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Abstract

Consider a nonlinear Schrodinger equation in R? whose linear part has three or more
eigenvalues satisfying some resonance conditions. Solutions which are initially small in
H' N LY*(R?) and inside a neighborhood of the first excited state family are shown to
converge to either a first excited state or a ground state at time infinity. An essential
part of our analysis is on the linear and nonlinear estimates near nonlinear excited
states, around which the linearized operators have eigenvalues with nonzero real parts
and their corresponding eigenfunctions are not uniformly localized in space.
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1 Introduction

Consider the nonlinear Schrédinger equation in R3,

0 = Hoto + s[>y, ¥li=o = 2o, (1.1)

where Hy = —A + V is the linear Hamiltonian with a localized real potential V', x = +1,
and 9 (t,x) : R x R? — C is the wave function. We often drop the = dependence and write
Y(t). We assume 1) € H' is localized, say ¢g € L', so that its dispersive component decays
rapidly under the evolution. For any solution ¢ (t) € H'(R?) its L?-norm and energy

W] = [ GV + VIUE + ulltdo (1.2

are constant in t. The global well-posedness for small solutions in H'(R?) can be proven
using these conserved quantities no matter what the sign of « is.

We assume that Hy has K + 1 simple eigenvalues ¢y < e; < -+ < ex(< 0) with
normalized real eigenfunctions ¢, £k = 0,1,..., K, where K > 2. They are assumed to
satisfy

ep < 2e; <4ey, (1.3)

and some generic conditions to be specified later. Through bifurcation around zero along
these eigenfunctions, one obtains K + 1 families of nonlinear bound states Q. = néy + h,
h = O(n?) and! (h,¢y) =0 for k =0,..., K, and n > 0 sufficiently small, which solve the
equation

(—A+V)Q +#|QPQ = EQ, (1.4)
for some E = Ej, = e + O(n?), see Lemma 2.1. They are real and decay exponentially
at spatial infinity. Each of them gives an exact solution (¢, z) = Q(z)e~ £ of (1.1). The
family Qo are called the nonlinear ground states while Q ,, k > 0, are called the k-th
nonlinear exciled states.

Our goal is to understand the long-time dynamics of the solutions at the presence of
nonlinear bound states. The first question is the stability problem of nonlinear ground
states. It is well-known that nonlinear ground states are orbitally stable in the sense that
the difference

[(6) ~ Qo

remains uniformly small for all time ¢ if it is initially small. On the other hand, the difference
is expected to approach zero locally since the majority of which is a dispersive wave that
scatters to infinity. Hence one expects that it is asymptotically stable in the sense that

‘ Y(t) = Qo) eie(t)‘

!The L? inner product ( , )is (f,g) = ng f gdz. For a function ¢ € L%, we denote by ¢ the L?-subspace
{geL?:(¢,9) =0}

inf (1.5)

n,0 ‘Hl(RS)

L 0 (1.6)




as t — oo, for a suitable choice of n(t) and 0(t). Here ||HL{1 denotes a local L” norm,

6l = I9llr, (L.7)

for some fixed rg > 10, and for r € R

16l 2e = 1{@)" $(@) | ousy, (2} = (L + )2, (1.8)

One is also interested in how fast (1.6) converges and whether n(t) has a limit.

The second question is the asymptotic problem of the solution when (0) is small but
not close to ground states. It is delicate since nonlinear excited states stay there forever
but are expected to be unstable from physical intuition. Thus, a solution may stay near an
excited state for an extremely long time but then moves on and approaches another excited
state.

We now review the literature, assuming 1o is small in H' N L.

If —A 4V has only one bound state, i.e., with no excited states, the asymptotic stability
of ground states is proved in [26, 27], with convergence rate t~%/2. It is then shown in [22]
that all solutions with small initial data, not necessarily near ground states, will locally
converge to a ground state.

Suppose —A + V' has two bound states. the asymptotic stability of ground states is
proved in [31], with a slower convergence rate t=1/2 due to the persistence of the excited
state. The problem becomes more delicate when the initial data are away from ground
states. It is proved in [33] that, near excited states, there is a finite co-dimensional manifold
of initial data so that the corresponding solutions locally converge to excited states. Outside
of a small wedge enclosing this manifold, all solutions exit the excited state neighborhood
and relax to ground states [32]. It is further showed in [34] that for all small initial data
in H' N L', there are exactly three types of asymptotic profiles: vacuum, excited states or
ground states. The last problem is also considered in [29].

Suppose —A + V has three or more bound states. The asymptotic stability of ground
states is proved in [30]. In fact, it is shown that all solutions with

[oll5nsn < (Do, t0)| < 1, 0<e< 1, (1.9)

relax to ground states. It ensures that the solution is away from excited states but allows
the ground state component to be much smaller than other components.

We also mention a few related results on the asymptotic stability of ground states of
nonlinear Schrodinger equations with more general nonlinearities. For small solutions, one
extension is to replace the resonance condition (1.3) by weaker conditions, e.g. those by
[10] and by [8]. Another extension is to assume ¢y € H' without assuming ¢o € L. Tt is
first proved in [12] for K = 0 and dimension N = 3 and then extended by [19, 20] for K = 0
and N = 1,2. It is also extended by [8] for K > 1 with (1.3) replaced by weaker conditions
used by [10]. A third extension is to allow subcritical nonlinearity +[¢[P~1y, p < 1+ 4/N,
see e.g. [15]. A fourth extension is to assume K = 1 and e; has multiplicity, see [11, 13].

The stability of large solitary waves is considered for K = 0,1, by [3, 4, 5] for N =1
and by [6, 7] for N = 3.

See [18, 24, 13] and their references for construction of stable manifolds similar to that
in [33].

In this paper, our goal is to continue the study of [30] under the same assumptions,
with initial data 19 now inside a neighborhood of the first excited state Q}1,. This is the



easiest interesting case not covered in [30]. Guided by the K =1 case, one expects that the
solution should either converge to a first excited state (with the ground state component
always negligible), or leave the excited state neighborhood after some time (which may be
extremely long, say greater than eefl/n), and then relax to a ground state.

The new difficulty of the K > 1 case is the existence of higher excited state components.
If the solution is to converge to a first excited state with the ground state component always
negligible, one can think that the ground state component is absent and the first excited
state as a new ground state. Thus, in the K > 1 case the convergence to a first excited
state is expected to be in the rate t~1/2, much slower than ¢~3/2 in the K = 1 case.

When the difference is of order t=3/2, one can use centered orthogonal coordinates as in
[22, 34],

Y(t) = Qe + h(t), h(t) = wo(t)do + (1), & € Be(Ho). (1.10)

The equations of 72(t) and 6(t) contain linear terms in h. When z(t) is negligible, these
linear terms are of order ¢~3/2 and hence integrable in ¢, ensuring the convergence of the
parameters. However, when K > 1, the difference is order t~%/2 and one cannot show
the convergence of the parameters if their equations contain linear terms. To remove linear
terms, one is forced to use linearized coordinates around the first excited state, to be specified
later in §3.2.

We now describe a few special properties of the linearized operator around an excited
state. When the function 7 is close to a nonlinear bound state @) = @, with corresponding
frequency E = E, ,,, one writes 1) = (Q(x)+h(t, z))e *#!. The perturbation h(t, z) satisfies

Oth = Lh + nonlinear terms, (1.11)

where the linearized operator £ around () is given by

Lh=—i{(H+rQ)h+rQ*h}, H=-A+V—FE+rQ" (1.12)
Note HE = 0. Since £ does not commute with ¢, it is not useful to consider its spectral
properties. Instead one looks at its matrix version acting on [Eﬁm
0 H
L= [—H—2f<;Q2 0] . (1.13)

The spectral property of L for m > 0 is studied in [33] and recalled in Proposition 2.4.

1
_01 O} which has eigenvalues +i(ex — e;,),
k=0,...,K. Whenm > 0, k < m and ej, < 2e,,, the eigenvalues +i(e;—e,,) are embedded
in the continuous spectrum =i [|ey, |, 00). These embedded eigenvalues split into a quadruple
of eigenvalues of L, \; and +\g, with Im A\, = |ex —e|+O0(n?) and C~'n* < Re A\, < Cn?
(assuming the generic condition (1.17)). The size of their corresponding eigenvectors are
roughly?

It is a perturbation of J(Hy — e,,) with J = {

"I’L2
(1> + O<(x> )1|:c|<n*4' (1.14)

2
LlOO

The second part is not localized; It is small in Lo°N L3, of order 1 in L2, and of order n8—12/p

in LP for p < 2. In particular, the projection P¥ onto the continuous spectral subspace EX
of L is of order n®~12/P > 1 in L? for p < 2, giving an extra difficulty to the usual analysis.

“Denote (€) = (1 + \§|2)1/2 for € € RY, d > 1. For r € R, denote by L? the weighted L? spaces with
£z = [{=)" f(@)]l 2



To overcome this difficulty, we prove decay estimates of the form (see Lemma 2.11)
3.3 3
[emrte] <o ¥ i F el 2 0) (115)
P

for 3 < p < 6, with constant C), independent of n. Here PCji is an extended projection:
It is the sum of P and all projections onto eigenspaces whose corresponding eigenvalues
have negative real parts. As shown in Remark (iii) after Lemma 2.11, these estimates with
n-independent constant are false if P¢ is replaced by PL. Also note that (1.15) is time-
direction sensitive: it is true only for ¢ > 0. The decay exponent above is not as good as the
usual free Schrodinger evolution, but it is sufficient for us if we take p < 6 close to 6. A side

benefit of extending P, to P? is that we no longer need to track the component (Pcti — P.)h.

Our assumptions on the operator Hy = —A + V are as follows:
Assumption A0. Hy = —A +V acting on L?(R?) has K + 1 simple eigenvalues eg < e; <
... <eg <0, K>2, with normalized real eigenfunctions ¢y, ..., dx.
Assumption Al. V(z) is a real-valued function satisfying |VoV ()| < (z) >~ for
la] < 3, for some r1 > 9/2 to be given by Lemma 2.2. 0 is not an eigenvalue nor a
resonance for Hy.
Assumption A2. Resonance condition. We assume that

eg < 2e; < 4deo. (1.16)

We further assume that, for some small sg > 0,

1
= inf lim Im 2. - pHo 2> > 0.
0 0<m<1,|s|<sg =0+ <¢m¢k “A+V+e,—e.—e —s5—1i ¢ ¢m¢k
m<k,I<K

(1.17)
Assumption A3. No-resonance condition (between eigenvalues). Let jpax = 3. For all
7 =2,...,Jmax and for all kl,...,kjj,ll,...,lj S {0,...,K}, if€k1+-‘~+6kj = ell—i—-‘-—i—el].,
then there is a permutation s of {1,...,j} such that (I1,...,1;) = (ks1,...,ksj)-

Assumption Al ensure several estimates for linear Schrodinger evolution such as decay
estimates and the W¥P? estimates for the wave operator Wh, = limy_, eitHo gith They are
certainly not optimal. The main assumption in A2 is the condition e;_1 < 2ej. It ensures
that Hy + e, — e, — €; is not invertible in L? for m < k,l, and provides (for our cubic
nonlinearity) the required resonance between eigenvalues through the continuous spectrum.
Since the expression for 7 is quadratic, it is non-negative and 9 > 0 holds generically.
Assumption A3 is a condition to avoid direct resonance between the eigenvalues. It is
trivial if K = 0,1. It holds true generically and is often seen in dynamical systems of
ODE’s. If we relax the assumption (1.16), we may need to increase jmax.

Now we are ready to state our main theorem.

