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Abstract. This paper establishes Calderón-Zygmund type regularity estimates for solutions of the
conormal derivative problem for a class of linear elliptic systems in divergence-form with singular,
degenerate coefficients in bounded domains. In our class of equations, the principal terms are fourth
order tensors of measurable functions that behave as some weight function in the Muckenhoupt class
of A2-weights. Regularity estimates for gradient of weak solutions in weighted Lebesgue spaces are
established under some natural smallness conditions on the mean oscillation of coefficients. The
results obtained recover known results when the coefficients are uniformly elliptic. These results can
be considered as the Sobolev counterparts of the classical Hölder’s regularity estimates established
by B. Fabes, C. E. Kenig, and R. P. Serapioni.

1. Introduction

This work studies regularity estimates in weighted Sobolev spaces for weak solutions of a class
of linear systems of elliptic equation with prescribed degenerate, singular coefficients in bounded
domains with conormal boundary conditions. The system we are studying is given by

(1.1)
{

div[A(x)∇u] = div[F] in Ω,
〈A(x)∇u − F,n〉 = 0 on ∂Ω,

where Ω ⊂ Rn is an open bounded domain with C1 boundary, F : Ω→ Rn×N is a given vector field,
u : Ω→ RN , and n,N ∈ N, and n is the outward unit normal vector at points on the boundary of Ω.
The coefficientA : Ω→ RnN×nN is a fourth order tensor (Aαβ

i j )N
i, j=1

n
α,β=1 of measurable functions that

could be degenerate or singular as some weight function in some Muckenhoupt class of weight.
Precisely, we assume that there exists a constant Λ > 0 and a non-negative measurable function µ
on Rn

(1.2) Λµ(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 =

N∑
α,β=1

n∑
i, j=1

Aαβ
i j ξ

j
αξ

i
β, ∀ ξ = (ξi

α) ∈ RnN , a.e. x ∈ Ω, and

(1.3)
∣∣∣∣Aαβ

i j (x)
∣∣∣∣ ≤ Λ−1µ(x) a.e. x ∈ Ω, and all α, β = 1, · · · ,N; i, j = 1, · · · n.

Our goal is to establish the regularity of weak solutions of the degenerate system (1.1) in weighted
Sobolev spaces. Regularity estimates for weak solutions of uniformly elliptic equations and sys-
tems of equations (µ = 1) for both Dirichlet and conormal derivative boundary value problems in
Sobolev spaces is commonplace these days. One can find results in [1–3, 5, 12, 15–18, 23, 26] in
which uniform elliptic coefficients are studied. Essentially one expects that the matrix F and ∇u
have the same integrability property. However by now it is well known that the mere assumption
on the uniform ellipticity of the tensor of coefficients A is not sufficient for the gradient of the
weak solution of (1.1) to have the same integrability as that of the data F. This fact can be seen
from the counterexample provided by N. G. Meyers in [19] . In the event that A is uniformly el-
liptic and continuous, the Lp-norm of ∇u can be controlled by the Lp-norm of the datum F and this
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is achieved via the Calderón-Zygmund theory of singular integrals and a perturbation technique,
see [5, 12, 15–18] for this classical results for both elliptic and parabolic equations.

Our interest lies on equations with coefficients that may be degenerate or singular. The class of
second order linear elliptic equations with degenerate coefficients with general case µ ∈ A2 was
investigated by B. Fabes, C. E. Kenig, and R. P. Serapioni for the first time in the pioneering paper
[7] in 1982. In this classical paper [7], among other important results, existence, and uniqueness
of weak solutions in weighted Sobolev space W1,2

0 (Ω, µ) were established; Harnack’s inequality
and Hölder’s regularity of weak solutions were also obtained by adapting the Möser’s iteration
technique to the degenerate, non-uniformly elliptic equations (1.1). See also [22, 25] for some
other earlier results on elliptic equations with measurable degenerate coefficients.

Recently, in [4], we have obtained estimates in Lebesgue spaces for gradient of solutions to
zero Dirichlet boundary value problems for linear degenerate equations of type (1.1) with general
µ ∈ A2. Two weighted Calderón-Zygmund type regularity estimates for quasilinear elliptic equa-
tions with prescribed singular-degenerate coefficients and non-homogeneous Dirichlet boundary
conditions are also established in [24]. We aim to extend the above mentioned results in [4, 24]
and establish the corresponding results for weak solutions of the conormal derivative problem for
linear systems (1.1) by giving the right and optimal conditions on the coefficient tensor. As already
indicated, the regularity estimate we obtain requires that coefficient matrix must not oscillate too
much. To describe the condition precisely, we want to introduce a means of measuring oscillation.
The following definition is a weighted version of functions of bounded mean oscillation that is
compatible with degenerate and singular coefficients. This definition can be found in [9,10,20,21].

Definition 1.1. Given R0 > 0, we say f : Ω → R is function of bounded mean oscillation with
weight µ in Ω if [ f ]BMOR0 (Ω,µ) < ∞ where

[ f ]BMOR0 (Ω,µ) = sup
x∈Ω

0<ρ<R0

1
µ(Bρ(x) ∩Ω)

∫
Bρ(x)∩Ω

| f (y) − 〈 f 〉Bρ(x)∩Ω|dy,

and

〈 f 〉Bρ(x)∩Ω =
1

|Bρ(x) ∩Ω|

∫
Bρ(x)∩Ω

f (y)dy.

Observe that the classical John-Nirenberg BMO in Ω corresponds to µ = 1 and R0 = diam(Ω). The
class of Muckenhoupt Ap- weights will be recalled in Definition 2.2. Our first main result of this
paper is the following theorem.

Theorem 1.2. Let Λ > 0,M0 ≥ 1, and p ≥ 2 be given. There exists a sufficiently small constant
δ = δ(Λ,M0, n, p) > 0 such that the following statement holds. Suppose also that µ ∈ A2 with
[µ]A2 ≤ M0, Ω is a C1-domain, (1.2)-(1.3) hold on Ω, and [A]BMOR0 (Ω,µ) ≤ δ for some R0 > 0. Then
every weak solution u ∈ W1,2(Ω, µ,RN) of (1.1) corresponding to |F|/µ ∈ Lp(Ω, µ,RN) satisfies the
estimate

‖∇u‖Lp(Ω,µ) ≤ C
∥∥∥∥∥F
µ

∥∥∥∥∥
Lp(Ω,µ)

,

where C is a constant depending only on n,Λ, p,M0,R0 and Ω.

Local regularity estimates for weak solutions of (1.1) are not only of great interest by themselves,
but also important in many applications since they only require local information on the data. This
paper also establishes interior regularity estimates, and local boundary estimates. To state the local
results we use the notation Br to denote for a ball of radius r centered at the origin, B+

r its upper
part and Tr the flat part of the boundary of B+

r . The next result presents the interior local gradient
estimate.
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Theorem 1.3. Let Λ > 0,M0 ≥ 1, and p ≥ 2 be given. There exists a sufficiently small constant δ =

δ(Λ,M0, n, p) > 0 such that the following statement holds. Suppose that µ ∈ A2 with [µ]A2 ≤ M0,
and (1.2)-(1.3) hold for a given tensor matrix A on B2. Moreover, assume that [A]BMO1(B1,µ) ≤ δ.
Then, for every F such that F/µ ∈ Lp(B2, µ,R

N), if u ∈ W1,2(B2, µ,R
N) is a weak solution to

(1.4) div[A∇u] = div(F) in B2,

then ∇u ∈ Lp(B1, µ) and

‖∇u‖Lp(B1,µ) ≤ C
(
(µ(B1))

1
p−

1
2 ‖∇u‖L2(B2,µ) + ‖F/µ‖Lp(B2,µ)

)
.

where C is a constant depending only on Λ, p, n,M0.

