′, xn) ∈ D+
R :MB′2R

(|g|p)(x′) > δp
}∣∣∣∣ +

∣∣∣∣{D+
R :MD+

2R
(|F|p) > δp

}∣∣∣∣] .
(4.26)

Proof. Let N, κ, δ be the numbers defined in Lemma 4.4. We plan to apply Lemma 2.13 for

C =
{
x ∈ D+

R :MD+
2R

(|∇u|p)(x) > N
}
,

and

D =
{
x ∈ D+

R :MD+
2R

(|∇u|p)(x) > 1
}

∪
{
x = (x′, xn) ∈ D+

R :MD+
2R

(|F|p)(x) +MB′2R
(|g|p)(x′) > δp

}
.
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By the second assumption in (4.25), we see that (i) of Lemma 2.13 holds. Moreover, by Lemma 4.4, we
see that (ii) of Lemma 2.13 is satisfied. Therefore, all conditions in Lemma 2.13 hold and (4.26) follows
from Lemma 2.13. �

4.3. Proof of the W1,q-regularity estimates on flat domains. From the Lemma 4.5 and an iterating pro-
cedure, we obtain the following lemma

Lemma 4.6. Let Λ,M, p, α, ε,N, δ, κ0 be as in Lemma 4.5. Also, let A be as in Lemma 4.5. Then, for any
λ ≥ 0, if u ∈ W1,p(D+

2R) is a weak solution of (4.1) satisfying

[[λu]]BMO(D+
R ,R) ≤ M, and

∣∣∣{D+
R :MD+

2R
(|∇u|p) > N

}∣∣∣ ≤ ε|Dκ0 |,

then with ε1 defined in Lemma 2.13, and for any k ∈ N,∣∣∣∣{D+
R :MD+

2R
(|∇u|p > Nk

}∣∣∣∣ ≤ εk
1

∣∣∣∣{D+
R :MD+

2R
(|∇u|p) > 1

}∣∣∣∣
+

k∑
i=1

εi
1

[∣∣∣∣{D+
R :MB′2R

(|g|p) > δNk−i
}∣∣∣∣ +

∣∣∣∣{D+
R :MD+

2R
(|F|p) > δNk−i

}∣∣∣∣] .(4.27)

Proof. The proof is based induction on k using the iteration of Lemma 4.5. We skip the proof. One can see,
for example, [37, Lemma 4.10] for details. �

We now can complete the proof of Theorem 1.3.

Proof of Theorem 1.3. For given Λ > 0,M > 0, α ∈ (0, 1] and q > p > 1, let N = N(Λ, p, n) be the number
defined in Lemma 4.5, and let q′ = q/p > 1. Let ε ∈ (0, 1) be a sufficiently small number and depending
only on Λ,M, n, p, q such that

ε1Nq′ = 1/2,

where ε1 is defined in Lemma 4.6. With this ε, we choose

δ = δ(ε,Λ,M, p, α, n), κ = κ(Λ,M, p, α, n, ε), κ0 = κ/6

defined as in Lemma 4.5. Assume that (1.11) holds with this choice of δ and we will prove Theorem 1.3.
For λ ≥ 0 and R ∈ (0, 1], let u be a weak solution of (4.1) satisfying [[λu]]BMO(D+

R ,R) ≤ M, and let

(4.28) E = E(λ,N) =
{
D+

R :MD+
2R

(|∇u|p) > N
}
.

We assume for a moment that the following extra condition

(4.29) |E| ≤ ε|Dκ0 |.

Let us now consider the sum

S =

∞∑
k=1

Nq′k
∣∣∣∣{D+

R :MD+
2R

(|∇u|p) > Nk
}∣∣∣∣.

From (4.29), we can apply Lemma 4.6 to obtain

S ≤
∞∑

k=1

Nkq′
 k∑

i=1

εi
1

∣∣∣∣{D+
R :MD+

2R
(|F|p) > δNk−i

}∣∣∣∣
+

k∑
i=1

εi
1

∣∣∣∣{D+
R :MB′2R

(|g|p) > δNk−i
}∣∣∣∣

+

∞∑
k=1

(
Nq′ε1

)k∣∣∣∣{D+
R :MD+

2R
(|∇u|p) > 1

})
.
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By Fubini’s theorem, the above estimate can be rewritten as

S ≤
∞∑
j=1

(Nq′ε1) j

 ∞∑
k= j

Nq′(k− j)
∣∣∣∣{D+

R :MD+
2R

(|F|p) > δNk− j
}∣∣∣∣

+

∞∑
k= j

Nq′(k− j)
∣∣∣∣{D+

R :MB′2R
(|g|p) > δNk− j

}∣∣∣∣


+

∞∑
k=1

(
Nq′ε1

)k∣∣∣∣{D+
R :MD+

2R
(|∇u|p) > 1

}∣∣∣∣.
(4.30)

Observe that ∣∣∣∣{D+
R :MD+

2R
(|∇u|p) > 1

}∣∣∣∣ ≤ |D+
R |.