Theorem 1.1 Assume Assumptions A0-A8 and fir 0 < & < %. There are constants

Co,C1 > 0, and small ng > 0 such that the following hold. If n = (¢1,10) € (0,n9) and
b0 — 11| giqp1 < niF0, then the solution (t) of (1.1) with ¥(0) = vy satisfies

lim sup Hw(t) = Qm7n+ei9(t)‘ L2 Y2 < Cy/n (1.18)

t—o00

loc

form =0 orm =1, for some ny € (Cy'n,Cin) and some 0(t) € C([0,0),R).



In fact we have more detailed estimates of the solution for all time, see Propositions 4.2,
5.1, 6.3, 6.7, and 7.2. In particular, if the initial data v is placed in the neighborhood of an
excited state @, , with m > 2, even if K > 2, Propositions 4.2, 5.1, 6.3, 6.7 show that the
solution will either converge to @y, ., for some n, or eventually exits the neighborhood,
stays away from bound states for a time interval of order between n_410g% and n—4-29
until it reaches the neighborhood of another bound state @, n/, m" < m. If m’ = 0, then
Proposition 7.2 shows that 1 (t) will converge to some Qq,,. However, if m’ > 0, our
current analysis is not sufficient to control its evolution after this time.

We now sketch the structure of our proof and this paper.

In §2 we give the linear analysis, including the decay estimates (1.15).

In §3 we consider the decomposition of the solutions in different coordinates and the
normal forms of their equations.

In §4 we start with the solution in a n'"™°-neighborhood of @1, and use linearized
coordinates (3.17). We follow the evolution as long as the ground state component zj is
negligible, characterized by |zo(t)| < n=3(n =729 +¢)~L. If it is always negligible, we prove
that the solution converges to an excited state with convergence rate ¢~ /2.

In §5 we consider the case that |zo(t.)| > n~3(n=%72% 4-t.)~! in a first time t. € [0, 00),
which may be 0 or extremely large, say > e¢” /", After an initial layer, we show that |zo(t)|
starts to grow exponentially with exponent Cn* 1until it reaches the size 2n'19 at time ¢,.

2n
20

The time it takes, t, — t., is of order n=*log th; Along the way higher excited states

140

may have size larger than |zo(¢)| but can be controlled. This section is the most difficult
part in the nonlinear analysis because it involves estimates not previously studied.

In §6 we study the dynamics after t, when there are at least two components of size
greater than 2n'19, and change to orthogonal coordinates

Y =x000 + - +aror +& & € E(Hp). (1.19)

Although £(t,) is already non-localized, we can prove “outgoing estimates” for £(t,), in-
troduced in [32, 34], to capture the time-direction sensitive information of the dispersive
waves. We show that, after a time of order between n~%log % and n=*"2% the ground state
component x grows to order n while all other components become smaller than n'*9. (This
is called the transition regime.)

In §7 the ground state component becomes dominant and we change to linearized coor-
dinates around it. Again we need to keep track of out-going estimates during the coordinate
change. We show that the solutions will converge to ground states with convergence rate
t~1/2. The analysis is similar to §4 but easier because it has no unstable direction. (This is
called the stabilization regime.)

Analysis similar to §6 and §7 is done in [30], (and in the two-eigenvalue case near ground
states in [4, 31, 32, 7, 5]). However, with weaker decay estimates like (1.15), we need more
refined analysis. For example, since the nonlinearity is of constant order n? in the transition
regime, we need to make this time interval as short as possible by taking ¢ > 0 small. We
also take p < 6 close to 6 to minimize our loss in estimating the LP-norm of the dispersive
component during this interval.

New proof of linear decay estimates for ground states

We end this introduction by noting that, our linear analysis, Lemmas 2.11 and 2.13, in the
case m = 0, provide a new proof of linear estimates for the linearized operators around



ground states, which is used to prove the stability of ground states in 3D, see [6, 31, 30].
Proofs in these references either use the wave operator between £ and —i(Hy — E), or use
a similarity transform £ = U(—iA)U~! for some self-adjoint perturbation A of Hy — E
and non-self-adjoint operator U. Our proof here use simple perturbation argument and
requires less assumptions on the potential V. Moreover, this perturbation argument allows
the operator V' to be more general than a potential, as long as the decay and singular decay
estimates for —A + V' hold.

2 Linear analysis

In this section we will study various properties of the linearized operator around a fixed
bound state, in particular an excited state. The starting point is the following lemma on
the existence of nonlinear bound states and their basic properties, see [26, 12].

Lemma 2.1 (Nonlinear bound states) Assume Assumptions A0-A1. There ezists a
small ny > 0 such that for each k = 0,..., K and n € [0,n1], there is a solution Q. €
H2N W of (1.4) with E = Ej,, € R such that

Qrpn =n¢p +q(n), (g, 0r) =0. (2.1)

The pair (q, E) is unique in the class ||q|| g2 + |E — ex| < n?. Moreover, ||q||g2apia S 1,

~

H%QHH%WM +|E —ex| S n? and |E — e, — Cypn?| < nt where Cy, = & [ ¢}. We also
denote aEka, = %Qk,n = %Qk,n/%Ek,n = ﬁd’k"‘ofﬂmwl,l(n); with (Qk,nv aEQk,n) =
st +O0(n).

In the following we fix m € {0,..., K} and n € [0,n1]. Let Q = Qun, OpQ = 0pQ,, ,,
and I/ = E,, ,,. The function @ satisfies H() = 0 where

H = Hy — E + Q> (2.2)
The following lemma collects useful properties of H.

Lemma 2.2 Assume Assumptions A0-A1 and let H be defined as in (2.2). The operator
H has K + 1 real eigenvalues €, = ey — en, + O(n?) with normalized eigenfunctions I
&k +0(n?). In particular, &, = 0 and bm = CQm. The projection to its continuous spectral
subspace is PHf = f — Zk(q;k, £)or. Furthermore, we have the following decay estimates

and singular decay estimates: for sufficiently large 11 > 9/2, for 0 < N < 3, for a; € C
with Ima; > 0, |[Rea; + ep| € [a1,a2] C (0,00), j < N,

()™ eI (H = ) 7P| o < C 072 1(@) gl 2 (2 0). (2.4)
Here the constant C' is independent of n, ¢ and «;.

Note that this lemma contains H = Hjy as a special case with n = 0. The proof
of the first part is well-known by perturbation. Estimate (2.3) is by Journe-Soffer-Sogge
[17]. Estimate (2.4) for N = 0 is by Jensen-Kato [16] and Rauch [23]. Estimate (2.4) for
ap =+ =ay, N > 1, was first proven by Soffer-Weinstein [28] for Klein-Gordon equations,



then by Tsai-Yau [31] and Cuccagna [7] for (linearized) Schrodinger equations. The general
case is similar and a proof based on Mourre estimate is sketched below for completeness.
(See [7] for a different approach).

Denote the dilation operator D = x -p+ p -z with p = —iV, and the commutators

ad)(H) = H, ad¥(H) = [ad},(H),D], k> 0. (2.5)

Fix g, € C°(R) with g, = 1 on [—1,1] and suppg. C (—2,2). For each j, let g;(t) =
g«((t — Rez;)/e). If ¢ > 0 is sufficiently small, g;(H)ad},(H)g;(H) are bounded operators
in L? for k < 3 and all j, and the Mourre estimate holds: For some 6 > 0,

9;(H)[iH, D]g;(H) > 0g;(H)?,  Vj. (2.6)

See [9]. Thus the pair H, D satisfies the assumptions of the minimal velocity estimates in
[14] and Theorem 2.4 of [25], and one has

[x(D < 0t/2)e "  g;(H) (D) ™"| o < C(t)1F5, (2.7)

where 0 < g7 < 1 and x(D < a) is the spectral projection of D associated to the interval
(—oc,a]. The same argument of [28] then gives (2.4).
Note that all ¢y, ¢r, Qkn and Ry, decay exponentially at infinity, see [2].

2.1 Linearized operator

A perturbation solution ¢ (z,t) of (1.1) of the exact solution Q(z)e " can be written in
the form

(1) = [Q(z) + h(z, )] (2.8)

for some function h which is small in a suitable sense. Then, h satisfies
O¢h = Lh + nonlinear terms, (2.9)
where the operator £ is defined as
Lh = —i{(Hy — E + 26Q*)h + kQ?h}. (2.10)

The operator L is linear over R but not over C. As a result it is not useful to consider its
spectral properties.
Consider the injection from scalar functions to vector functions

5 L(R,C) - L2RP,CY), g(p) = [¢] = [125]. (2.11)

With respect to this injection, the operator £ is naturally extended to a matrix operator
acting on L?(R3, C?) with the following form

[o L L. =H=Hy—E+rQ?,
L_[—L+ 0]’ Where{m — H +25Q? = Hy — E + 3kQ2. (2.12)

Note L is a perturbation of JH where J = [91 ! ] We will use £ = 37 'Ly for computations
involving L.



The space L?(R3, C?) is endowed with the natural inner product
(f,9) = /R3(f191 + fago) dz (2.13)

for f = Hﬂ and g = [§5]. We will use the Pauli matrices

o1 = [(1) (1)] , oy = [(3 _OZ] , 03= [(1) _OJ : (2.14)

2.2 Invariant subspaces

In this subsection we study the spectral subspaces of L. Since L is a perturbation of JH, we
first give the following lemma for comparison. Recall J = [ % {]| and ¢ are eigenfunctions

of H with eigenvalues ¢ given in Lemma 2.2.

Lemma 2.3 (Invariant subspaces of JH) Assume Assumptions A0-A2. The space
L3(R3,C?) can be decomposed as the direct sum of JH -invariant subspaces

L*R3,CH=E®...0 Bl o E]. (2.15)

For each k € {0,..., K}, the space EiH is spanned by 2 eigenvectors [ ! } b and (1] b

—i
with eigenvalues —i€y and i€, respectively. Its corresponding orthogonal projection is
JH[A] _ [Gef)] 7 JH I JHy _ [PHf
Py [fz} = [(Jm,fg)} @k. The subspace E;*" has projection P; " f = [Pchg }

The proof is straightforward and skipped. We next give the corresponding statements
for L.

Proposition 2.4 (Invariant subspaces of L) Assume Assumptions A0-A2 and let r; >
9/2 be from Lemma 2.2. Fiz m € {0,...,K} and n € (0,n1]. Let Q = Qmn, OpQ =
OEQmn and E = Ep . The space L2(R3,C?) can be decomposed as the direct sum of
L-invariant subspaces

L*R*,C*)=E{ o -0 Ef 0 EL. (2.16)

If f and g belong to different subspaces, then

(o1f,9) = 0. (2.17)
These subspaces and their corresponding projections satisfy the following.

(i) EL is the 0-eigenspace spanned by [8] and [B%Q], with L [8} =
— [g] Its projection is Py f = cp(o1 [8%Q] . f) [8] + cm(on [82] f) [8%Q], Cm =
(QaaEQ)_l‘

(ii) E% for 0 < k < m, if such k exists, is spanned by 4 eigenvectors @y = [fﬁf,k}, Dy,
03P and o3Py, with eigenvalues A\, Mg, —Ak, and —\i, respectively. Here A\ =
—i(er, — em) + O(n?), 2yont < Re )\, < COn?, (o is defined in (1.17)), wy, and vy, are

complez-valued functions, up = H; +uy, and v = ﬂ;f — Uy, with

uf = ¢p + Org (n?), wuy = (H —i\) o)+ Org (n®) (2.18)



where ¢f = PHgr = 0L§31 (n?). Furthermore, (uy,vi) =0 and (uy,ve) = (g, ve) = 0
fork # €. All (ag,vy),
The projection to E% s P, + P,f where

uf||,. and ||ug || 5 are equal to 1+0(n?) and Hu;HL?M < n?.