Our last result is a local boundary regularity one.

Theorem 1.4. Let Λ > 0,M0 ≥ 1, and p ≥ 2 be given. There exists a sufficiently small constant δ =

δ(Λ,M0, n, p) > 0 such that the following statement holds. Suppose that µ ∈ A2 with [µ]A2 ≤ M0,
and (1.2)-(1.3) hold for the given tensor matrixA on B+

2 . Moreover, assume that [A]BMO1(B+
1 ,µ) ≤ δ.

Then, for every F such that F/µ ∈ Lp(B+
2 , µ), if u ∈ W1,2(B+

2 , µ,R
N) is a weak solution to

(1.5)
{

div[A∇u] = div(F) in B+
2 .

〈A∇u − F,n〉 = 0 on T2,

then ∇u ∈ Lp(B+
1 , µ) and

‖∇u‖Lp(B+
1 ,µ) ≤ C

(
(µ(B1))

1
p−

1
2 ‖∇u‖L2(B+

2 ,µ) + ‖F/µ‖Lp(B+
2 ,µ)

)
,

where C is a constant depending only on Λ, p, n,M0.

We now comment how we prove the main result. It is well-known that Theorem 1.2 can be
obtained from Theorem 1.3 and Theorem 1.4 via standard arguments using partition of unity, and
flattening the boundary. We therefore skip the proof of Theorem 1.2. Also, the proof of Theorem
1.3 can be done along the same line of arguments as in [4, Theorem 2.5] after making the necessary
adjustment for systems. As such, we will not focus much on it but rather we state and use estimates
that we may need in the proof of Theorem 1.4. To prove the latter, we will implement the approx-
imation method of Caffarelli and Peral in [3]. The main idea in the approach is to locally consider
the equation (1.5) as the perturbation of an equation for which the regularity of its solution is well
understood. Key ingredients include Vitali’s covering lemma, and the weak and strong (p, p) esti-
mates of the weighted Hardy-Littlewood maximal operators. To be able to compare the solutions
of the perturbed and un-perturbed equations, we prefer to use compactness argument as has been
used in [1], but on weighted spaces. Such argument has been used in [4], similar regularity results
as Theorem 1.4 are proved for zero-Dirichlet boundary value problem of equations. Essential prop-
erties of A2 weights such as reverse Hölder’s inequality and doubling property are properly utilized
in dealing with technical issues arising from the degeneracy and singularity of the coefficients.

We remark that obtaining estimates as in Theorems 1.2-1.4 for large values of p is not always
possible even for smooth but degenerate coefficient matrix A and µ ∈ A2. We refer [4] for a
counterexample. In light of this and compared to [6], this paper provides the correct minimal
conditions on the coefficients so that the linear map F

µ
7→ ∇u remain continuous on the smaller

space Lp(Ω, µ), p ≥ 2.
As in the Dirichlet boundary value problem studied in [4], to establish the weighted Lp-regularity

estimates, we follow the approximation method of Cafarrelli and Peral in [3] where we view (1.1)
locally as a perturbation of an elliptic homogeneous equation with constant coefficients. The key
to the success of this approach to equations with degenerate coefficients is the novel way of mea-
suring mean oscillation of coefficients which is found to be compatible with the degeneracy of the
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coefficients. The smallness of the measure, which is just a smallness of the mean oscillation with
weights introduced in [20, 21] to study Hilbert transforms and characterize the dual of weighted
Hardy space. This condition is optimal in the sense that it coincided with the well known result
in [2] when µ = 1. The counterexample given in [4] demonstrates the necessity of the smallness
condition [A]BMO in Theorems 1.2-1.4.

The paper is organized as follows. In Section 2, we introduce notations, definitions, and provides
some elementary estimates needed for the paper. Section 3 provides the approximation estimates.
Level set estimates, and the proofs of the main theorems, Theorem 1.2-1.4 are given in Section 4,
which is the last section of the paper.

2. Notations, definitions, and preliminary estimates

2.1. Definitions and existence of weak solutions. We start with some definitions, and notations.

Definition 2.1. Let σ be a non-negative measure on Rn and a non-empty open set U ⊂ Rn, we write

dσ = σdx, σ(U) =

∫
U
σ(x)dx.

For a locally integrable Lebesgue-measurable function f on Rn, we always denote the average of
f in U with respect of the measure dσ as

f̄σ,U =

?
U

f (x)dσ =
1

σ(U)

∫
U

f (x)σdx.

For Lebesgue measure dx, we write

f̄U = f̄dx,U , and |U | =
∫

U
dx.

Definition 2.2. Let p ∈ (1,∞) and µ ∈ L1
loc(R

n) be non-negative. The weight function µ is said to
be of Muckenhoupt class Ap if

[µ]Ap := sup
B⊂Rn

(?
B
µ(y)dy

) (?
B
µ(y)−

1
p−1 dy

)p−1

< ∞,

where the supremum is taken over all balls B ⊂ Rn.

It turns out that any µ ∈ Ap defines a measure dµ = µ(x)dx. Moreover, we can define the
corresponding Lebesgue and Sobolev spaces with respect to the measure.

Definition 2.3. Let µ ∈ Ap with 1 < p < ∞, let 1 ≤ q < ∞ and Ω ⊂ Rn be open, bounded. A locally
integrable function f define on Ω is said to belong to the weighted Lebesgue space Lq(Ω, µ) if

‖ f ‖Lq(Ω,µ) =

(∫
Ω

| f (x)|qµ(x)dx
)1/q

< ∞.

Let k ∈ N. A locally integrable function f defined on Ω is said to belong to the weighted Sobolev
space Wk,q(Ω, µ) if all of its distributional derivatives Dα f are in Lq(Ω, µ) for α ∈ (N ∪ {0})n with
|α| ≤ k. The space Wk,q(Ω, µ) is equipped the the norm

‖ f ‖Wk,q(Ω,µ) =

∑
|α|≤k

‖Dα f ‖qLq(Ω,µ)


1/q

.

We also denote W1,q
0 (Ω, µ) be the closure of C∞0 (Ω) in W1,q(Ω, µ).
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Observe that both Lq(Ω, µ), and W1,q(Ω, µ) are Banach spaces with their natural norm. When q = 2,
W1,2(Ω, µ) is a Hilbert space.

We now recall what we mean by weak solution of (1.1).

Definition 2.4. Assume that (1.2),(1.3) hold and |F|/µ ∈ L2(Ω, µ). A function u ∈ W1,2(Ω, µ,RN) is
a weak solution of (1.1) if

(2.1)
∫

Ω

〈A∇u,∇ϕ〉dx =

∫
Ω

〈F,∇ϕ〉dx, ∀ ϕ ∈ W1,2(Ω, µ,RN).

Existence of a weak solution can be shown following the standard Hilbert Space method via the
application of the theorem of Lax-Milgram. For Dirichlet boundary value problems, this has been
done in [7]. Similar argument can be applied for the conormal derivative problem as well.