From this, the choice of ε, and Lemma 2.12, and (4.30) it follows that

S ≤ C
[∥∥∥∥MD+

2R
(|F|p)

∥∥∥∥q′

Lq′ (D+
R)

+
∥∥∥MB′2R

(|g|p)
∥∥∥q′

Lq′ (D+
R)

+ |D+
R |

]
.

Applying the Lemma 2.12 again, we see that∥∥∥∥MD+
2R

(|∇u|p)
∥∥∥∥q′

Lq′ (D+
R)
≤ C

[∥∥∥∥MD+
2R

(|F|p)
∥∥∥∥q′

Lq(D+
R)

+
∥∥∥MB′2R

(|g|p)
∥∥∥q′

Lq′ (D+
R)

+ |D+
R |

]
.

By the Lesbegue’s differentiation theorem, we observe that

|∇u(x)|p ≤ MD+
2R

(|∇u|p)(x), a.e x ∈ D+
R.

Moreover, observe that ∥∥∥MB′2R
(|g|p)

∥∥∥q′

Lq′ (D+
R)
≤ 2R

∥∥∥MB′R(|g|p)
∥∥∥q′

Lq′ (B′2R)

Therefore,

‖∇u‖qLq(D+
R) ≤ C

[∥∥∥∥MD+
2R

(|F|p)
∥∥∥∥q

Lq′ (D+
R)

+ R
∥∥∥MB′2R

(|g|p)
∥∥∥q′

Lq′ (B′R)
+ |D+

R |

]
.

Then, by Lemma 2.11, it follows

‖∇u‖Lq(D+
R) ≤ C

[
‖F‖Lq(D+

2R) + R ‖g‖Lq(B′2R) + |D+
R |

1/q
]
.

This implies that

(4.31)
?

D+
R

|∇u|qdx ≤ C

?
D+

2R

|F(x)|qdx +

?
B′2R

|g(x′)|qdx′ + 1

 .
In conclusion, we have proved (4.31) as long as u is a weak solution of (4.1) for all λ ≥ 0 and (4.29) holds.

We now remove the extra condition (4.29). Assuming that u is a weak solution of (4.1) with some λ ≥ 0.
Let γ > 1 sufficiently large to be determined. Let λ′ = λγ ≥ 0, uγ = u/γ,Fγ = F/γ and gγ = g/γ. We note
that uγ is a weak solution of

(4.32)
{

div[Â(x, λ′uγ,∇uγ)] = div[|Fγ|p−2Fγ], in D+
2R,

〈Â(x, λ′uγ,∇uγ) − |Fγ|p−2Fγ, ~en〉 = |gγ|p−2gγ, on T2R,

where

Â(x, z, ξ) =
A(x, z, γξ)
γp−1 .

Note that by Remark 2.1, Â satisfies all (1.2)-(1.4) with the same constants Λ, p, α. Moreover, it is simple
to check that

[[Â]]BMO(D+
R ,R) = [[A]]BMO(D+

R ,R) < δ.
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We denote
Eγ =

{
D+

R :MD+
2R

(|∇uγ|2) > N
}
.

and we assume without loss of generality that

(4.33) K0 =

 1
|D2R|

∫
D+

2R

|∇u|pdx

1/p

> 0.

We claim that we can choose γ = C∗0K0 with some sufficiently large constant C∗0 depending only on Λ,M,
p, q, n, α such that

(4.34) |Eγ| ≤ ε|Dκ0 |.

If this holds, we can apply (4.31) for uγ which is a weak solution of (4.32) to obtain?
D+

R

|∇uγ|qdx ≤ C

?
D+

2R

|Fγ(x)|qdx +

?
B′2R

|gγ(x′)|qdx′ + 1


Then, by multiplying this equality with γq, we obtain?