Pif = ck(o1®g, )Pk + k(01 P, [)Pp,

ﬁ 5 § . (2.19)
P f = —cp(0103®y, o3Py — cp(0103Py, f)oz Py,

and ¢, = (1P, Pg) ™1 =i /([ 2ugvy) = i/2 + O(n?).

(i) ]E)i‘ form <k < K, if such k exists, is spanned by 2 eigenvectors ®j = [f;f,k] and
P with eigenvalues A\, and i, respectively. Here R 3 id\p = e — ey, + O(n2), up and
v are real-valued, both equal to ¢ + OL?ﬁl (712); and normalized by (ug,vg) = 1. Its

projection is Py, also given by (2.19), with ¢, = 1i/2.
(iv) BY = {g : (01f,9) = 0,Yf € Ey,Vk = 0,...,K}. [Its projection is PXf = f —

K
Zk):O Pkf - Zk<m P]Ef

Note that Ay is in the first quadrant and near the imaginary axis for £ < m, and in the
lower imaginary axis for £ > m. They are all perturbations of —ié) of Lemma 2.3. When

k < m, —iéy, are inside the continuous spectrum =+i[|Ey,|, c0) and their resonance make the
eigenvalues split.

03Py, — i @ @ Prcm, Ak

o3Py, A\, @ @ D, A

Figure 1: Spectrum of L around @,,, 0 < m < K.

Proof. The same proof of [33, Theorem 2.2] works in our many eigenvalue case. The only
thing we need to check is the properties of uzr and u; when k < m. Fix k < m. Denote
by II the orthogonal projection from L? onto {gﬁk,Qm}L, and B = 2kQ?. We omit the
subscript k£ below. By the defining equations £,,® = A® and & = [ Y, ], u satisfies

(H?> + HB)u = —\*4. (2.20)
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By the same proof for the two-eigenvalue case in [33, section 2.1] (in which IT = PX), 4 can
be solved in the form

i=¢+h, h=Ih=—(H*+IHBI + \*)"'11HB¢. (2.21)
One can rewrite
h=(H*>4+ )"0, & =IV=[1+IIHBI(H?+ )" IIHBs. (2.22)

By resolvent estimates and a power series expansion as in [33], the function ¥ is localized
and ||\IJ||L§ < Cn?. Since v = (i\)"'(H + B)u, we have u* = F(H F z + B)u with
1

z =14\ = |ep — em| + O(n?). For ut,
wt = - (H—2)$— (H+2)"'v- L Ba (2.23)
2z 2z

The first term is equal to (1 4+ O(n?))¢. Since (H + z)~'II is order one, the remaining two

terms are Ongl (n?), and so is ¢ — ¢. This shows ut = ¢ + OL§21 (n?). For u~,

u =

L %(H R %Ba. (2.24)

2z z

The first term is O(n?)¢. Since (H — z)~ (Il — P¥)¥ are sum of eigenfunctions with O(n?)
coefficients, we get (2.18) with ¢} = %PCH\I/ = OLé’?«l (n?).

The orthogonality (u,v) = 0 is equivalent to (o;®, ®) = (0103®,P) = 0, which follow
from the general fact shown in [33, §2.6] that

(o1f,9) =0 if Lf=\f, Lg=pug, and X\ # p. (2.25)

It also follows from (2.25) that (uy,ve) = (g, ve) = 0 for k # ¢. That ||u™| ;2 = 1 + O(n?)
and ||u_HLl2 < n? follow from (2.18). Note

0=(a,9) = (u" +u,um —u) = (u"ut) = (u,u) + @ ,ut) = (uhu).  (2.26)
Since the last two terms are O(n2), we get |[u|| 2 — [u"| ;> = O(n2). Finally
(@,v) = (ut +u,at —a) = (what) — (u a7 )+ (u,at) — (ut,a). (2.27)
We have (u~,u") — (ut,u™) = O(n?). By (2.18) we also have
(@ ,u”) = (H=2)"'¢}, (H=2)"'¢{)+0(n") = (¢, (H—2)"2¢})+O0(n") = O(n") (2.28)

by the singular decay estimate of Lemma 2.2 with ¢t = 0. Thus (i, vx) = 1 + O(n?).
Similarly, (i, ve) = O(n?) for k # £. O

In the following lemma we provide more properties of u, .

Lemma 2.5 Assume the same as in Proposition 2.4 and fir k < m. Let r =1r1. Then
12
(i) Hu;HLP < Cp(n2 + nG_?) for 1 < p < oo, in particular HUI;HLET < Cn?.
(i) He_“HPfu,;HLQ + He_“HOPCHOuI;HLQ < COn? <8>_3/2 for s > 0.

(i) i | < C-

11



Proof. Denote z = i\ and ¢ = ¢}. For (i), it suffices to check (H — 2)~!¢, the main part
of u; in (2.18). Write H — z = —A 4+ v? + V; where Vi = V + kQ2,, v? = E,, + z with
Imv > 0. Thus Imv ~ +n?. By resolvent expansion,

(H=2)lo=(-A=v") o+ (-A =) 'Vi(H - 2) 1o (2.29)
Since the resolvent (—A — v?)~! has the convolution kernel G(x) = (4r|z|)~! exp(iv|z|),

=2 =)ol S1G* lle S UG osr) + G 2y - Ielinze  (2:30)

which is bounded by (n*~2/? 4-1) - n%. Since HVl(H — z)_lngHleLQ S H(H - z)_lgoHLQ s
n?, we have the same bound for the second term. The above show (i).

For (ii), we only need to consider e =0 pHo u,, since the other term follows from Lemma
2.2. By resolvent expansion R = (H —z)~! = Ro(1+ Q% R) where Ry = (Hy— E, — 2) 71,

PHoy~ = Ry + Org (n?), ¢'= PHo(1 4+ kQ2% R)p = Org (n?). (2.31)

Thus A '
e tsHopHoy = — o=isHop, )/ 4 OLL(”2 (5)7%). (2.32)

By the singular decay estimate for Ho, the first term is also of order Op> (n? (s)73/%).

To prove (iii), it suffices to prove that ||Vo||;2 = O(1) where v = (H — 2z)~t¢. It can be
shown by multiplying the equation (H — 2)v = ¢ by © and then integrating it on R3.  [J

We will need the following lemmas for scalar functions.

Lemma 2.6 Fiz 0 <k < K, k#m. Let ¢ € L*>(R3,C) be a scalar function.
(i) Pelo] = Rea®y, 37 P[o] = aut + au™, where

a = 2c (01, [¢]) = —2ci[(uy, @) — (uy, P)]- (2.33)
(i) Prp = 0 iff (014, [0]) = 0 iff (w), ¢) = (u;, P).
(iii) For k < m, P,ggo = 0 iff (0103%y, [¢]) = 0 iff (u, @) = (uy, 9)-

Proof. Write [p] = [&3]. Since [¢] is real, we have by (2.19) that P[¢] = Rea®; with
a = 2cx(01Py, [¢]). Omitting the subscript k, we have

+

(Ulci)kv [90]) = (iﬁv Spl) + (ﬁv ()02) = (u —u -, _igpl) + ('LL+ +u, SOQ) = _i(u+7 90) + i(uiv @)7

which gives the formula for a. Thus

1
7 ' Pile] =7 'Rea “v] = 5 {(au+au) +i(—iav +iav)} = aut +au.  (2.34)
The claim (ii) follows from (i). For (iii), since 30103 = —o71, (0103Py, [¢]) = 0 is equivalent
to 0 = (01D, o3[¢]) = (01Pk, [¢]) and hence to (uz,gﬁ) = (uy,p). O

The following lemma will be used to treat the linear term in the 7 equation.

Lemma 2.7 (i) For k < m,
JO, =i, —2i [ L] u). (2.35)

(ii) If f € (R, C2) and Pof =0, then [Pt fll 2 S I1fllz2, -

12



Proof. For (i), rewrite
®p =[] = [L]ar + (2.36)
Applying J
JOp=—i[L]af +i[}]a. (2.37)
Canceling u, we get (2.35).
For (ii), we have (01®g, f) = (01®, f) = 0. Using J* = —J, Jo1 = —01.J, and (2.35),

(01Pr, Jf) = —(Jo1®p, f) = (01T P, f) = (01 (—i®p + 20 [H]ul), f) = (2i [{]wf, f).

(2.38)

Similarly (o1®y, Jf) = (2i [ ;] @}, f). This shows (ii). O
Note, in deriving (2.35) if we cancel u; instead of u; , we get

J®), = —i®y, +2i [y . (2.39)

2.3 Decay estimate

In the following two subsections we prove decay estimates for e with the constant inde-
pendent of n. This independence is essential for our analysis of the nonlinear dynamics both
inside a neighborhood of an excited and away from bound states. For example, it ensures
that the time spent traveling between bound states is no longer than O(n=*=29),

An estimate of the form HetLPchHLP < Cllpll gyt for 5 < p < 6, some o > 0, and
a constant C' independent of n, would be ideal. It is however false, see Remark (iii) after
Lemma 2.11. This is related to the fact that the projection P¥ as an operator acting on L'
is of order O(n~%) due to the presence of u, . We cannot avoid the projection PL: Suppose
F is the total nonlinearity in the equation of the perturbation h. Our choice of parameters
a(t) and 0(t) makes P, F' = 0, but does not make F' € E.. To avoid the large constant
problem, we extend the continuous spectral subspace E. and absorb the range of P,E, k< m,
which have exponential decay, into E.. The range of P for k < m, which have exponential
growth, is left out and will be taken care of using the evolution with correct time direction.

Define Eﬁ as the direct sum of EX and eigenspaces whose eigenvalues have negative real
parts -
E’ = EL @ spanc{o3®y, 03Py : 0 < k < m}. (2.40)

Its corresponding projection is denoted as
K
Pif=Plf+ Y Pi(f)=f—Puf, Paf =) Plf). (2.41)
k<m k=0

We extend the definition of P? to scalar functions by p! Y= j‘chﬁ [¢], and similarly for
P,. If a scalar function ¢ satisfies [¢] € EZ, then (o1®y, [¢]) = 0 for all k.
The next lemma is on the uniform bound of H!-norm of etLPcugo for t > 0.

Lemma 2.8 For any scalar function o € H' we have
|emrte] | < Clieln, >0), (2.42)

where the constant C' is independent of n and t > 0.