Lemma 2.5. Suppose A satisfes (1.2) and (1.3). Then, for each F with |F|/µ ∈ L2(Ω, µ), there
exists a weak solution u ∈ W1,2

0 (Ω, µ,RN) to (1.1). Moreover,

(2.2)
∫

Ω

|∇u|2dµ ≤ C(Λ)
∫

Ω

∣∣∣∣∣Fµ
∣∣∣∣∣2 dµ.

The solution u is unique up to a constant vector.

2.2. Weights and weighted norm inequalities. In this section we review and collect some results
needed in the paper. The first lemma is a standard result in measure theory.

Lemma 2.6. Assume that g ≥ 0 is a measurable function in a bounded subset U ⊂ Rn. Let θ > 0
and K > 1 be given constants. If µ is a weight in Rn, then for any 1 ≤ p < ∞

g ∈ Lp
µ(U)⇔ S :=

∑
j≥1

Kq jµ({x ∈ U : g(x) > θK j}) < ∞.

Moreover, there exists a constant C > 0 such that

C−1S ≤ ‖g‖p
Lp
µ(U)
≤ C(µ(U) + S ),

where C depends only on θ,K and p.

For a given locally integrable function f we define the weighted maximal function as

Mµ f (x) = sup
ρ>0

?
Bρ(x)
| f |dµ = sup

ρ>0

1
µ(Bρ(x))

∫
Bρ(x)
| f | µ(x)dx

For functions f that are defined on a bounded domain, we define

M
µ

Ω
f (x) =Mµ( fχΩ)(x)

For M0 > 0 given, assume that µ ∈ A2 such that [µ]A2 ≤ M0. The following two continuity results
are well known for the maximal function.

• (Strong p− p) For any 1 < p < ∞, there exists a constant C = C(p, n,M0) such that for any
weight µ with a strong doubling property we have

‖Mµ‖Lp
µ→Lp

µ
≤ C.

• (Weak 1 − 1) When p = 1, there exists a constant C that depends on C(p, n,M0) such that
for any weight µ with a strong doubling property and λ > 0

µ(x ∈ Rn :Mµ( f ) > λ) ≤
C
λ

∫
Rn
| f |dx.
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The proof of these estimates can be found in ( [14, Proof of Lemma 7.1.10 ]). In this paper we will
be using mostly A2 weights. From the definition, it is immediate that µ ∈ A2, then so is µ−1 with

[µ]A2 = [µ−1]A2 .

The following lemma is what is called reverse Hölder’s inequality that holds for Ap weights.

Lemma 2.7 (Theorem 9.2.2, [14], Remark 9.2.3 [14]). For any M0 > 0, there exist positive con-
stants C = (n,M0) and γ = γ(n,M0) such that for all µ ∈ A2 satisfying [µ]A2 ≤ M0 the reverse
Hölder condition holds: (

1
|B|

∫
B
µ(1+γ)(x)dx

) 1
1+γ

≤
C
|B|

∫
B
µ(x)dx, and

for every ball B ⊂ Rn. The inequality holds true as well if µ is replaced by µ−1.

As a consequence of Lemma 2.7 we have the following two important inequalities which will be
used frequently in this paper.

Lemma 2.8. [4, Lemma 3.4] For any M0 > 0, let β =
γ

2+γ
> 0 where γ is a constant as given in

Lemma 2.7. Then for any µ ∈ A2 satisfying [µ]A2 ≤ M0, for any ball B ⊂ Rn, we have that
• if u ∈ L2(B, µ), then u ∈ L1+β(B) and(?

B
|u|1+βdx

) 1
1+β

≤ C(n,M0)
(?

B
|u|2dµ

)1/2

,

• if u ∈ Lq(B) with q ≥ 1, then(?
B
|u|τdµ

)1/τ

≤ C(n,M0)
(?

B
|u|qdx

)1/q

, with τ =
qγ

1 + γ
.

Next, we recall the weighted Sobolev-Poincaré inequality whose prove can be found in [7, The-
orem 1.5, Theorem 1.6]

Lemma 2.9. Let M0 > 0 and assume that µ ∈ A2 and [µ]A2 ≤ M0. Then, there exists a constant
C = C(n,M0) and α = α(n,M0) > 0 such that for every ball BR ⊂ R

n, and every u ∈ W1,2(BR, µ),
1 ≤ κ ≤ n

n−1 + α, the following estimate holds

(2.3)
(

1
µ(BR)

∫
BR

|u − A|2κµ(x)dx
) 1

2κ

≤ CR
(

1
µ(BR)

∫
BR

|∇u|2µ(x)dx
)1/2

,

where either

A =
1

µ(BR)

∫
BR

u(x)dµ(x), or A =
1
|BR|

∫
BR

u(x)dx.

The same result also holds if we replace the ball BR with the half ball B+
R.

2.3. Boundary Lipschitz regularity estimates. Consider the homogeneous system of equations
with constant coefficients

(2.4)
{
−div[A0∇v] = 0 in B+

4 ,
〈A0∇v,n〉 = 0 on T4,

with an elliptic constant tensorA0 satisfying the inequality Λ|ξ|2 ≤ 〈A0ξ, ξ〉 ≤ Λ−1|ξ|2.

Definition 2.10. v ∈ W1,q(B+
4 ;RN) is a weak solution to (2.4) in B+

4 , for some 1 < q < ∞, if∫
B+

4

〈A0∇v,∇ϕ〉dx = 0, ∀ϕ ∈ C∞0 (B4;RN).
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We remark the class of test functions used in Definition 2.10 can be enlarged to W1,q′(B+
4 ,R

N)
whose trace vanish on the round part of ∂B+

4 where 1
q + 1

q′ = 1. We recall the standard Lipschitz
regularity estimate for weak solutions v of a system with uniformly elliptic constant coefficients.
This result can be found in [11], see also [8, Theorem 4.1].

Lemma 2.11. Let A0 be a constant tensor satisfying conditions (1.2) and (1.3) with µ = 1. Then
there exists a constant C = C(n,Λ) such that if v ∈ W1,q(B+

4 ,R
N) is a weak solution of (2.4) with

q > 1, then

‖∇v‖L∞(B+
7
2

) ≤ C
?

B+
4

|∇v|qdx
 1

q

.

2.4. Boundary weighted Caccioppoli’s type estimates. We now study the main equation of in-
terest

(2.5)
{

div[A(x)∇u] = div[F] in B+
4 ,

〈A(x)∇u − F,n〉 = 0 on T4,

where

(2.6) Λµ(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 for a.e. x ∈ B+
4 , ∀ ξ ∈ Rn and |A(x)| ≤ Λ−1µ(x).

Definition 2.12. u ∈ W1,2(B+
4 , µ;RN) is a weak solution to (2.5) in B+

4 if∫
B+

4

〈A∇u,∇ϕ〉dx =

∫
B+

4

〈F,∇ϕ〉dx, ∀ϕ ∈ C∞0 (B4;RN).

We study the system of equations (2.5) as a local perturbation of (2.4) corresponding to some
constant tensor A0 satisfying uniform ellipticity. In fact, if v ∈ W1,1+β(B+

4 ,R
N) is a weak solution

of (2.4) we have the following weighted Caccioppoli estimate of for u − v that is essential in the
paper.