D+
R

|∇u|qdx ≤ C

?
D+

2R

|F(x)|qdx +

?
B′2R

|g(x′)|qdx′ +

?
D+

2R

|∇u|p
q/p

and this is our desired estimate (1.12). The proof of Theorem 1.3 is therefore complete if we can prove
(4.34). To this end, we observe from the definition of Eγ, and the weak type (1-1) estimate for maximal
function, we see that

|Eγ|

|Dκ0 |
= C(n)

( R
κ0

)n

∣∣∣∣{D+
R :MD+

2R
(|∇u|p) > Nγp

}∣∣∣∣
|D2R|

=
C(n, p)

Nγp

( R
κ0

)n 1
|D2R|

∫
D+

2R

|∇u|pdx ≤
C(p, n)K p

0

Nγp

( R
κ0

)n
,

where K0 is defined in (4.33). From this, and since κ0 = κ0(Λ,M, p, q, α, n), R ∈ (0, 1), we conclude that

|Eγ|

|Dκ0 |
≤ C∗(Λ,M, p, q, α, n)

(
K0

γ

)p

Now, we choose γ such that

γ = K0
[
ε−1C∗(Λ,M, p, q, α, n)

]1/p
= C∗0(Λ,M, p, q, α, n)K0

then, it follows
|Eγ| ≤ ε|Dκ0 |.

This proves (4.34) and completes the proof. �

5. Global regularity estimates and proof of Theorem 1.1

This section proves Theorem 1.1. The proof is standard using Theorem 1.2, Theorem 1.3, and the
compactness of Ω. To be self-contained, we provide most details of the proof in dealing with the boundary
terms. In this section, for any n × n matrix Q, we denote Q∗ the transposed matrix of Q. We begin with the
following elementary lemma that is needed for the proof.

Lemma 5.1. Assume A : Ω × K × (Rn \ {0}) → Rn such that (1.2)-(1.4) hold on Ω × K × (Rn \ {0}). Then,
for every n × n rotation matrix Q, and for x0 ∈ R

n, we define

Ã(x, z, ξ) = A(Q(x − x0), z, ξQ) · Q∗.
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Then, Ã also satisfies (1.2)-(1.4) on Ω̃×K× (Rn \ {0}) with the same constant Λ, α, p, where Ω̃ = Q∗Ω + x0.
Moreover,

[[Ã]]BMO(Ω̃,ρ0) = [[A]]BMO(Ω,ρ0).

Proof. Since Q is a rotation matrix, |Qξ| = |ξ| for all ξ ∈ Rn. Therefore, it follows that |Ã(x, z, ξ)| =

|A(Q(x − x0), z, ξQ)| for all (x, z, ξ) ∈ Ω̃ × K × (Rn \ {0}). Moreover, note that

DξÃ(x, z, ξ) = DξA(x − x0, z, ξQ), ∀ (x, z, ξ) ∈ Ω̃ × K × (Rn \ {0}).

Hence, it is simple to verify that Ã satisfies (1.2)-(1.4) with the same constant Λ, α, p. On the other hand,
since Q is measure-preserving, it is a simple calculation using integration by substitution to check that
[[Ã]]BMO(Ω̃,ρ0) = [[A]]BMO(Ω,ρ0). The proof of the lemma is therefore complete. �

Proof of Theorem 1.1. For given numbers Λ > 0,M > 0, q > p > 1 and α ∈ (0, 1], let

(5.1) Υ = min
{
δ̂0(Λ,M, n, p, q), δ(C∗Λ,M, n, p, q)/[2C0]

}
,

where δ̂0 is defined in Theorem 1.2, δ is defined in Theorem 1.3, and the constants C∗ = C∗(n, p),C0 =

C0(Λ, n, p) are defined in Lemma 5.2 below. We prove Theorem 1.1 with this choice of Υ.
Step I: In this step, we estimate |∇u| in a neighborhood of ∂Ω. Consider some x0 ∈ ∂Ω. By Lemma 5.1, we
can use a translation, and a rotation to assume without loss of generality that x0 = 0, and there is a function
ϕ : B

′

2R → R independent our choice of x0 such that ϕ ∈ C1(B
′

2R), ϕ(0) = 0, ∇x′ϕ(0) = 0,

Ω2R :=
{
(x′, xn) ∈ B

′

2R × R : ϕ(x′) < xn < ϕ(x′) + 2R
}
⊂ Ω, and

Γ2R :=
{
(x′, ϕ(x′)) ∈ Rn : x′ ∈ B

′

2R

}
⊂ ∂Ω,

for some R ∈ (0, 1). Geometrically, the hyperplane {xn = 0} is tangent to ∂Ω at x0 = 0 ∈ ∂Ω. Then, by the
continuity of ∇x′ϕ and since ∇x′ϕ(0) = 0, we can take R ∈ (0, ρ0) sufficiently small so that

(5.2) |∇ϕ(x′)| ≤ Υ, ∀ x′ ∈ B̄′2R.