13



Proof. From (2.41) and (2.19), we have
etLPCﬁgo = etLPCLgO — Z [Ek(0103<13k, (p)eij\kt()'gék + Ck(O'lo'g(i)k, (,0)67)‘}“1‘/03(1)4 . (2.43)
k<m

By Lemma 2.5, we have ||®4| ;1 = O(1) for all £ < m. From this and Re Ay > 0 for all
k < m, we can find a constant C' > 0 independent of n such that

TPEg| < [P G gy + C il (2.44)

Moreover, by following the proof of [33, (2.6)], we see that there exists a constant C' inde-
pendent of n such that
le™ Pell < ClI Pl (2.45)

Again, since || @[/ ;1 = O(1) for all k, we also have ||PXel|,, < C ¢l g1 for some constant
C which is independent of n. From this, (2.44), and (2.45), Lemma 2.8 follows. O

Lemma 2.9 If a scalar function n satisfies [n] € Eﬂc, then

ln = Pl oo S 02 M0z + D 1@, PEn)l. (2.46)

k<m
Proof. Write = PHn and
=1 = (1= F)n=3(0r, 1)k (2.47)
For k > m, |(¢r,n)| < O(n? ||77||le ). For k < m, by Lemma 2.6 (ii),
(&) + 0 nll 2 ) = (uff,n) = (wy 1) = (e, 7) + (w7 = 17). (2.48)

Since Hul;HLfoc < n?,

(w71~ 1) = Sl o (B5m)5) = O |l 3 ): (2.49)
The above show the lemma. O
The following lemma provides decay estimates for e~ uy

Lemma 2.10 Let H, be the self-adjoint realization of —A on L*(R?). Let V be a localized
real potential so that H,+V satisfies the decay and singular decay estimates (2.3) and (2.4).
Let 0 <n<ng<1,a>0,and z=a+n*. Let o(t) = n?>(H, +V — 2)" e H+V)p g

with ||g||;» <1 and P, = PH<*V. Then for all p € (3,00], m = 1 — % €1[0,1/2],

lo()llze S 77 (L4 ¢) 7R g > 0, (2.50)

Above the p-dependent constant is uniform in a € [a1,a2] C (0,00) and independent of t
and n.

Proof. The case V = 0 is postponed to Subsection 2.4. For general case V # 0, denote
Ro= (H.—2)"", R=(H, +V —2)71, S(t) = e~ ™1+ and S(t) = e *H=+V)_ By resolvent
expansion and Duhamel’s formula,

o(t) = n*(Ro+ RoV Ro + RoV RV Ry) <So<t) 4 /0 So(t — 5)VS(s) ds> Py,

14



By the estimate for V' = 0 case, HnQROSO(t)PCgHLp < ap(t) =t (1 t)"mmin(m,1/4) By
(2.30), p > 3, and (L?; L%, )-estimate of R,

[nRo(V + VRV)RoSo(t) Peg |, < |[nIV 12 RoSo()) Peg| , < dn(0)
Thus, also by (2.3) with ¢ = oo, and ||V ;e 1 S 1,
! 3/2
Il S a(t) +/0 ap(t —s)(s)""ds S ap(t). (2.51)
O
The following is the main result of this subsection.
Lemma 2.11 (Decay estimate) For any scalar function ¢ € L8N L3/2,
[Pl . < Con®) lellosnpse,  (¢20). (2:52)
For 3 < p <6 and any scalar function ¢ € L,
|ePiel| | < G il (22 0). (2.53)
Above the constants are independent of n and v, and
aoo(t) = V2 ()23 () =2 (1) (2.54)

Remark. (i) For (2.52) we could have chosen ¢ € L? N L%/2, 2 <g< %. Then a(t) =
t=12 ()", with s = 3/¢—2 € (1/2,3/4] by the same proof. The exponent ¢ = 12 gives the
optimal decay rate that Lemma 2.10 provides for e=#H# FPeuj . However, when we estimate
H773HL<1 < ||17||?£§39 Hnﬂii, we prefer a larger ¢. For convenience we choose ¢ = 9/8.

(i) Suppose we keep ¢ = 12 with ax(t) = t=1/2 <t>_3/4, and estimate }|173HL12/11 <

—360 0
Il 72 11175 < coo(t), we need B < p < 6.

(iii) These estimates are false if Pg is replaced by P.. Suppose the contrary, then they
would be also true if Pcjj is replaced by pi= PCﬁ — P.. Consider the case m =1 and ¢ = ¢g

the eg-eigenfunction of —A 4+ V. Then

4
| piel]|  ~ et Nl ~ 1. (2.55)

However the former is not bounded by Ct~* for all t > 0, for any k > 0 and C independent
of n.

Proof. Denote n(t) = e'“P¥[y] and 1/ = P/Hy. Lemma 2.9 implies
Il x S 1|l + Xpaml (@ )l X = L%+ L% (2.56)

Denote L = JH + W, with W = [—23@3,1 8]. By Duhamel’s formula,

t
' (t) = e’ H P Pl + / PIH =) TH Y7 (5) ds. (2.57)
0
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By Lemma 2.6 (i),

77 P el = —5 ' Re Z]K:OZJ'(I)J' =p— ZJK:O(Z]"IE;_ + Zju; ) (2.58)

where z; € C are bounded by |[|¢[[;, for any ¢ < 2. Using (2.18) for j < m in particular
u; = (H - i)\j)_lgb;f + Ongl (n?), ¢r = OL§31 (n?), Imi\; ~ n* and by Lemma 2.2 and
Lemma 2.10 (with p = 00),

') x < a®)llely +/0 (t =)0 |In(s)]x ds, (2.59)

where a(t) = t~1/2 (t>_2/3 and Y = L98 N L3/2. By the same reasons,

(@ )| = (G (H = ide) ") + O ||| ), (2.60)
and
(o5, (H —ixe) ') S ||(H — z‘X,c)*ln’HLlQOC < n?. RHS of (2.59). (2.61)

Summing the estimates, we get ||n(t)|y < RHS of (2.59), which implies (2.52).
The estimate (2.53) is proved similarly with X = LP, Y = L and a(t) = a,(t) ~

max(Gy(t), £ >3 79), 0
2.4 Decay estimate for free evolution with resonant data

In this subsection we prove Lemma 2.10 for H, = —A, ie. decay estimate for p(t) =
n?(H, — z)"te g where z = a +n*, a ~ 1, and g € L'. The operator (H, — z)~te i+
has symbol (¢2 — z)~Le~#” and thus its Green’s function G is radial and, for r = |z,

G(r,t) = (2%)3/ (p* — z)leitpz/ ePr1dS (w) pPdp
0 |w|=1

0o .
— (271')3/ (p2 . Z)*lefltpzllﬂ_SIH(rp) p2dp
0 rp

1 1 —itp?
= 12 /R (p° = 2) e e pdp.
It is well known that G(r,0) = ﬁeiﬁﬁ We are not aware of an explicit formula for

G(r,t). Because for 3 < p < oo we have

3 1-3
le(®)llo = [In*G(t) % gl| 1o S P2 NGO o gl S P2 IO 1GON lgl 11
(2.62)
estimate (2.50) follows from (2.64) of the following lemma.

Lemma 2.12 Let H, be the self-adjoint realization of —A on L%*(R3). Let G(z,t) be the
Green’s function of the operator (H, — z)~Ye™"Hx where z is the same as in Lemma 2.10.
Then G(z,t) = G(|z|,t) and

r1/2 1 t
’ T > Y T A0’
nir + /2 4+ (t —r)4 100
|G(r,t)| < —3/2 t (2.63)
Tt l<r<-—
’ " 1000
min(t~ 21+ 671, 7Y, r<1.
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In particular,
GG Ol S+ +n* )7 G0 e ST (2.64)

Proof. We may assume a = 1/4. The general case follows from change of variables and is

uniform for a € [ay, ag]. Introduce a regularizing factor e =" and write (p2 —z)~* as a time
integral (using Rez > 0)
G(r,t) = lim 1 / /Oo e P* 0D —is(0? =) Hirp g )
’ 0—04 42y R Jo
= dim [ et [ 0030 pipds, = s+ t—io (2.65)
_JLI(I)l+47T27’ ; e « Re o/ papas, o =s—+1t—10. .
Using [ e P dp = /7 and
/e—ia(p—ﬁ)zpdp: / e—ioz(p—ﬁ)zﬁdp: 5/ e_mpzdp:ﬂ(ia)_lmﬁ, (2.66)
R R R
we get
G( t) — I 1 > isz+%L(- )71/2\fd
U= SO0, anlr 0 “ 2 Tas
- /OO eisz+4(%it)(s +1)7%2 ds
873/2\/ii Jo
- /oo e ®s73/2 s (2.67)
8m3/2\/i Jy ’
where the phase @ is
2 2 2
@(r,s):sz—tz—i—g, @S:z—@, ss = 53 (2.68)
Note z = 1 + nti, ®, vanishes at s =r/(2y/z) ~ r, and Rei® < 0 for s > t.
First note .
Gr, )] < / 532 s = 12, (2.69)
t

which is valid for all » > 0 and t > 0. We will use a stationary phase argument to get
a better estimate. The main contribution should come from I = r(1 — p,1 + ) where
0<p< ﬁ will be chosen. Comparing (2.69) and (2.70) below, it is clear we do not get a
better estimate unless p is small.

We first consider the case r > 1.

Suppose t € I. The contribution from s € (¢,r 4+ pr) is bounded by

rHpr
]/ e ®s732ds| < /r3/2ds < pr 2, (2.70)
t I

The contribution from (r + pr, 00) is, with ¢; = r + pr,

/ s ds = as(e@)is_gﬂds = ,Le@s_gmlsztl +/ ' Jds, (2.71)
t1 @ @ t1

t1 1P 1P
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where

0,1 o 3

J= (32— TS 32y 2 2.72

5.0 ) T i@t e (272)

For s > t1, we have |®,| ~ n*+(s—7r)/r and |®,| < 571 Thus [J| < (|| 1+ |04 ~2)s5/2,
and the boundary term is bounded by

L o —3/2 1 —3/2 ro8/2
— 1< < . 2.73
‘Z'(I)Se S ‘57t1| ~ |‘I)5(t1)‘ 1 ~ n4+'u ( )
Decompose (t1,00) = (t1,1007) U (1007, 00). On (t1,100r), we have
100r 1007 2-5/2 —1/2 —3/2
| ¢ Jds| < / — Sds S —— - (274
t1 t (n*r+s—r) ntr+1t1—r nT+u
For s > 1007, we have |®4] 2 1 and
[ee] . oo
|/ e Jds| 5/ s 2ds < 732, (2.75)
1007 1007

/2 . r=3/2
ni4

~ T, > 1, we can choose p = Lp=1/2(1 4

We now choose p < ﬁ so that pr™ 5057

nSr)~1/2 and get for t/r € (1 — p, 1+ p)

r—1/2
< —. .
GrDl < (2.76)
Ift € (r4pr,1007r), we can take t; = ¢ in the above estimates and ignore the contribution
from (2.70) to get the bound for r > 1

=172
Girt) S ——. 2.77
G0 S e (277)
If t > 1007, we can replace 100r by ¢ in (2.75) and ignore the contribution from (2.70)
and (2.74) to get (also true for r < 1),

|G(r, )] <732, (2.78)

Ift € (155, 7 —pr) and r > 1, the additional contribution from s € (¢,7— ur) is estimated
as in (2.71)-(2.74) with ¢; = r — pr and 100r replaced by /100, and bounded by (2.77),
which is smaller than (2.76) for r > 1.

If t € (0, 145), we have |®,| ~ 72572 and |®| ~ r?s™3 for s € (t, 155). The additional
contribution from s € (¢, y55) is estimated as in (2.71)-(2.74) and bounded by

/100 /100
[r_Qsl/Q] . +/ r2s7Y2ds < p73/2 (2.79)
s= s=t

which is smaller than (2.76) for r > 1.
We now consider the case r < 1. Let aw > 0 be a small number to be chosen. The
contribution from s > max(t, ar) is bounded by

o . (o)
| [ €321 ds| < | | s73%ds| = C(ar)™V2. (2.80)

ar ar
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If t < ar, we have |®4| 71 ~ r252 |®|/|®s| < 571, and the contribution from s < ar is

ar 1 ) s=qar ar
/ e s ds = [,e@s_gﬂ] +/ ' Jds, (2.81)
‘ 1Dy ot .

which is bounded by
=2 ()2, (2.82)

We want (ar)~%/2 ~ r=2(ar)"/? and we can choose a = 5> which gives 7~ bound for
r<l1l
In conclusion, we have proved (2.63) for all » > 0 and ¢ > 0. O

Remark. (i) Lemma 2.10 for the free case can be considered an estimate of (f,n2G(t)g). If
(2.63) cannot be improved, then Lemma 2.10 cannot be improved, even if assuming further
that one of f,g is in L2 (but not both). To see it, let g be the characteristic function of
the unit ball. Note |I| ~ pr > 1 for r > 1, thus (n?Gg)(r,t) has the optimal size at r ~ t.
Since translation does not change the L' N L?-norm of f, we can put the support of f at
r ~ t, showing the optimality of Lemma 2.10.