Lemma 2.13. Suppose that M0 > 0 and c is a constant vector in RN . LetA0 and v be as in Lemma
2.11, and let w = u − c − v. Assume that (2.6) holds on B+

4 and [µ]A2 ≤ M0. There exists a constant
C = C(Λ,M0, n) such that for all non-negative function ϕ ∈ C∞0 (B4),

1
µ(B4)

∫
B+

4

|∇w|2ϕ2dµ ≤ C(Λ,M0, n)

1 + ‖ϕ∇v‖2L∞(B+
4 )

µ(B4)

∫
B+

4

w2|ϕ|2dµ +
1

µ(B4)

∫
B+

4

∣∣∣∣F
µ

∣∣∣∣2ϕ2dµ

+
‖ϕ∇v‖2L∞(B+

4 )

µ(B4)

∫
B+

4

|A − A0|
2µ−1dx ]

Proof. It is clear that w is a weak solution of the system of equations{
div[A∇w] = div[F − (A−A0)∇v] in B+

4 ,
〈A∇w − F + (A−A0)∇v,n〉 = 0 on T4.

For ϕ ∈ C∞0 (B4), 0 ≤ ϕ ≤ 1 such that ϕ = 1 on B2. Since wϕ2 ∈ W1,2(B+
4 , µ,R

N) and the trace of
wϕ2 on the round part of B+

4 is zero, by the remark stated above we can use wϕ2 as a test function
to the above equation. Now, noting that ∇(wϕ2) = ϕ2∇w + w ⊗ ∇(ϕ2), we obtain∫

B+
4

〈A∇w,∇w〉ϕ2dx = −

∫
B+

4

〈A∇w,w ⊗ ∇(ϕ2)〉dx +

∫
B+

4

〈F,∇(wϕ2)〉dx

−

∫
B+

4

〈(A−A0)∇v,∇(wϕ2)〉dx.
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We then have the following estimate∣∣∣∣∣∣
∫

B+
4

〈A∇w,∇w〉ϕ2dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫

B4

〈A∇w,w ⊗ ∇(ϕ2)〉dx

∣∣∣∣∣∣ +

∫
B+

4

|F|
(
|∇w||ϕ|2 + 2|∇ϕ||ϕ||w|

)
dx

+

∫
B+

4

|(A−A0)|
(
|∇v||∇w||ϕ|2 + 2|∇v||∇ϕ||w||ϕ|

)
dx.

(2.7)

Clearly, by (2.6), ∫
B+

4

〈A∇w,∇w〉ϕ2dx ≥ Λ

∫
B+

4

|∇w|2ϕ2dµ.

For ε > 0, using the boundedness of the coefficients assumed in (2.6) and Young’s inequality, the
first term on the right hand side can be estimated as∣∣∣∣∣∣

∫
B+

4

〈A∇w,w ⊗ ∇(ϕ2)〉dx

∣∣∣∣∣∣ ≤ 2Λ−1
∫

B+
4

µ|∇w|ϕ|∇ϕ||w|dx

≤ ε

∫
B+

4

|∇w|2|ϕ|2dµ + C(Λ, ε)
∫

B+
4

|∇ϕ|2|w|2dµ.

Similarly, we estimate the second term as∫
B+

4

|F|
(
|∇w||ϕ|2 + 2|∇ϕ||ϕ||w|

)
dx ≤

∫
B+

4

|F|
µ

(
|∇w||ϕ|2 + 2|∇ϕ||ϕ||w|

)
µdx

≤ ε

∫
B+

4

|∇w|2ϕ2dµ + C(ε)
∫

B+
4

∣∣∣∣F
µ

∣∣∣∣2ϕ2dµ +

∫
B+

4

w2|∇ϕ|2dµ
 .

To estimate the last term, we apply Hölder’s inequality and Young’s inequality to obtain∫
B+

4

|A − A0||∇v|
[
ϕ2|∇w| + 2|w|ϕ||∇ϕ|

]
dx

≤ ‖ϕ∇v‖L∞(B+
4 )

∫
B+

4

|A − A0|
[
ϕ|∇w| + 2|w||∇ϕ|

]
µ1/2 1

µ1/2 dx

≤ ε

∫
B+

4

|∇w|2ϕ2(x)dµ + C(ε) ‖ϕ∇v‖2L∞(B+
4 )

∫
B+

4

|A − A0|
2µ−1dx +

∫
B+

4

w2|∇ϕ|2dµ
 .

Therefore, combining the above estimates and choosing ε sufficiently small to absorb the term∫
B+

4
|∇w|2ϕ2dµ on the right hand side yields the desired result. �

3. Approximation estimates

3.1. Interior approximation estimates. The following result is a modification of [4, Proposition
4.4] for systems, which will be needed in the paper.

Proposition 3.1. Let Λ > 0,M0 > 0 be fixed and β be as in Lemma 2.8. For every ε > 0 sufficiently
small, there exists δ > 0 depending on only ε,Λ, n,M0 such that the following statement holds true:
If (1.2)-(1.3) hold on B4 forA, [µ]A2 ≤ M0, and

1
µ(B4)

∫
B4

|A − 〈A〉B4 |
2µ−1dx +

?
B4

∣∣∣∣F
µ

∣∣∣∣2dµ(x) ≤ δ2,

for every weak solution u ∈ W1,2(B4, µ,R
N) of

div[A(x)∇u] = div[F] in B4
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satisfying ?
B4

|∇u|2dµ ≤ 1,

then, there exist a tensor of constant coefficientsA0 and a weak solution v ∈ W1,1+β(B4,R
N) of

div[A0∇v] = 0 in B4

such that
|〈A〉B4 −A0| ≤

εµ(B4)
|B4|

, and
?

B2

|∇u − ∇v|2dµ ≤ ε.

Moreover, there is C = C(Λ, n,M0) such that

(3.1)
?

B3

|∇v|2dx ≤ C.

Proof. The proof is the same as that of Proposition 3.2 below. We therefore skip it. �

3.2. Boundary approximation estimates. Our main result of the subsection is the following
proposition which is an up to the boundary approximation similar to Proposition 3.1.

Proposition 3.2. Let Λ > 0,M0 > 0 be fixed and let β be as in Lemma 2.8. Suppose that [µ]A2 ≤ M0

andA satisfies (2.6). For every ε > 0, there exists δ = δ(ε,Λ, n, M0) such that: if

1
µ(B4)

∫
B+

4

|A − 〈A〉B4 |
2µ−1dx +

 1
µ(B4)

∫
B+

4

∣∣∣∣F
µ

∣∣∣∣2dµ(x)
1/2

≤ δ,

and u ∈ W1,2(B+
4 , µ,R

N) is a weak solution of (2.5) satisfying

(3.2)
1

µ(B4)

∫
B+

4

|∇u|2dµ ≤ 1,

then there exist a constant matrixA0 and a weak solution v ∈ W1,1+β(B+
4 ,R

N) of (2.4) such that

(3.3)
∥∥∥〈A〉B4 −A0

∥∥∥ ≤ εµ(B4)
|B4|

,

and ?
B+

2

|∇u − ∇v|2dµ ≤ ε.

Moreover, there is C = C(Λ, n,M0) such that?
B+

3

|∇v|2dx ≤ C(Λ, n,M0).

The proof of the lemma relies on the weighted Caccioppoli estimate, Lemma 2.13, and Lemma
3.1 below.