Observe also that the outward normal vector ~ν(x) on Γ2R is

(5.3) ~ν(x) =
1√

1 + |∇ϕ(x′)|2
(∇ϕ(x′),−1), for all x = (x′, xn) ∈ Γ2R.

Let us denote

Ω̂2R =
{
x = (x′, xn) ∈ Rn : x′ ∈ B′2R and ϕ(x′) − 2R < xn < ϕ(x′) + 2R

}
.

Then, let Φ : Ω̂2R → D2R and Ψ : D2R → Ω̂2R be the homomorphisms defined by

Φ(x′, xn) = (x′, xn − ϕ(x′)), Ψ(y′, yn) = (y′, yn + ϕ(y′)).

Observe that from (5.2), ϕ(0′) = 0, and since Υ is sufficiently small we see that Φ and Ψ are almost like an
identity map. In particular, from their explicit formulas, we see that

(5.4) DΦ(x) =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
. . . . . . . .
0 0 0 · · · 1 0

−D1ϕ(x′) −D2ϕ(x′) −D3ϕ(x′) · · · −Dn−1ϕ(x′) 1

 ,
and

(5.5) DΨ(y) =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
. . . . . . . .
0 0 0 · · · 1 0

D1ϕ(y′) D2ϕ(y′) D3ϕ(y′) · · · Dn−1ϕ(y′) 1

 .
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From the explicit formulas (5.4) and (5.5), it follows that

(5.6) Φ = Ψ−1, DΨ(y) = [DΦ(Ψ(y))]−1, and det(DΨ) = det(DΦ) = 1.

Moreover, from (5.2), (5.4) and (5.5), we also have

(5.7) ‖DΦ‖2L∞(Ω2R) ≤ n + ‖∇ϕ‖2L∞ ≤ n + 1, ‖DΨ‖2L∞(D+
2R) ≤ n + ‖∇ϕ‖2L∞ ≤ n + 1.

Now, for each y = (y′, yn) ∈ D+
2R, let us denote

û(y) = u(Ψ(y)), ĝ(y′) = |g(Ψ(y′, 0))|p−2g(Ψ(y′, 0))
√

1 + |∇ϕ(y′)|2, and

G(y) = |F̂(Ψ(y))|p−2F(Ψ(y)) · [DΦ(Ψ(y))]∗.

Moreover, define Â : D+
2R × K × (Rn \ {0})→ Rn by

(5.8) Â(y, z, ξ) = A(Ψ(y), z, ξ[DΦ(Ψ(y))]) · [DΦ(Ψ(y))]∗, ∀ (y, z, ξ) ∈ D+
2R × K × (Rn \ {0}),

where [∇Φ(Ψ(y))]∗ is the transposed matrix of the matrix [∇Φ(Ψ(y))]. For every φ ∈ C1
0(Ω̂2R), we denote

φ̂(y) = φ(Ψ(y)) for all y ∈ D2R. Then, note that φ̂ ∈ C1
0(D2R), and∫

B′2R

ĝ(y′)φ̂(y′, 0)dy′ =

∫
B′2R

|g(y′, ϕ(y′)))|p−2g(y′, ϕ(y′))φ(y′, ϕ(y′))
√

1 + |∇ϕ(y′)|2dy′

=

∫
Γ2R

|g(x)|p−2g(x)φ(x)dS (x).

Similarly, by writing the solution u in the weak form (2.3) and the solution û in the weak form (4.2), and
then using integration by substitution for the other terms, we see that û ∈ W1,p(D+

2R) is a weak solution of

(5.9)
{

div[Â(y, λû,∇û)] = div[G], in D+
2R,

〈Â(y, λû,∇û) −G, ~en〉 = ĝ, on T2R.

By Lemma 5.2 below, and our choice of Υ in (5.1), we see all conditions required in Theorem 1.3 hold for
our equation (5.9). Therefore, it follows from Theorem 1.3 that

(5.10) ‖∇û‖Lq(D+
R) ≤ C

[∥∥∥∥|G| 1
p−1

∥∥∥∥
Lq(D+

2R)
+ R1/q

∥∥∥∥|ĝ| 1
p−1

∥∥∥∥
Lq(B′2R)

+ ‖∇û‖Lp(D+
2R)

]
.