(ii) Although the real part of the phase, e (51 g decaying, it does not seem to
improve our estimate. In the case t ~ 7 ~ n™8 we have |I| ~ ur ~ n~* and the es-
timate (2.70) does not improve because of the factor e (=t in view of the identity
fgﬂ e "'sds = C fon_4 ds.

(iii) Since |Im ®4| ~ [s — r|/r < p for s € I, €® almost has no oscillation on I if
p2r ~ p-|I| < 1. Thus, if p = er~'/2 with 0 < £ < 1, then the upper bound in (2.70) is also

a lower bound. In the case t ~ 7> e 2n~%, we have p < n* and pr—1/2 > 7’;734/2 ~ T

ni+pu”
Thus (2.63) is optimal in this case.
2.5 Singular decay estimate
We will need to identify the main part of
t .
n(t) = / o(t=5)C ph=ios f(g) s (2.83)
0

where a € C with Ima > 0 and f(s) is an L?-valued function of s with f smaller than f in
a suitable sense. We will rewrite it in matrix form in order to integrate by parts. Using

Wl =[Ret] =Rew [ 1], (2.84)
and denoting R = (L + ia) ™!, we have
t .
n(t) :J_chﬂ/ eI Ree s f(s) [ L] ds
0
— 5 PiRe ( — Retf(1) [ 1]
t . .
e BRFO0) [ 1]+ [ IR () 1] ds>. (2.85)
0

To estimate the last two terms, we need the following lemma.
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Lemma 2.13 (Singular decay estimate) There is a constant C > 0 independent of o €
C with Ima > 0, n € [0,n0], and vector function ¥ € L2, r = 3rq, so that

Hfl Re e'M(L + m)*lpngHLQ <O 2], (t20). (2.86)
loc
Proof. Denote by 7 the scalar function to be estimated, n(t) = 77! Re etLRPCﬁ\II, and
7 = PHy. Lemma 2.9 implies

Inllzg, < 2+ Sl )l (2.87)

Denote L = JH + W with Wy = [723% 8}, R=(L+ia)~" and Ry = (JH + ia)~'. By

Duhamel’s formula and resolvent expansion,

t
n'(t) = PHy 1 Re <e“HRO(1 + W1 R)P!w +/ e=STHY 1 (s) ds> . (2.88)
0

Denote the first term on the right side by 7} (¢). Using PIU =0 — > wPr(¥),
ni(t) =3 ' Ree T RoyPIH (U — 3, _ Pu(T) + T4), (2.89)

where Wy = P/# [~ 37, P.¥ + Wi RPH] is localized with

1913 S n? Wl +n? | RPAO| | S 0?9l (2:90)
loc
Note that (t) ()
| cos(tH sin(tH)| ietH1/7
¢ T |—sin(tH) cos(tH)| ~ Z ey i), (2.91)
e==1
(JH 4 ia)™' = (H? — o®)"Y(—JH +ia), (2.92)
and
(I —ieJ)(—JH +ia)) = —ei(H — ea) (I — eiJ). (2.93)
We conclude, for Ry = (JH +ia)~ !,
tJHp _ ietH —1—ci .
e " Ry = Z e“NH +ea) F( —eild). (2.94)
e==+1
By (2.94), (2.90), Lemma 2.2, and Im o > 0,
I R RoP/M (W 4+ 91)[ 1, S &) s (2.95)
For k < m, note
(I +iD)® =2u; [ L], (I+i))Pp=2uy [1]. (2.96)

Using (2.94) and writing P,V = a®;, + b®;, we have

Ree’"RyPyU =Re Y., e (H +ea) ' =£(I — &iJ) P, ¥

=Ree ™ {(H — &) Yi(au® +bu") + (H +a) i(bat +a)} [ L].
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By (2.84),
7 'Ree’H Ry P,W = ¢~ {(H - o) Yi(auT +bu) + (H + a) " ti(bat + au)}. (2.97)
Note Im(—a) = Ima > 0. By Lemma 2.2 and (2.18),
[P Ree" RoPY || ) <07 32| L - (2.98)
Thus .
I @)l < 6721w, + /0 (t =)0 |In(s)l 7 ds. (2.99)
On the other hand, for j < m, by (2.18) again,
)| = (85, (H — %)~ ) + 00 |12 ). (2.100)
Note Im ij\j > 0. By Lemma 2.2 and the previous decomposition of 7/,
(&5, (H = id) "o @) S n? [|(H —id) || 2 < n® - RHS of (2.99). (2.101)

By (2.87) and summing the estimates, we get Hn(t)”le < RHS of (2.99), which implies
the lemma. O

2.6 Upper and lower spectral projections

In this subsection we prove various estimates for the spectral projections I1, which are
defined in (2.104) and corresponds to £Imz > |E| in the spectrum of L. In particular,
Lemma 2.16 allows us to replace Pg by Py = Pgﬂi in Lemmas 2.11 and 2.13.

Decompose L = JA+ Wy = JH+Wj where A = —A+|E|, Wo = J(V+xQ?)+ W7, and

Wi = [—22@2 8] Let R(z) = (L —2)7!, Ro(z) = (JA—2)"! and Ri(z) = (JH — 2)!
be their resolvents. Note Ry(z) can be decomposed as
-1
_ a1 |2 A _ (A2 21 |—2 —A
Ro(2) = (JA —2)71 = [_A _Z] _ (424 22) {A _Z}
1T (2.102)
=(A—iz) "M+ (A+iz) M, M= 5 [i _Zl] .

R1(z) has a similar formula with A replaced by H.

Let I'.+ be contours about the upper and lower continuous spectra ¥+ = +[|E|i, +00i),
respectively. For an eigenvalue A of L, let I'y be a small circle centered at A with radius
~ n*. All contours are oriented clockwise and do not intersect. Let P, = ﬁ fr* R(z)dz,
% = ¢4, \, be their corresponding spectral projections. Note P.i are well defined in L?
and L? by the boundedness of wave operators between LPY and JHP/H proved in [33],
although the bounds depend on n. Decompose Pctj as the sum of its upper and lower half

plane components:

P'=P +P., Py=P.+P, PL+=ZP;\,€7 PLfZZP—/\k- (2.103)

k<m k<m
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Also denote
Iy = Py + Pry, Ppy= Z Py, Prp_ = Z Py, . (2.104)

k<m k<m

Note Py = PTL..

Let
1 1
oo = Zmin{\e[(\,]ek—ek,l\ 1<k <K}, 0 = €K ~ em (2.105)

Note Im Ay < 19 — dg < 70 + o < | E|.
We collect a few estimates for Ry(z) and R(z).

Lemma 2.14 Let 0 = {£i(ey —en) : 0< k< K}, s> 5 and 1 < p < co. We have

[Ro(2)llp2pe < C (2)7'%, zgiR,

IR () pzrz, + IRz, SCET, 2 @R, dist(z,00) > b, (2.106)

1
IR(2)[ 22 < Cn™*, 0<|Rez|< Z%n4’ dist(z,09) < do,

—1
HRO(Z)||LP—>LP + HRI(Z)||LP—>LP + ||R(Z)||Lp—>LP < Cp(2) e , |[Imz| = 7.
Above e =0 forp>1 and 0 < &1 < 1, and the constants are uniform in n € [0, ng].

Proof. The first estimate is by the scalar case proved in [1, Remark 2 in Appendix A] and
by (2.102). The second estimate for Rj(z) is by the scalar case proved in [16, Theorem
9.2] and by (2.102) with A replaced by H. It is true for R(z) using the resolvent series
R(2) = Ri(2) 352 [WiR1(2)]* and the fact Wy is a small localized matrix potential. The
third estimate is proved in [33, Lemma 2.5].

The last estimate for Ry(z) is by the scalar case proved in [7, Lemma 7.4] and by (2.102).

It is true for R;i(z) because H(H - z)_IHLpHLp < (2)7'* for [Im z| = 79, which follows
from

(H—2)"Vf=(H = 2)"'Pf + (H — 2) "8 (0ns )

N N 2.107
=W HA=2) WP + S p o8k — 2) " (bns [k, ( )

where W is the wave operator between H and A and ¢~)k are normalized eigenfunctions
of H with eigenvalues €. Finally, the estimate for R(z) follows from the resolvent series
R(2) = Ri(2) Y3 o[WiRi(2)]* again. O

Lemma 2.15 Let Ky = Uy (J F 1), initially defined from L% to L2, s > 1. For any
1 < p < g <oo, there is a constant ¢ so that | Kyul, < c|lull, for any u € LN L.

This is clear for the reference self-adjoint operator JA, for which KL = 0.
Proof. Recall Ry is decomposed in (2.102), and M.J = —iM and M.J = iM. As z ap-
proaches ¥, = [|E|i, +0o0i), the upper continuous spectrum of A, the resolvent (A +iz)~1
is unbounded, and we write

Ro(2)J —iRy(z) = —2iM(A —iz)~L, (2 ~Xy). (2.108)
Note right side is bounded. Similarly, as z approaches >_ = =X, we write
Ro(2)J +iRo(2) = 2iM(A +i2)"!, (z~%_). (2.109)
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We now prove the bound for K. The case of K_ is similar. Let I' = I'.1 UT', and
Iy = Upem(Ty, U F_;\k). By spectral projection formula and resolvent expansion,

1
H+_

= i /- [1+4 Ro(z)Wo + Ro(2)WoR(2)Wo|Ro(z)dz. (2.110)

dz = —
Z)z 21 T

By (2.108),

™

T, (J—i) = — /F [14+Ro(2)Wo+ Ro(2)WoR(2)Wol M (A—iz)"\dz = Ko+ K1+ K. (2.111)

The above sum is well-defined as operators from L2 to L2 ,.

Note that Ky is zero since (A —iz)~! is regular inside I' and the rest of the integrand
of Ky does not depend on z.

For K, the integral over I'. is bounded from L7 to L? by Lemma 7.6 of Cuccagna [C2]
using Coifman-Meyer multi-linear estimates. The integral over I', is also bounded from L¢
to LP since

| Ro(2)WoM (A — z‘z)—lquHLp |dz|
b (2.112)
< / IR0 g 1A = i2) oy / w1

I, r

p

For K>, the integrand is analytic in z and has enough decay in B(L? — L2,) in |z| by
Lemma 2.14. Thus we can change the contour to I'y = R+ 7%, By Lemma 2.14, | K2 ;.4 ;»
is bounded by

g 1Bo(2) | 2o o - I1B(2) | Lo o - [[B0(2) | Lo pa [d2] < C. (2.113)
1

Summing the estimates we get the lemma. ([l

Lemma 2.16 The projection operators Il are bounded from L? to L*
LP to LP for any 1 < p < oo.

s > 1, and from

S’

Proof. From the definition of K1 in Lemma 2.15, we have
Ky =114(J—1), K_=(1-1IIy—1Iy)(J+1), (2.114)

where IIy = ) .. P; is bounded in LP. Thus

j=m
i .