Lemma 3.1. Let Λ > 0,M0 > 0 be fixed and let β be as in Lemma 2.8. Suppose that [µ]A2 ≤ M0 and
A satisfies (2.6). For every ε > 0 sufficiently small, there exists δ > 0 depending on only ε,Λ, n,
and M0 such that: if

1
µ(B4)

∫
B+

4

|A − 〈A〉B4 |
2µ−1dx +

 1
µ(B4)

∫
B+

4

∣∣∣∣F
µ

∣∣∣∣2dµ(x)
1/2

≤ δ,

and u ∈ W1,2(B+
4 , µ,R

N) is a weak solution of (2.5) satisfying

(3.4)
1

µ(B4)

∫
B+

4

|∇u|2dµ ≤ 1,
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then there exists a constant matrixA0 and a weak solution v ∈ W1,1+β(B+
4 ,R

N) of (2.4) such that∥∥∥〈A〉B4 −A0

∥∥∥ ≤ εµ(B4)
|B4|

,

and
1

µ(B7/2)

∫
B+

7/2

|û+ − v|2dµ ≤ ε, û+ = u − ūµ,B+
4
.

Moreover, there is C = C(Λ, n,M0) such that

(3.5)
?

B+
3

|∇v|2dx ≤ C(Λ, n,M0).

Proof. We first notice that for each λ > 0, if we use the scalingAλ = 1
λ
A, µλ = µ/λ and Fλ = F/λ,

then for a weak solution u of (2.5), u is also a weak solution of the system{
div[Aλ∇u] = div[Fλ] in B+

4 ,

〈Aλ∇u − F,n〉 = 0 on T4.

Moreover, [µλ]A2 = [µ]A2 ,

Λµλ(x)|ξ|2 ≤ 〈Aλ(x)ξ, ξ〉, ∀ ξ ∈ RnN , for a.e. x ∈ B4, and |Aλ(x)| ≤ Λ−1µλ(x),

and Lemma 3.1 is invariant with respect to this scaling. Therefore, without loss of generality, we
may assume that

(3.6) µ̄B4 =
1
|B4|

∫
B4

µ(x)dx = 1.

In this case, it follows from (2.6) and (3.6) that

(3.7) Λ|ξ|2 ≤ 〈〈A〉B4ξ, ξ〉,∀ξ ∈ R
nN , and |〈A〉B4 | ≤ Λ−1.

We will use a contradiction argument to prove the lemma. Suppose that the conclusion is not true.
Then there exists ε0 > 0 such that for each k ∈ N, there are µk ∈ A2,Ak satisfying (2.6) with µk and
Ak in place of µ andA, and Fk and a weak solution uk ∈ W1,2(B+

4 , µk,R
N) to

(3.8)
{

div[Ak∇uk] = div[Fk] in B+
4 ,

〈Ak∇uk − Fk,n〉 = 0 on T4,

(3.9)


1

µk(B4)

∫
B+

4

|Ak − 〈Ak〉B4 |
2µ−1

k dx +

 1
µk(B4)

∫
B+

4

∣∣∣∣Fk

µk

∣∣∣∣2dµk

1/2

≤
1
k2

[µk]A2 ≤ M0, µ̄k,B4 =
1
|B4|

∫
B4

µk(x)dx = 1,

and

(3.10)
1

µk(B4)

∫
B+

4

|∇uk|
2dµk ≤ 1,

but for all constant matrixA0 with ‖〈Ak〉B4−A0‖ ≤ ε0, and for all weak solution v ∈ W1,1+β(B+
4 ,R

N)
of (2.4) it holds that

(3.11)
1

µk(B7/2)

∫
B+

7/2

|ûk+ − v|2dµk ≥ ε0.
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Since 〈Ak〉B4 satisfies (3.7), 〈Ak〉B4 is a bounded sequence in RnN×nN . Thus, there exists a subse-
quence denoting again by 〈Ak〉B4 and a constant tensor Ā ∈ RnN×nN such that

(3.12) lim
k→∞
〈Ak〉B4 = Ā.

From (3.10) and weighted Sobolev-Poincaré inequality Lemma 2.9 , [7, Theorem 1.5] (which still
applicable for half-balls), we see that

1
µk(B4)

∫
B+

4

|ûk+|
2dµk ≤

C(n,M0)
µk(B4)

∫
B+

4

|∇uk|
2dµk ≤ C(n,M0).

Since µk(B4) = |B4|, it implies that ‖ûk+‖W1,2(B+
4 ,µk ,RN ) ≤ C(n,M0), for all k ∈ N. This together with

Lemma 2.8 implies that

‖ûk+‖W1,1+β(B+
4 ,R

N ) ≤ C(n,M0) ‖ûk+‖W1,2(B+
4 ,µk ,RN ) ≤ C(n,M0).

Therefore, using the compact imbedding W1,1+β(B+
4 ) ↪→ L1+β(B+

4 ) and the diagonal argument, we
find a subsequence of uk denoted again by uk, and u ∈ W1,1+β(B+

4 ,R
N) such that

(3.13)

 ûk+ → u strongly in L1+β(B+
4 ,R

N), ∇uk ⇀ ∇u weakly in L1+β(B+
4 ,R

N), and

ûk+ → u a.e. in B+
4 .

As a consequence,

(3.14) ‖u‖W1,1+β(B+
4 ) ≤ C(n,M0).

We claim that u is a weak solution of

(3.15)
{

div[Ā∇u] = 0 in B+
4 ,

〈Ā∇u,n〉 = 0 on T4.

To do this, using ϕ ∈ C∞0 (B4,R
N) as a test function for equation (3.8), we have

(3.16)
∫

B+
4

〈Ak∇ûk+,∇ϕ〉dx =

∫
B+

4

〈Fk,∇ϕ〉dx.

By Hölder’s inequality, we estimate the right hand side of (3.16) as∣∣∣∣∣∣
?

B+
4

〈Fk,∇ϕ〉dx

∣∣∣∣∣∣ ≤

?

B+
4

∣∣∣∣Fk

µk

∣∣∣∣2µkdx


1/2 
?

B+
4

|∇ϕ|2µkdx


1/2

≤ ‖∇ϕ‖L∞(B+
4 )

 1
µk(B+

4 )

∫
B+

4

∣∣∣∣Fk

µk

∣∣∣∣2dµk(x)


1/2

µk(B+
4 )

|B+
4 |

≤ C
‖∇ϕ‖L∞(B4)

k
.

Therefore, letting k → ∞ yields

(3.17) lim
k→∞

∫
B+

4

〈Fk,∇ϕ〉dx = 0.
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On the other hand, it follows from (3.9), (3.10), and Hölder’s inequality that∣∣∣∣∣∣
?

B+
4

〈(Ak − 〈Ak〉B4)∇uk,∇ϕ〉dx

∣∣∣∣∣∣ ≤
?

B+
4

|Ak − 〈Ak〉B4 ||∇uk|µ
1/2
k |∇ϕ|µ

−1/2
k dx

≤ ‖∇ϕ‖L∞(B+
4 )


?

B+
4

|Ak − 〈Ak〉B4 |
2µ−1

k dx


1/2  1
|B+

4 |

∫
B+

4

|∇uk|
2dµk


1/2

≤
‖∇ϕ‖L∞(B+

4 )
√

k


?

B+
4

|∇uk|
2dµk


1/2

≤ C
‖∇ϕ‖L∞(B+

4 )
√

k
→ 0, as k → ∞.

Thus,

0 = lim
k→∞

∫
B+

4

〈(Ak − 〈Ak〉B4)∇uk,∇ϕ〉dx = lim
k→∞

[ ∫
B+

4

〈Ak∇uk,∇ϕ〉dx −
∫

B+
4

〈〈Ak〉B4∇uk,∇ϕ〉dx
]
.