Now, by (5.2) we see that ‖∇ϕ‖L∞(B′2R) � 1. Then, it follows that∫
Γ2R

|g(x)|qdS (x) =

∫
B′2R

|g(x′, ϕ(x′))|q
√

1 + |∇ϕ(x′)|2dx′ ∼
∥∥∥∥|ĝ| 1

p−1

∥∥∥∥q

Lq(B′2R)
.(5.11)

On the other hand, observe that by using the substitution y = Φ(x) and with (5.6), we have

‖∇û‖qLq(D+
R) =

∫
D+

R

|∇û(y)|qdy =

∫
Ψ(D+

R)
|∇û(Φ(x))|qdx =

∫
ΩR

|∇û(Φ(x))|qdx.

Note that with x = Ψ(y) ∈ ΩR, y = Φ(x) ∈ D+
2R, and û(y) = u(Ψ(y)), it follows from (5.5) that

|∇û(y)|2 = |[DΨ(Φ(x))]∇u(x)|2 = |∇x′u(x)|2 + |∇x′ϕ(x′) · ∇x′u(x) + Dnu(x)|2

Again, from (5.2), we see that ||∇ϕ||L∞(B′2R) is sufficiently small, and therefore

|∇û(Φ(x))| ∼ |∇u(x)|.

Hence, ‖∇û‖Lq(D+
R) ∼ ‖∇u‖Lq(ΩR). Similarly,

∥∥∥∥|G| 1
p−1

∥∥∥∥
Lq(D+

2R)
∼ ‖F‖Lq(Ω2R). From these last two estimates, and

from (5.10)-(5.11), we conclude that

(5.12)
∫

ΩR(x0)
|∇u|qdx ≤ C

∫
Ω

|F|qdx +

∫
∂Ω

|g(x)|qdS (x) +

(∫
Ω

|∇u|pdx
)q/p .
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Step II: In this step, we estimate |∇u| in the interior points in Ω. Consider a point y0 ∈ Ω. Let R ∈ (0, ρ0)
sufficiently small such that B2R(y0) ⊂ Ω. Then, from our choice of Υ as in (5.1), we can apply Theorem 1.2
to obtain

(5.13)
∫

BR(y0)
|∇u(x)|qdx ≤ C

∫
Ω

|F|qdx +

(∫
Ω

|∇u|pdx
)q/p .

Step III: In this step, we combine Step I and Step II to derive our global estimate (1.9). Indeed, because
Ω is compact, we can cover it by a family of finite number of balls of two types: balls in Ω with centers in
Ω and balls with centers on the boundary ∂Ω. Because of this, and from (5.12), (5.13), we see that (1.9)
follows. Our proof is therefore complete. �

Next, we state and prove the following fundamental lemma that is used in the above proof.

Lemma 5.2. There exist two constants C∗ = C∗(n, p) > 0 and C0 = C0(Λ, n, p) > 0 such that the vector
field Â defined in (5.8) satisfies the conditions (1.2)-(1.4) on D+

2R ×K × (Rn \ {0}) with Λ replaced by C∗Λ.
Moreover,

(5.14) [[Â]]BMO(D+
R ,R) ≤ C0(Λ, n, p)

(
[[A]]BMO(Ω,ρ0) + ‖∇ϕ‖L∞(B′2R)

)
.

Proof. The proof that Â satifies (1.2)-(1.4) on D+
2R ×K × (Rn \ {0}) with Λ replaced by C∗(n, p)Λ for some

constant C∗ follows from some elementary calculation. In this proof, we use the definition of Â in (5.8),
the fact that A satisfies (1.2)-(1.4) on Ω × K × (Rn \ {0}), the estimates (5.2)-(5.4), and the fact that Υ is
sufficiently small. We skip the details of this proof.

Next, we prove the estimate (5.14). Note that for each (y, z, ξ) ∈ D2R × K × (Rn \ {0}), we can write

A(Ψ(y), z, ξ[DΦ(Ψ(y))]) = A(Ψ(y), z, ξ[DΦ(Ψ(y)) − In] + ξ)

Then, by using the mean value theorem, we obtain

A(Ψ(y), z, ξ[DΦ(Ψ(y))]) = A(Ψ(y), z, ξ) + Aξ(Ψ(y), z, η) · [DΦ(Ψ(y)) − In]ξ.

where Aξ(Ψ(y), z, η) is the matrix of partial derivatives of A in ξ-variable and

(5.15) η =
(
s[DΦ(Ψ(y))] + (1 − s)In

)
ξ,

with some s ∈ (0, 1). From this, we then can decompose the vector field Â as

Â(y, z, ξ) =B(y, z, ξ) + D(y, z, ξ),(5.16)

where
B(y, z, ξ) = A(Ψ(y), z, ξ[DΦ(Ψ(y))]) · [DΦ(Ψ(y)) − In]∗ + Aξ(Ψ(y), z, η) · [DΦ(Ψ(y)) − In]ξ,
D(y, z, ξ) = A(Ψ(y), z, ξ).