I = S[Ky + Ko = (1= To)(J + )], (2.115)

where shows II; is bounded in L? for p < oo by Lemma 2.15. Similarly II_ and II} are

bounded in L? for p < co. The boundedness of IIx in L* follows from that of IT% in L!

and duality. O
As a corollary, Lemmas 2.11 and 2.13 hold with PCﬁ replaced by P since Py = Pgl‘[i.
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2.7 Fermi Golden Rule

In this subsection we prove Corollary 2.20, which gives the key resonance coefficients in the
normal form equations in Lemmas 3.7 and 3.8.
For any k # m, recall (2.36) that

@ =[] af + [} (2.116)

From (2.18), we introduce ®; and @, which satisfy the equation ®; = ®; + ®, where &,
is localized and

Oy =11 (H—a) o, of = [1;] on+0pa(n?), (2.117)

Note that ¢, = Opz2(n?) is defined in (2.18) and oy = iXp = |eg—€p|+O(n?) with Im e, > 0.
Moreover, since @, = ®;" + @, , from (2.19), we see that for all function f € L*(R?, C?)

Pof = ci(01®k, f)®F + ci(01Pk, )P + ci(01Pk, [P, + (01D, f) Py,

(Pk)*f = Ck(q)ky f)O’ch)Z— + Ek<(I)k, f)qu)]i_ + Ck(q)k, f)O'l‘I)]: + Ck(q)k, f)qu)k .

Since @, is localized and @, = Orz (n?), it follows from Lemma 2.3 and (2.118) that for
all functions f such with || f||;. = O(9)

(2.118)

(P, — B f = O(n?6)®, + O(n*0)®4 + O(8)®;, + O(8)®, + Oz (n’s)
(P — P f = O(n*8)01 @) + O(n*6) 018 + O(8)01 @5 + O(8)01®) + Or2(nd).

(2.119)
Throughout this subsection, let w and € be two fixed numbers such that
wtImA,=0(1)#0, 0<e<xl. (2.120)
Let a = —iw + € and
R=(L-a)!, Ry=(JH—a)™ . (2.121)
Note that we have
R = Ry + RoyW Ry + RoyW RW Ry, (2.122)

where W is a localized potential which is of order ||Q|*.

Lemma 2.17 For any k # m, there exist C' > 0 independent of € and n such that
IR« IRl o (R, o (R ordill,, <Cot. (223)

Proof.  We write

_ N1 12 ov-1 |~ —H
Ro=(JH —a)™ = (H? + o?) {H _a] . (2.124)
Then, it follows that
Ro®; =[] (H + i) ' (H — ay) '
Ro®;, = — i — o) Lo
0 [7] (H ) k) ¢lf L (2.125)
(Ro) 1@y = [ 4] ( H+wé YH = ar) "' ég,
(Ro)*o1®y; = [}](H —ia)™ (H — o) '
Since Re v > 0 and Tm(ey;) > 0 and ¢; € Or2(n?), our claim follows. O
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Lemma 2.18 There exists C > 0 such that for any function f,g € L*(R?,C?) with f,g =
OL2 (n) N

|(f. (L — ) ' PA(P} — P/)g)| < On*,

I(f, (P} — P7HY(L — o)~ ' Ptg)| < Cn*. (2.126)

Proof.  Since the proofs of both estimates in (2.126) are similar, we shall only prove the
first estimate. From (2.119), we have

K
(PE—P/M)g =) "{0(n*) ) + O(n®) ) + O(n)®;, + O(n)®;, } + Or2(n®).  (2.127)
k=0

Since L®;, = A\ ®;, and A\, — o, A\, — « are all non-zero order one, we get
(f, PER(PE = P/M)g) = O(n*) + (f, PERIO(n)®; + O(n)®;]). (2.128)

By similarity, we only need to show that |(f, PcﬁR@,;)\ < Cn?. Let g = [WRo+W RW Rg|®;. .
By Lemma 2.17, ||§||L3 < COn*. Then, using (2.122), (2.118) and Lemma 2.17, we have
|(f, PER®L)| = [((P)*f, Ro®;; + Rog)|
<((Pa)"f, Bo®y) + (Ro)* (Pa)" f,9)| + C®
K
< C{n Y 197, Ro®p)| +n Y (0185, Ro®p)| +n*} (2.129)
j#m j#m
K K )
< C{n Z (1@, Ro®;)[ + Z (019}, Ro®;, )| + n3}
j#m j#Fm

Note that from (2.117) and (2.125), we get

(01®5, Ro®; )| < Cn?,  (01®;, Ro®; ) = 0. (2.130)

So, from (2.129), we obtain
|(f, PPR®;)| < Cn®. (2.131)
This completes the proof of Lemma 2.18. O

Corollary 2.19 For any function f,g € L*(R? C?) with f,g = Opz2(n), we have
(f, PHL — )" Pig) = (£, PYTo(J(Hy — B) — a) ' P/og) + O(Y).  (2.132)
Proof. Using (2.122) and Lemma 2.18, we have
(f, PE(L — )" Pig) = (£, PYH(JH — a) P/ g) + O(n?). (2.133)

Now, since that H — (Hy — E) = kQ? = O(n?) and P/H — p/Ho = Or2 (n?), we can use the
same method as in Lemma 2.18 to obtain

(f. P(L — )" Pig) = (f, P/™(J(Hy — E) — a)'P/™0g) + O(n). (2.134)

This completes the proof of Corollary 2.19. O
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Corollary 2.20 Let f,g € L*(R3,C) be localized real functions of ordern and let fy = [}] f
and g1 = [1] f. We then have

([ L] f,(L—a) ' PE[{]g) = —2(f, P°(Hy — E —ia) ' Pfog) + O(n*),

([} f,(L—a) ' P[] 9) = —2(f, PHo(Ho — E +ia) ' P g) + O(n), (2135)
<H]f,< ) 'Pii]g) = O(n?), ’

([ L] f(L—a) ' PE[ 7] g) = O(n*).

Proof. By Corollary 2.19, we have
([L]f, (M=) PE[i]g) = ([ L] . P/ (J(Ho = E) —a) ' P/ [1] g) + O(n?). (2.136)

On the other hand,

(J(Ho - E) - a)_IPcJHO [1lg=(Ho— E+ a2)_1PH0

C

P Ol IOV

— FE —ia)7 !
~ (| ] e

So, the first identity of our corollary follows. Similarly, we can prove all of the last three
identities of the corollary. O

3 Equations and main terms

In our analysis we use different coordinate systems. When the solution is away from bound
states, we use the orthogonal coordinates (1.19), i.e., we decompose the solution as a sum
of different spectral components with respect to —A + V. When the solution is near a
nonlinear bound state, we use the linearized coordinates (3.17), i.e., decomposition with
respect to the corresponding linearized operator instead. In subsection 3.1 we recall the
equations and normal forms in orthogonal coordinates from [30]. The rest of this section
is devoted to analysis in linearized coordinates. We will not use the centered orthogonal
coordinates (1.10).

3.1 Orthogonal coordinates

Let tg be a fixed initial time. For ¢t > ty we may decompose the solution with respect to Hy

as
K

=Y "zt +€ €€ H(Ho), V2 to. (3.1)
=0

Then for ¢ > tg, as in [30, Section 4] we have

ity = ejrj + (65, G), (1=0,...,K),

- 2
i€ = Hot + PG, G = ryp*e). (3:2)

Let
2

K K K
Gy i=r > wios| | D265 | =k Y mamZidibmes. (3:3)

Jj=0 j=0 1,m,j=0
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We then decompose ¢ as (for details, see [30, Section 4])
0 =P+ 70+ 670+ 670, Ve b, (3.4)

where

K
) = Z mlmm:ij(t)ﬁzjm, with
1,m,j=0 (3.5)

1= —r T [Ho — €1 — ey + 5 = ri] T PG mang;,

and, with u;(t) = e’“'z;(t) which have less oscillation than x;(t),

£§3) (t) — e—iHo(t—to)g(tO)’ 53) (t) — _e—iHo(t—t0)£(2) (tO)a

(3) ' ZK d

. A e efiHO(t—s)PHO ei(felfeerej)si Uty T J dS,
53 ( ) /to c L ClS( l ])glm

- ) (3.6)
() = / e~ H0o(t=5) pHoi=1 (G — G — r£2€)ds,

to

t
1) = [ MU IpI i (kg ds.

to
We recall the following two lemmas from [30]:

Lemma 3.1 (Lemma 4.1 [30]) Letp,p’ such that4 <p <6, (p)~'+(p)~' = 1. Suppose
that for a fixed time t > tg and for 0 < n < ng < 1, we have

masc oy (6] <2, €0z pe <2, 62 < 1. (3.7)

Then for uj(t) = e“itx;(t),
1Glzy,, +max ;] S n® and |G~ Gy —k€¢E|| iy SNl - (3.8)
Lemma 3.2 (Lemma 4.2 [30]) Let p,u; be as in Lemma 3.1. Suppose that for some

0 < n <ng and for some t > tgy,

max|a; (0] <20, §(0)3 o <20 and O] Sa <1 (3.9)

Then, there are perturbations 1;(t) of uj(t), j € I, such that
K . K .
i (6) =Y el + > dyluallus*r + g5, (3.10)
=0 a,b=0
and
Juj (t) — s (t)] < 7,

9;(8)] S 07 +n?||¢)

2(p—3)

p
2 — o)
+nllgls + el IENR?

(3.11)

2
Lloc
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Moreover, all of the coefficients CZJ and dflb are of order one. The coefficients CZ are all
purely tmaginary and . '
Red), = (2= 80)7, — 2(2 — 675, (3.12)

with 6° =1 ifa =b and 6 = 0 if a # b, and
Vo = K2 Im (GaBpdr, (Ho — eq — ey + e, — i0T) L PHog dpey) | ¥V a,b,1 € I. (3.13)

By the resonance condition Assumption (A2), the number ’yéb > 0 and it is positive if
and only if [ < a, b.

3.2 Linearized coordinates

When the solution % lies in a neighborhood of an excited state Q@ = Q. n, m € J, it is
natural to decompose 1) — () into invariant subspaces of the linearized operator around (@),
see Lemma 2.4. The collection of these components is called the linearized coordinates.

Lemma 3.3 There are small positive constants ng and €3 such that the following hold.

Suppose |[Y|| 1 < no satisfies [ — (¥, m)Om|| 12 < €3](4, dm)|-
(i) For any 0 < n < ng, there exist unique a,f € R such that
b = [Qun + aDEQy, , + hle?, (3.14)
where Qmpn and OpQ,, , are given by Lemma 2.1, Pryh = 0, and [n™ a|+||h]| g1 < e3n.