We also notice that ∇uk converges weakly to ∇u in L1+β(B4,R
N) from (3.13), and 〈Ak〉B4 converges

strongly to constant tensor Ā, hence,

lim
k→∞

∫
B+

4

〈〈Ak〉B4∇uk,∇ϕ〉dx =

∫
B+

4

〈Ā∇u,∇ϕ〉dx.

Consequently,

(3.18) lim
k→∞

∫
B+

4

〈Ak∇uk,∇ϕ〉dx =

∫
B+

4

〈Ā∇u,∇ϕ〉dx.

Combining (3.17) and (3.18) yields∫
B+

4

〈Ā∇u,∇ϕ〉dx = 0, ∀ ϕ ∈ C∞0 (B4,R
N).

Now, since Ā = limk→∞〈Ak〉B4 , and by (3.7), we see that

Λ|ξ|2 ≤ 〈Āξ, ξ〉, ∀ ξ ∈ RnN ,

i.e., the constant tensor Ā is uniformly elliptic. Hence, u ∈ C∞(B
+

15/4) by Lemma 2.11. Moreover,
it follows from Lemma 2.11 and (3.14) that

(3.19)
?

B+
7/2

|∇u|2dµk ≤ ‖∇u‖2L∞(B7/2) ≤ C(n,Λ)
?

B+
4

|∇u|1+βdx
 2

1+β

≤ C(n,M0,Λ), ∀ k ∈ N.

Using the above and following the argument used in [4, Lemma 4.3] we obtain that

(3.20) lim
k→∞

?
B+

7/2

|ûk − u − ck|
2dµk = 0, where ck =

?
B+

7/2

[ûk − u]dx

However, note that since 〈Ak〉B4 → Ā and ε0 > 0,∥∥∥〈Ak〉B4 − Ā
∥∥∥ ≤ ε0

for sufficiently large k. But, this contradicts to (3.11) if we take A0 = Ā, v = u − ck and k large
enough.
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We now turn to prove (3.5). Suppose that we have β, A0 and v ∈ W1,1+β(B+
4 ) satisfying the first

part of the lemma. Then, by taking ε sufficiently small, we see that
Λ

2
|ξ|2 ≤ 〈A0ξ, ξ〉 ≤ 2Λ−1|ξ|2, ∀ ξ ∈ Rn.

Hence, by the standard regularity theory for elliptic systems, Lemma 2.11, v is in C∞(B+
15/4). More-

over, from Lemma 2.8, we also have?
B+

16/5

|v|2dx ≤ C(n,Λ)


?

B+
7/2

|v|1+βdx


2

1+β

.

and as a consequence ?
B+

16/5

|v|2dx ≤ C(n,Λ,M0)
?

B+
7/2

|v|2dµ.

The preceding estimate together with the energy estimate for v implies that?
B+

3

|∇v|2dx ≤ C(n,Λ,M0)
?

B+
16
5

|v|2dx ≤ C(n,Λ,M0)
?

B+
7/2

|v|2dµ.

Therefore, ?
B+

3

|∇v|2dx ≤ C(n,Λ,M0)

?
B+

7/2

|û − v|2dµ +

?
B+

7/2

|u − ūµ,B4 |
2dµ


≤ C(n,Λ,M0)

ε +
µ(B+

4 )
µ(B+

7/2)

?
B+

4

|u − ūµ,B4 |
2dµ


≤ C(n,Λ,M0)

ε +
µ(B4)
µ(B7/2)

?
B+

4

|∇u|2dµ
 ,

where we have used the Poincaré’s inequality, Lemma 2.9. Thus, by choosing ε < 1 and using
(3.4), and the doubling property of [µ], we deduce that?

B+
3

|∇v|2dx ≤ C(n,Λ,M0) [1 + C] = C(n,Λ,M0).

Therefore, it completes the proof of Lemma 3.1.
�

4. Level set estimates, and proofs of main theorems

4.1. Level set estimates. We begin with the following result.

Lemma 4.1. Suppose that M0 > 0 and µ ∈ A2 such that [µ]A2 ≤ M0. Then there exists a constant
$ > 1 so that for every ε > 0, there is δ = δ(Λ,M0, n, ε) > 0 sufficiently small such that if A
satisfies (2.6) on B+

2 ,
[A]BMO1(B+

1 ,µ) ≤ δ,

u ∈ W1,2(B+
2 , µ) is a weak solution to

(4.1)
{

div[A(x)∇u] = div[F] in B+
2 ,

〈A(x)∇u − F,n〉 = 0 on T2,

and if

(4.2) B+
ρ (ȳ) ∩ {x ∈ B+

2 :Mµ(χB+
2
|∇u|2) ≤ 1} ∩ {x ∈ B+

2 :Mµ

(∣∣∣∣∣Fµ
∣∣∣∣∣2 χB+

2

)
≤ δ2} , ∅,
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for some ȳ = (y′, 0) ∈ T1 and some ρ ∈ (0, 1/2), then

µ
({

x ∈ B+
1 :Mµ(χB+

2
|∇u|2) > $2

}
∩ B+

ρ (ȳ)
)
< εµ(B1).

Proof. The proof of this lemma is standard. We give it here for the sake of completeness. For a
given ε > 0, let η = ε/C∗ where C∗ is a positive number to be determined depending only on M0, n.
Then, let δ = δ(η,Λ,M0, n) be defined as in Proposition 3.2. We now prove the lemma with this
choice of δ. Observe that from the hypothesis (4.2), there exists x0 ∈ B+

ρ (ȳ) such that for all l > 0,

(4.3)
?

Bl(x0)
χB+

2
|∇u|2dµ ≤ 1, and

?
Bl(x0)

χB+
2

∣∣∣∣∣Fµ
∣∣∣∣∣2 dµ ≤ δ2.

Since B+
4ρ(ȳ) ⊂ B5ρ(x0) ∩ B+

2 , it follows that

1
µ(B4ρ(ȳ))

∫
B4ρ(ȳ)

χB+
2
|∇u|2dµ ≤

µ(B5ρ(x0))
µ(B4ρ(ȳ))

?
B5ρ(x0)

χB+
2
|∇u|2dµ ≤

52nM0

42n .

Similarly, we have that
1

µ(B4ρ)(ȳ)

∫
B+

4ρ(ȳ
χB+

2

∣∣∣∣∣Fµ
∣∣∣∣∣2 dµ ≤ δ2M0

(
5
4

)2n

.

From these estimates, [A]BMO1(B+
1 ,µ) ≤ δ, and after some appropriate scaling, dilation, and transla-

tion, we can apply Proposition 3.2 to see that there exists a constant matrixA0 and a weak solution
v to {

div[A0∇v] = 0 in B+
4ρ(ȳ),

〈A0∇v,n〉 = 0 on T4ρ(ȳ),

satisfying

(4.4)
1

µ(B2ρ(ȳ)

∫
B+

2ρ(ȳ)
|∇u − ∇v|2dµ < ηM0(5/4)2n, and ‖∇v‖L∞(B+

3ρ(ȳ)) ≤ C0,

for some positive constant C0 that depends only n,Λ and M0.
Now let $ > 0 such that $2 = max{M032n, 4C2

0}, where C0 is from (4.4). We will show that

{x :Mµ(χB+
2
|∇u|)2 > $2} ∩ B+

ρ (ȳ) ⊂ {x :Mµ(χB+
2ρ(ȳ)|∇u − ∇v|2) > C2

0} ∩ B+
ρ (ȳ).