(5.17)

We now estimate [[B]]BMO(D+
2R,R) and [[D]]BMO(D+

2R,R) with respect to their definitions in (1.11). Observe
that from the explicit definition of B in (5.17) and the conditions (1.2)-(1.4), we see that

|B(y, z, ξ)| ≤ |A(Ψ(y), z, ξ[DΦ(Ψ(y))])||DΦ(Ψ(y)) − In| + |Aξ(Ψ(y), z, η)||DΦ(Ψ(y)) − In||ξ|

≤ Λ
[
|ξ|p−1‖DΦ‖L∞(Ω+

2R) + |η|p−2|ξ|
]
‖DΦ − In‖L∞(Ω2R)

≤ Λ
[
|ξ|p−1

√
n + 1 + |η|p−2|ξ|

]
‖∇ϕ‖L∞(B′2R) ,

(5.18)

where we have used (5.4) in the last estimate. On the other hand, as Υ is sufficiently small, it follows from
(5.2) and (5.4) that ‖DΦ − In‖L∞(Ω2R) � 1. Then, from (5.15), we infer that

1
2
|ξ| ≤ |η| ≤ 2|ξ|.
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By pluging this last estimate into (5.18), we can find C = C(Λ, n, p) > 0 such that

|B(y, z, ξ)| ≤ C|ξ|p−1 ‖∇ϕ‖L∞(B′2R) .

From this and from the definition of the BMO-semi norm of the principal vector fields as in (1.11), we
obtain

(5.19) [[B]]BMO(D+
R ,R) ≤ 2 sup

z∈K
sup

ξ∈Rn\{0}
‖B(·, z, ξ)‖L∞(D+

2R) ≤ C1(Λ, n, p) ‖∇ϕ‖L∞(B′2R) ,

for some constant C1 = C1(Λ, n, p) > 0. On the other hand, by (5.6) and (5.7), we see that Ψ : D+
2R → Ω2R

is a homomorphism that is measure-preserving. Then, with some standard calculation using (5.6) and (5.7)
and the definition of D in (5.17), we obtain

[[D]]BMO(D+
R ,R) ≤ C2(n)[[A]]BMO(ΩR,R) ≤ C2(n)[[A]]BMO(Ω,ρ0).

One can find in [22, p. 2164 ], for instance, the details of the proof of the above estimate. From the last
estimate, (5.16), and (5.19), we infer that

[[Â]]BMO(D+
R ,R) ≤ C0(Λ, n, p)

(
[[A]]BMO(Ω,ρ0) + ‖∇ϕ‖L∞(B′2R)

)
.

This is our desired estimate (5.14). The proof of the lemma is therefore complete. �

We finally conclude the paper with a few remarks regarding the main results.

Remark 5.3. We would like to point out the following important remarks on Theorem 1.1, Theorem 1.2,
and Theorem 1.3.

(i) We do not require g to have an extension on Ω. Moreover, by the conormal boundary condition in
(1.1), and the conditions of the principal vector field A, it can be seen that |∇u| ∼ g. Therefore, the
estimates in Theorem 1.1 and Theorem 1.3 seem to be natural and optimal regarding the regularity
for g.

(ii) When λ = 1, Theorem 1.1 provides regularity estimates for weak solutions of (1.1) provided that
u ∈ BMO with M = [[u]]BMO(Ω,ρ0). If u is assumed to be in VMO, the Sarason’s space of functions
of vanishing mean oscillation defined in [39], then the condition [[λu]]BMO(Ω,ρ0) ≤ M holds by
taking M = 1 and ρ0 is sufficiently small. This regularity condition on u is automatically satisfied
if p = n.

(iii) It is well-known from [33] that the smallness conditions (1.8), (1.10), and (1.11) on [[A]]BMO are
necessary. Moreover, if A is assumed to satisfy the Sarason’s VMO vanishing mean oscillation in
x-variable (see [1,8,14,32]), then (1.8), (1.10), and (1.11) hold for any given M and q by choosing
R, ρ0 sufficiently small.
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