(ii) There exist unique n(v) € (0,n9) and 0 € R such that a = 0. Moreover, if 1 is
decomposed as in (i) with respect to another n, then

n() =n+ —— +O0(n _n/¢4. (3.15)
(iii) If ) is decomposed as in (i) with respect to ny and ns with ||h;|| < p < egn, |aj| < Cp?,
and |ny — ng| Sn~1p?, then

C(”% - n2) + a1 —az = O(p|n1 — nal). (3.16)

The proof of Lemma 3.3 is similar to those for [31, Lemmas 2.1-2.4].
By Lemma 3.3, when () is in a sufficiently small neighborhood of an excited state
Q@ = Qmn, there is a unique choice of real a(t) and 6(t) so that

Y(t) = [Q + a(t)pQ + h(t)]e 0, Pyh(t) = 0. (3.17)

Here 0pQ = 0pQ,, ,, and E = E;, ;. We can further decompose

h=C+n, (= G, €k, (3.18)
k#m
where, for each k # m,
1
Ce =3 Re(2x®p) = 2lly + Zpuy,, = 5 (@ £ 0). (3.19)
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Substituting (3.17) into (1.1) and using £iQ = 0 and LOpQ = —iQ, we get
Oth — Lh = F, =i Y(F 4+ 6(Q + adpQ + h)) — aiQ — adpQ, (3.20)

where

F = kQ(2|hs|? + h2) + k|ho|*hy,  he = adpQ + h. (3.21)
We choose 0 and @ so that P, Fj, = 0. Thus Fj, = (1 — P,,)i " Y(F + 0(adrQ + h)) and

{ 0= (en@Q, Im(F + 0h)), (322)
0=Fy=—[a+ (cndpQ, Re F)] - [1 + (cmdEQ,0pQ)a + (cmdpQ,Reh)] .
Taking P’ of (3.20), we get
Om — Ly = P Y (F + 0(adpQ + h)). (3.23)
Note zj, = 2c,(01®y, [h]). Taking 2ci (01 Py, [-]) of (3.20), k # m, we get
2k — Moz = 2y = 2¢ (01D, [F1)). (3.24)
A direct computation using (2.36) shows®
Z1 = —2¢ {(u;,F) + (uy, F) + [(wf, h) + (g, 7) + (g, 05Q)al 9‘} . (3.25)
Let wy := —Im A\, and let pg(t) = 21 (t)e™**. We have
pr = (Re \p)pg + €+ Zy,. (3.26)
Also, for any k # m, let rj, := e 2, we have,
e = e M7, (3.27)

Note that rp, = p for all K > m and r, = e~ Re(Ag)t

computing the normal form for the equation of a.

pr for k < m. We shall use r; in

Definition 3.1 Denote I = {0,1,--- K}, I* = {0*,1%,--- | K*}. For all m € I, let
Iy = {m+1,--- K}, Iopy = {0,--- ,m =1}, I, = I\ {m}, I}, = I*\ {m*} and
Qp, =1, UL}, Forjecly, let

£ _ £
—Uj.

(3.28)

_\ _ _ 3 _ = _ = + _ =+
Ajr = Nj,  wjr = —wj, zjx =Zj, T =174 D= Dj, un =u;, and v

A

It then follows that for all j € ,,,, we have z;(t) = e~ “i'p;(t) and r; = e Ntz

3Note —2cj, ~ —i which is the coefficient of [30, page 242, line 5].
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3.3 Decomposition of a

Recall & = (¢,Q,Im(F + 0h)). Let Fy := kQ(2[C|*> + ¢?), A® := ¢,,(Q,Im F}) and A®) :=
cm(Q,Im(F — Fy + 6h)). Then, we have @ = A® + A®). We shall impose the boundary
condition of @ at ¢ = T, which is in fact the condition imposed on the choice of E = E(T).
Hence, we have

t
a(t) = a(T) + / [A®) (s) + AP (s)]ds. (3.29)
T

Recall that

C= G C= ki) + Zuy. (3.30)
k€lm

Therefore,

Im (¢ = Im|(2p2) (0 4" — ay 0 ) + (2p20) (U w; — ay uy)). (3.31)
Let

a1 = kem Q1 wf 0 — apa)),  ap2 = kem(Q Wl vy — iy u)). (3.32)

Note that ap;1,ar2 = O(n2), aki1,ak,2 are real if both k,1 > m, and a2 are purely
imaginary. In particular ay 2 = 0 if £ > m. We have

A®) = ke, (Q?, Tm Z C:¢) = Im Z {ar 122 + apr o2z}

klElm klELn (3.33)
= bo(t) + Im(AP),

where

. t
bo(t) = Z bok‘sz? bOk = Im akkg, bo(t) = / bo(s)ds, (3.34)
k<m T
AEQ) = Z akl12k2] + Z Akl 22k 2]- (335)
kJlely, k#l

Note |box| < n? HuleLl2 = O(n*) for k < m by Lemmas 2.4 and 2.5.

We shall integrate AgQ) by parts. Note that for all A + A\ = —i(wi + wy) + O_(n4) and
A+ A = —i(w, —w;) +O(n*). Therefore, \,+\; = O(1) for all k,1 € I,,, and A\, +\; = O(1)
for all k,1 € I,,, and k # [. We then write

2 A At A At .
AP = D ey £y et gy oy

kleln k+#l
_ ag1 | d _ et 4
N Z AL+ A [dt(zkzl) ¢ dt(rkrl) (3.36)
kl€lm
Wip 1Dy gowrir L o
+Z Nt [dt(zkzl) e dt(rkrl) .
k#l
Now, define
(2) o aki,1 agl.2 _
a‘”(t) := Im zrz; + Im — 212
() k;m)\k—i-)\lkl kz;;l)\k—l-)\lkl
A+t g aklge(’\k“l)t d (3.37)



We shall get

d
(A1) = 2a® (1) = A (0): (3.38)

So, we have A®) = 44q2)(¢) + by(t) — Az (t). Therefore,
a(t) = a?(t) + b(t), (3.39)
where b(t) satisfies
b=bo+ cm(Q,Im(F — Fy + 0R)) — Ay,  b(T) = a(T) — P (T). (3.40)

Moreover, let ag; 3 = 2akl,1()\k+)\l)_1 and a4 = Qakl,g()\k%—;\l)_l. Since ay1 and a2 are
of order n?, so are arr,3 and ag 4. Moreover, ay 3, ay 4 are purely imaginary for k,l € I-,,.
Using (3.27), ap,1 = aip,1 and a2 = —ayk,2, we obtain

A2 pm = Im Z Akl 3221 + Imz VAR (3.41)
kl€Im kAl

It worths noting that the benefits from using rj instead of py in (3.37) is that we do not
have terms of order zz, for k € I, in (3.41). This is very essential in the normal forms.

3.4 Decomposition of 7
We shall single out the main terms in 7. Recall from (3.23) that
O — Ln = PH Y (F + 6(adpQ + ¢ +n)). (3.42)
In the vector form, we have
Onln] = L] + PEIOM] + PEI[(F + 0(a0kQ + C)). (343)

We first deal with the non-localized linear term .J 0[77] using Lemma 2.15, following Buslaev-
Perelman [4], also see [5, 7]. We need to revise their original statement and proof to take
care of eigenvalues near the continuous spectrum.

Recall Py are defined in subsection 2.6. Taking projection Py of (3.43), and using

PiJ FiPy = Po(PyJ FiPy) = Pi[Ks+ — (PpeJ FiPrs)] = PiKy, (3.44)
we get,
Oy P+[n] = LPs[n] £ i0Ps[n] + P+ K10[n] + PLJ[(F + 0(adpQ + O))]. (3.45)
Denote
Nt = e Pyln). (3.46)

“The term if7 is not a problem in [31] in which £ is factorized in the form £ = U 'JAU for some
scalar self-adjoint operator A. Such factorization does not exist for linearized operators near excited states.
In [33], the term ién is removed by introducing 7 = P?e"n and using Strichartz estimates to control the
(small) commutator term. This last method is not suitable for LP-decay approach since the commutator
term, although smaller, has the same decay rate as 7 itself. The approach of Buslaev-Perelman has the
further benefit of being applicable to the large soliton case.
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We have ' . ‘
Oms = Lz + ¥ Py | Kulln] + J[(F + 0(adpQ + Q)] (3.47)

Recall that [Ci] = (zx®r + ZxPx)/2. Note the term e¥Py.JO|[¢] is not localized. However,
by formula (2.35)

PJ®, = P!®), Pl = PO, @, =["%]uf (3.48)
and note @, is localized. Thus we can rewrite the linear terms in (3.47) as
Fre i= 00 { Kaln] + J[00pQ) + Xyep,, (2®) + 59)) | (3.49)
where all functions are localized, and (3.47) becomes
O = L + P [eﬂFwJ[F] n FLi} . (3.50)

In other words, for some ty > 0 and for all ¢t > ¢y, we have

t
ne () = XD (10) + / ¢L=9) Py (Fi0 J1F] 1 By ) (s)ds. (3.51)

to

We will decompose n+ as follows. Denote

N () = 0, (1),

t ‘ (3.52)
nPy(t) = / L) P {Fy 4 + 0 J[F — i)} (s)ds.
to
Then, we have
t
ne(t) = ) + () + / ¢L(=9) Py (cFi0 JTF T} (s)ds. (3.53)
to

We shall integrate the last term in (3.53). Recall that Fy = kQ(2|¢|* +¢?) is the main term
in F' with

(=Y G=D (it +zup), uf = +02(n%), u =0 ().  (3.54)

loc
kelm k€lm

So,

Fi= Y Fulmzu+2az)+ Y Fuma, Fu=rQérd, Fu=O0rx(®n®). (3.55)
klElm k€

In other words, we can write

F1 =K Z zkzlfbkl, (3.56)
ke,

for some localized functions ®;; which can be computed explicitly. In particular, Re ®3; =
O(n) and Im @3 = O(n?) for all k,I € Q.
To integrate Pre™ J[F|] in the 14 equation, we want to integrate terms of the form

Ii(t) = / t etk p. £(s)ds, (3.57)

to
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where w € R, f(s) € L*>(R3,C?) and f(s) decays faster than f. We re-write I+ as
Ii(t) = e /t t e sXFI P, £(s)ds. (3.58)
0
Denote R = lim. o, (L + iw — ) ~!. Integration by parts gives
I:(t) = —e ™'RPLf(t) + et RPL £(1) + /t t =L RP ™5 f(s)ds.  (3.59)
0

The choice of the sign of ¢ ensures that e RPy has singular decay estimate according to
Lemma 2.13. We can now identify the main term of n4. Since i 'F} = —ir Y 2,,2,®p; with
summation over k,l € ,,,

JIF1] = —Re Y ikzpz®p [ ] = —Re X ful(s)e —iwrtw)s, (3.60)

where fi; = ikprp; P [ ] We decompose Py = Hj[PCji since 114+ does not commute with
Re. Denote Ry, = lim. o4 (L + i(wg +w;) — &)~ 1pf and wp = wy + w;. We get

t .
/ =)L P, oFiOE) JF]ds = {2 + nf)z + nf):«; (3.61)
to

where

2 = ¥, Re > kaeq,, Beie ™R fiu ()
nf)g — el LTI, Re Y, 1cq Rige ™% fiy(to) (3.62)

t
T](f):,, = / e(t—S)Le:FZ@(S)HiZk’lEQm(Re Rkle_wklsfkl F1Re Rkle_“’“sﬁfkl)(s)ds

to

Observe that

1 fial + 10 fwalllz S ml016% + nBmaxpy|, 5 = max|py (3.63)
Now, let
4
(3) Zni’))] n) = 61977(]) 1'4977(_3)7 j=2.3 (3.64)

Then, from (3.53) and (3.62), we obtain the decomposition of n4 and 1 as

ne =0 +0¥, I = eny + e =n® 4@ (3.65)

We now compute the explicit form of 72 which will be used in the computation of the
key coefficients in the normal forms of z;. By (3.65), (3.62), I, +1I_ = Pf, and (3.55),

n® = eienf) 4 emip®
=Red ZGQmszefi(w”wl)tfkl(t) (3.66)
= Re Z {Rklzkzl [ ]Fkl —+ 2Rkl*zk‘zl [ ]Fkl} + Z Zk-lek‘lOLQ( )
e k1EQm

Recall Fy; = kQ¢r¢;. Thus the first sum contains terms of order O(nz?).
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3.5 Decomposition of F'

We now decompose F' into appropriate terms of the same order. We write

where

= rQ(2I¢1* + ¢,
Fy = 2kQ0EQb(2¢ + ) + 3kQIEQ%*b? + k(¢ + bIrQ)*(C + bIEQ),
Fy = 26Q0pQa® (2¢ +¢),  Fi=2rQ[(¢+ O)n + (A, (3.68)
Fs = wQ [2[na|* + nz] + 2xQ05Qb(210 + 7a)
+ k(a0pQ + h)*(adpQ + h) — k(¢ + bIEQ)?(C + bOEQ),

with 7, = n+ a@d5Q. Note that Fy consists of terms of order nz2; Fy, F3 and Fj consist
of terms no smaller than n2z3; and Fj higher order terms.
3.6 Basic estimates and normal forms

In this subsection, we first give some basic estimates in Lemmas 3.4, 3.5 and 3.6. We then
give the normal forms of the equations of z; and b in Lemmas 3.7 and 3.8.