To prove the claim, we consider x ∈ B+
ρ (ȳ) such that

(4.5) Mµ(χB+
2ρ(ȳ)|∇u − ∇v|2)(x) ≤ C2

0,

and we only need to show that for any r > 0?
Br(x)

χB+
2
|∇u|2dµ ≤ $2.

Indeed, if r < ρ, then Br(x) ∩ B+
2 ⊂ B+

2ρ(ȳ), using (4.4) and (4.5), we see that?
Br(x)

χB+
2
|∇u|2dµ ≤ 2

?
Br(x)

χB+
2ρ(ȳ)|∇u − ∇v|2dµ + 2

?
B+

r (x)
|∇v|2dµ

≤ 2Mµ(χB+
2ρ(ȳ)|∇u − ∇v|2)(x) + 2C2

0 ≤ 4C2
0 ≤ $

2.

Also, if r ≥ ρ, then note that Br(x) ⊂ B3r(x0) and by (4.3), we obtain that?
Br(x)

χB+
2
|∇u|2dµ(x) ≤

µ(B3r(x0))
µ(Br(x))

?
B3r(x0)

χB+
2
|∇u|2dµ(x) ≤ M032n ≤ $2,
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and this proves the claim. From this claim, we can deduce that

µ(B+
ρ (ȳ) ∩ {x ∈ B+

2 :Mµ(χB+
2
|∇u|2) > $2})

≤ µ({x ∈ B+
ρ (ȳ) :Mµ(χB+

2ρ(ȳ)|∇uκ − ∇vκ|2) > C2
0})

≤
C(n,M0)

C2
0

µ(B2ρ(ȳ))
1

µ(B2ρ(ȳ))

∫
B+

2ρ(ȳ)
|∇uκ − ∇vκ|2dµ

≤ C∗η µ(B1),

where we have used the weak (1, 1) estimates of Mµ, (4.4) and the doubling property of µ. The
proof is then complete once we choose η > 0 such that C∗η = ε. �

Lemma 4.2. Suppose that M0 > 0 and µ ∈ A2 such that [µ]A2 ≤ M0. Then there exists a constant
$ > 1 so that for every ε > 0, there is δ = δ(Λ,M0, n, ε) > 0 sufficiently small such that if A
satisfies (2.6) on B+

2 ,

[A]BMO1(B+
1 ,µ) ≤ δ,

u ∈ W1,2(B+
2 , µ) is a weak solution to (4.1) and

(4.6) µ({x ∈ B+
1 :Mµ(χB+

2
|∇u|2) > $2} ∩ Bρ(y)) ≥ εµ(Bρ(y)),

whenever y ∈ B+
1 , and ρ < 1

8 , then

(4.7) Bρ(y) ∩ B+
2 ⊂ {x ∈ B+

1 :Mµ(χB+
2
|∇u|2) > 1} ∪ {x ∈ B+

1 :Mµ

(∣∣∣∣∣Fµ
∣∣∣∣∣2 χB+

2

)
> δ2}.

Proof. We begin by noting that in the case that y ∈ B+
1 , and B4ρ(y) ∩ {xn = 0} = ∅, then we have

B2ρ(y) ⊂ B+
2 , and the situation is exactly as in [4, Proposition 4.7]. So we skip the proof of this case.

In the event B2ρ(y) ∩ {xn = 0} , ∅, we prove the lemma using a contradiction argument. Suppose
that (4.6) holds but (4.7) fails. Then there exists x0 ∈ Bρ(y) ∩ B+

2 such that

Mµ(χB+
2
|∇u|2)(x0) ≤ 1 and Mµ

(∣∣∣∣∣Fµ
∣∣∣∣∣2 χB+

2

)
(x0) ≤ δ2.

Set ȳ = (y′, 0) ∈ B2ρ(y) ∩ T1. Then we have that B2ρ(y) ∩ B+
2 ⊂ B4ρ(ȳ) ∩ B+

2 . As a consequence we
have that

x0 ∈ Bρ(y) ∩ B+
2 ⊂ B4ρ(ȳ) ∩ B+

2 ,

where we have used 4ρ ∈ (0, 1). Now all the hypotheses of Lemma 4.1 are satisfied with y replaced
by ȳ and ρ replaced by 4ρ. Applying using ε

M0(6)2n

µ({x ∈ B+
1 :Mµ(χB+

2
|∇u|2) > $2} ∩ B+

ρ (y)) ≤ µ({x ∈ B+
1 :Mµ(χB+

2
|∇u|2) > $2} ∩ B+

4ρ(ȳ))

<
ε

M0(6)2nµ(B4ρ(ȳ))

<
ε

M0(6)2nµ(B6ρ(y)) ≤
ε

M0(6)2n M0(6)2nµ(Bρ(y))

= εµ(Bρ(y)),

where we have used the inclusion B4ρ(ȳ) ⊂ B6ρ(y). The last inequality obviously contradicts (4.6).
�
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4.2. Proof of main theorems. As we already discussed, Theorem 1.2 follows from Theorems
1.3-1.4, the partition of unity, the procedure of flattening the boundary, and the energy estimates.
This is standard, and therefore we do not provide the proof of Theorem 1.2. Proof of Theorem 1.3
is similar, and much simpler than that of Theorem 1.4. Therefore, this proof is also skipped. It
remains to provide the proof of Theorem 1.3.

Proof of Theorem 1.3. Let us choose M large such that for uM = u/M

(4.8) µ({x ∈ B+
1 :Mµ(χB+

2
|∇uM |

2) > $2}) ≤ εµ(B1(y)), ∀y ∈ B+
1 .

We can always choose such M because from the weak (1, 1) estimate for the maximal functionMµ

µ({x ∈ B+
2 :Mµ(χB+

2
|∇uM |

2) > $2}) ≤
C(n,M0)

M2$2

∫
B+

2

|∇u|2dµ.

Now take M according to the formula

C
M2$2

∫
B+

2

|∇u|2dµ = ε
µ(B2)

M0

(
|B2 |

|B1 |

)2 ,

while keeping in mind that since B1(y) ⊂ B2, we have that B1(y) ∩ B2 = B1(y). It follows from the
above calculations that

(4.9) M2µ(B1) ≤ M2µ(B2) = M0 (2)2n C
ε$2 ‖∇u‖2L2(B+

2 ,µ).

Now, let $ > 0 sufficiently large defined as in Lemma 4.2. Let ε > 0 sufficiently small such that
ε1$

p ≤ 1/2, where ε1 = M0102nε. Then, with this epsilon, let δ > 0 defined as in Lemma 4.2. From
Lemma 4.2, and the modified Vitali covering lemma in [15, 26], it follows that

µ
(
B+

1 :Mµ(χB+
2
|∇u|2) > $2

})
≤ ε1

[
µ
({

B+
1 :Mµ(χB+

2
|∇u|2) > 1

})
+ µ

({
B+

1 :Mµ(χB+
2

∣∣∣∣∣Fµ
∣∣∣∣∣2) > δ2

})]
.

See, for examples [4, Lemma 5.10] or [24, Proposition 4.9] for the details on the proof of this claim.
Using this claim, and by induction, we then infer that for any k ∈ N,

µ({x ∈ B+
1 :Mµ(χB+

2
|∇u|2) > $2k}) ≤

k∑
i=1

ε i
1µ

(
{x ∈ B+

1 :Mµ

(∣∣∣∣∣Fµ
∣∣∣∣∣2 χB+

2

)
> δ2$2(k−i)}

)
+ εk

1µ({x ∈ B+
1 :Mµ(χB+

2
|∇u|2) > 1}).

(4.10)

Now consider the sum

S =

∞∑
k=1

$pkµ({B+
1 :Mµ(χB+

2
|∇uM |

2)(x) > $2k}).

Observe that, when finite, S 2/p is comparable to the Lp/2- norm ofMµ(χB+
2
|∇uM |) in B+

1 .
Applying (4.10) to the summand we have that

S ≤
∞∑

k=1

$pk

 k∑
i=1

ε i
1µ

(
{x ∈ B+

1 :Mµ

(∣∣∣∣∣FM

µ

∣∣∣∣∣2 χB+
2

)
> δ2$2(k−i)}

)
+

∞∑
k=1

$pkεk
1µ({B+

1 :Mµ(χB+
2
|∇uM |

2)(x) > 1}).

.
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Applying summation by parts we have that

S ≤
∞∑
j=1

($pε1) j

 ∞∑
k= j

$p(k− j)µ

(
{x ∈ B+

1 :Mµ

(∣∣∣∣∣FM

µ

∣∣∣∣∣2 χB+
2

)
> δ2$2(k− j)}

)
+

∞∑
k=1

($pε1)kµ({B+
1 :Mµ(χB+

2
|∇uM |

2)(x) > 1})

≤ C


∥∥∥∥∥∥Mµ

(
χB+

2

∣∣∣∣∣FM

µ

∣∣∣∣∣2)
∥∥∥∥∥∥p/2

Lp/2(B+
1 ,µ)

+ ‖∇uM‖
2
L2(B+

2 ,µ)

 ∞∑
k=1

($pε1)k,

where we have applied the weak (1, 1) estimate of the maximal function. Now chose ε small so that
$pε1 < 1 to obtain that

S ≤ C


∥∥∥∥∥∥Mµ

(
χB+

2

∣∣∣∣∣FM

µ

∣∣∣∣∣2)
∥∥∥∥∥∥p/2

Lp/2(B+
1 ,µ)

+ ‖∇uM‖
2
L2(B+

2 ,µ)

 ≤ C

∥∥∥∥∥FM

µ

∥∥∥∥∥p

Lp(B+
2 ,µ)

+ ‖∇uM‖
2
L2(B+

2 ,µ)

 ,
where we have applied the strong (p, p) estimate for the maximal function operatorMµ.

Now applying Lemma 2.6 we have that

‖∇uM‖
p
Lp(B+

1 ,µ) ≤ C‖Mµ(χB+
2
|∇uM |

2)‖p/2
Lp/2(B+

1 ,µ) ≤ C(S + µ(B1)),

and therefore multiplying by Mp and applying (4.9) we obtain that

‖∇u‖p
Lp(B+

1 ,µ) ≤ C

∥∥∥∥∥F
µ

∥∥∥∥∥p

Lp(B+
2 ,µ)

+ (µ(B1)1− p
2 ‖∇u‖2L2(B+

2 ,µ)

 .
This completes the proof of the theorem. �

Acknowledgement. D. Cao would like to thank the Department of Mathematics, University of
Tennessee at Knoxville, TN for the support and hospitality from which part of this work was done
when he visited. T. Mengehsa’s research is supported by NSF grants DMS-1506512 and DMS-
1615726. T. Phan’s research is supported by the Simons Foundation, grant # 354889.

References

[1] S.-S. Byun, L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg
flat domains, Proceedings of London Mathematical Society (3), Volume 90, Issue 1, Pages 245 –272, 2005.

[2] S.-S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math.
57 (2004), no. 10, 1283-1310.

[3] L.A. Caffarelli and I. Peral. On W1,p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math.
51 (1998), no. 1, 1–21.

[4] D. Cao, T. Mengesha and T. Phan, Weighted W1,p estimates for weak solutions of degenerate and singular equa-
tions, to appear in the Indiana University Mathematics Journal.

[5] L. C. Evans, Partial Differential Equations, AMS Graduate Studies in Mathematics, Vo 19, 2010.
[6] G. Di Fazio, M. S. Fanciullo, M. S and P. Zamboni, Lp estimates for degenerate elliptic systems with VMO

coefficients. Algebra i Analiz 25 (2013), no. 6, 24–36; translation in St. Petersburg Math. J. 25 (2014), no. 6,
909-917.

[7] E. B. Fabes, C. E. Kenig, R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Comm.
Partial Differential Equations 7 (1982), no. 1, 77 - 116.

[8] Q. Han, F. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, American Mathe-
matical Society, Providence, RI.

[9] J. Garcia-Cuerva, Weighted Hp-spaces, Thesis (Ph.D.)Washington University in St. Louis. 1975.
[10] J. Garcia-Cuerva, Weighted Hp spaces. Dissertationes Math. (Rozprawy Mat.) 162 (1979).
[11] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and

minimal graphs, Edizioni Della Normale, 2012.



18 D. CAO, T. MENGESHA, AND T. PHAN

[12] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics.
Springer-Verlag, Berlin, 2001.

[13] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Company, Tuck Link (2003).
[14] L. Grafakos, Modern Fourier Analysis, Graduate texts in Math., Springer, 2009.
[15] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces. Graduate Studies in Mathematics,

96. American Mathematical Society, Providence, RI, 2008.
[16] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type.

Translations of Mathematical Monographs, Vol. 23, American Mathematical Society.
[17] G.M. Lieberman, Second Order Parabolic Differential Equations. World Scientific Publishing Co, 2005.
[18] A. Maugeri, D. K. Palagachev, L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients.

Mathematical Research, 109. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.
[19] N.G. Meyers. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc.

Norm. Super. Pisa Cl. Sci. (3) 17 (1963) 189 189-206.
[20] B. Muckenhoupt and R. L. Wheeden. Weighted bounded mean oscillation and the Hilbert transform. Studia

Mathematica, T. LIV. 1976.
[21] B. Muckenhoupt and R. L. Wheeden. On the dual of weighted H1 of the half-space. Studia Mathematica, T. LXIII.

1978.
[22] M. K. V. Murthy, G. Stampacchia, Boundary value problems for some degenerate-elliptic operators. Ann. Mat.

Pura Appl. (4) 80, 1968, 1-122.
[23] I. Peral, F. Soria, A note on W1,p estimates for quasilinear parabolic equations. Electron. J. Differ. Equ. Conf., 8

(2002), 121–131.
[24] T. Phan, Weighted Calderon-Zygmund estimates for weak solutions of quasi-linear degenerate elliptic equations,

submitted, arXiv:1702.08622.
[25] E. Stredulinsky, Weighted inequalities and applications to degenerate elliptic Partial Differential Eequations Ph.

D. Thesis, Indiana University, 1981.
[26] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta. Math. Sin. (Engl. Ser.), 19 (2003),

381-396.

† Department ofMathematics and Statistics, Texas Tech University, Box 41042, Lubbock, TX 79409-1042
E-mail address: dat.cao@ttu.edu

E-mail address: mengesha@math.utk.edu

E-mail address: phan@math.utk.edu

‡ Department ofMathematics, University of Tennessee, Knoxville, 227 AyresHall, 1403 CircleDrive, Knoxville,
TN 37996, U.S.A