Lemma 3.4 (Basic Estimates) Suppose, for a fixed time, for some f < n < ng and
p =9,

QI =n Wl <L lnllz_ <.
max|s < 6, | < A2, (3.69)
j#Em
For all 1 <r <2, denote
X =nBlnlg +nllzz +n°)., .
v 2 2 3 - 2 3 (3.70)
K= B lalle, +nllZe + 1wl o Y00 =nlnld + ],
We have
1Bl SnB'+ X, (1B +Fa+ Flly Sn?6°+ X,
IF=Filly S8+X,  |Fl, SnB*+X,
Lloc Lloc (371)

[Fol S 2 +n7' X, |IF = Filly £ 6°+nBlnllz +Y(r,p),
IFl e S 6% +nBnll2 +Y(r,p).

Proof. The first five estimates of (3.71) in L], can be found in [30, Lemma 3.2]. Although
[30] is for m = 0 case, for L} . bounds the new non-localized terms for m > 0 are similarly
estimated.

For the last two L"-estimates of (3.71), the only non-localized terms of F' are of order
(uy 21)3, (uy, 2)*n, uy zgn?, and n® for k < m. Since |(u;, 21,)*n| + [ug zen?| < |ug 2] + 0],

they are bounded by |z;|? HuleigT + ||| S B3+ [P O

Lr
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Define

B 1/2 1/2
a = (Sr1al?) T an = (Sl ) (3.72)
If m =0, we set z;, = 0. For % < p < 6, denote
> _ % 4 2 6.2 86=p) 13
X =Xp=nzr |l +n’zg 10l +m-n-7 0l (3.73)
Note X =0 if m = 0. Let
D = 6K maxyg /70 = O(1) (3.74)

where ¢pax = maxy 2 [ ¢p and

1
Hy+e.—e —epn—5—

fya“ = max lim Im <¢k¢l¢m,

k,l,mel,|s|<so r—0+ ripf%mmm) - (875)

Note that (Qkn, deQp,) " =2k [ ¢} + o(1).

Lemma 3.5 Assume as in the Lemma 3.4, then for all k # m, we have
Ze| SnfP+ X, + X, if k<m, |Z,<nB2+X, if k>m,
Re| SBP+X,+ X, if k<m, |R|SB+X, if k>m.

Here Zy, is defined in (3.25) and Ry, is part of Z,

Ry v= =2, [(u, F = Fy) + (wy, F' = F1) + {(w, h) + (uy;, h) + (t, OpQ)a} Fy]. (3.77)
Proof. Recall (3.25) that

(3.76)

Zy, = =2y, {(Ung) + (ug,, F) + [(u, h) + (uy; , h) + (g, 9pQ)al é} : (3.78)

For m < k < K, since u;:, u,. are both real and localized, Pyn = 0, using Lemma 2.6 we
have

(i) + (u,7)| = 2|(u, 7)| < Cn® [l (3.79)
Therefore,
12 < 1PNy, + 1810l + 1] + 2 inl 2

3.80
B+ X + [0+ 0 X8+ nll ) S P+ X, (3.80)

Now, we consider the case when k < m. We first consider the term 2cx[(u), F) + (u , F)].
As we already see in the proof of Lemma 3.4, the only non-localized terms in F' are bounded
by |n?| + > ilh<m |u]_ul_u}:\z% Thus for k& < m, using Holder’s inequality and Lemma 2.5,

(s B) + (g NS N E Ny + (g [ 1]+ 3250 5 g 12) (3.81)
<npt+ X, + X.
On the other hand, using (2.38), we have
o) + (D) = (@B TED] S [nllzz o (k< m). (3.82)
Then, it follows from Lemmas 3.4 and 2.6 that
(1) + (g ) + (i, D5 Q)al Byl < 2]+~ al + Il o JIFol S 6%+ X, (3.88)
This completes the proof of the estimates of Z;. The estimates of Ry are proved similarly.

O
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Lemma 3.6 Assume as in the Lemma 3.4, then we have

b| < C[n*22 +nB® +nX 4+ n?6X]. (3.84)
Above X = X, is defined in (3.73) and can be omitted if m = 0.
Proof. Recall (3.40) that

b=1bg + cn(Q,Im(F — Fy + 6h)) — Ag . (3.85)
It follows from (3.34), (3.41) and Lemma 3.5 that
lbol < Cn'z3,  |Agpm| < 0?B[nF* + X + X]. (3.86)

On the other hand, we have
e (Q Im(F — Fy+0h))| S n|[F = Filly +n6% 41010’ 8+n )2 ]S nb®+nX. (3.87)
So, (3.84) follows. O

Lemma 3.7 (Normal form of z;) Fiz0<m < K and0 <nj; ~n <ng. Let Q = Qmn,
and L = Ly, pn,. Suppose 1 is decomposed as in (3.17) with respect to L, and for some
0<pf<<n

Iy, <8 Wallaege < 1. max|a] <8, ol < OB (3.89)

Then there exist functions qx, gr, Yr and constants Dy for | # m such that
ar — Re(A\e)ak = 3o Drila)®ar + Year + gk with  |qx — pi| S B,
|Di| < Dn?, Re(Dy) < —yon?, Vk,Il>m, and (3.89)
|Re(Vi)| Sn’z7, (k>m); |Re(Yy)| Sn?8%  (k<m).

Recall Re A\, > n* if k <m and Re A\, = 0 if k > m. Moreover, we have

gl S8t 401623 + Bl e+ |[n®| | +nsR,+ X, (k> m),

2
Lloc

(3.90)
98] S P8 + 0Bz + B+ 0Bl +nB||n®|

L§C+XP+X’ (k < m).

o

Above X, is defined in (3.73) and can be omitted if m = 0.

In case m = 0, Lemma 3.7 is identical to [30, Lemma 3.4]. The main difference in case
m > 0 is that u; are not localized and u;E are complex for [ < m. For those new terms
involving z; with [ < m, we either integrate them by parts and use equations of r;, as in
(3.36), or include them in the error terms. The proof is skipped and can be found in [21].

Lemma 3.8 (Normal form of b) Assume as in Lemma 3.7. Then there exist functions
b, g» and numbers By for k,l € I, such that

b=bo+ Y Bulallal+g, |b—bl < CnBB +nlnl ],

kvlel>7n
go] < C[n*B* +nBzi +n?B%27 +nB° +nzy, ||77|]LIQOC (3.91)
+ n? ”77”%1206 +n Hn3||L11 + nB? HW(S)‘ L + nﬂXp].
o¢ loc

Above by is define in (3.34) and can be omitted if m = 0. Moreover, we also have | By| < Cn?
and By = — % Re Dy +0O(n*) where Dy is defined in Lemma 3.7 and ¢y = (Qum, Rim) ™' =
O(1) > 0. Moreover, maxy(|B|) /(K 1yon?) < %.

The proof is again skipped, see [21].
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4 Converging to an excited state

In this and the next sections, we study the dynamics when the solution is in a neighborhood
of some excited states @)1 at t = 0. We want to show that the solution either converges
to an excited state, or exits the neighborhood eventually. In the first case, the ground
state component is always bounded by other states. In the second case, the ground state
component becomes significant after some time, denoted t. below. In this section we study
the dynamics for ¢ < t.. In next section we study the dynamics for ¢ > t. if ¢, is finite.

Denote z;(t) = (¢;,%(t)) and £(t) = PHoy(t). The assumption of Theorem 1.1 states
that, at time t = 0,

210 =7, 132;42(0)¢; +EO)mart < po.  po=n"". (4.1)

Denote

T, := 31;1()) {T : 513 lY(t) — z1(t) P12 < |z1(t)] € ((0.9)n, (1.1)n), 0<Vi< T} . (4.2)
Above €3 > 0 is the small constant in Lemma 3.3 and 7, > 0 by (4.1). T, is the time
the solution exits the neighborhood of first excited state family. Note that (4.1)—(4.2) are
in terms of the orthogonal coordinates. For most of this section we will use linearized
coordinates which depend on the choice of @, but (4.1)—(4.2) are independent of such a
choice.

From Lemma 3.3 and the definition of T, for each 0 < T < T., we can find a unique
n(T) =n((T)) € (0,n0) such that the solution ¢(¢) can be decomposed as

V() = [Q 4 a(t)dpQ + C(t) + n(t)]e FHY  vo<t<T,, (4.3)

with a(T) = 0, where @ = Qin(1), OEQ = 8EQ17n(T) and F = Fy ;). The components
¢ and 7 are in the corresponding spectral subspaces with respect to Q1 ,(r). Moreover we
decompose

(=35m0 G =zuy +zul, [ =e"n +e . (4.4)
Define .
p(t) == (At +0t) %, At = (npo) %, p(0) = po, (4.5)
where 7y is given in (1.17), and let
te:= sup {T:|z2(t)] <ean 'p(t)?, 0<t<T}, (4.6)
0<T<Te

where g4 > 0 is a small constant to be chosen in (4.49), and zj is the coefficient of (p in
(4.4) with respect to Q1 (7). If there does not exist any 7" satisfying the right side of (4.6),
we let t. = 0.

Be definition t. < T, could be finite or infinite and is independent of the choice of )
in (4.3). If it is finite, it is the first time that zy becomes large enough, and will not be
destroyed by other components in the future. The subscript . means “change” (of behavior).
The function p(t) is an upper bound for higher bound states for 0 <t < ¢..

If t. = 0, we may skip most of this section and go directly to Lemma 4.6 and section 5.

We will bound 7 in LP and L%OC, with fixed p satisfying

27 -9 2

3
— 6 = — —. 4.7
£ <p<6, o a(p) oy 3 <9<y (4.7)
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From now on let 0 < 7' < ¢, and 9 be decomposed as in (4.3) with respect to Q; ,,(7)
We start with the following lemma.

Lemma 4.1 (Initial estimates) Fiz 2' < p < 6 with o(p) = 3’;—;9. We have
Y1) < 205, | ne ()], 7P + [0 (0)]| o (70 < Capy (4.8)

loc

kA1
fort >0, for some Cy > 0 uniformly inn =n(T), 0 <T < T,.

Proof. Let ¢/ := e~ 04)(0) — Q. From (4.3) at t = 0, we have

a(0)25Q +¢(0) +n(0) = ¢/ = e~ (S 2;(0); +£(0)) - Q. (4.9)
For k #£ 1, applying the projection Pj on this equation, we get
|2 (0)] < [2ex][| (i, )] + (uge, )] < (1 + 0(1))[|2£(0)] + 7). (4.10)

Thus Y, [21(0)]* < 208 by (4.1). Moreover, since ¢/ is localized and |[¢'|| i1 < pos

using Lemma 2.16, we get the estimates of 14 (0) for ¢ > 1 by Lemma 2.11 and for 0 < ¢ < 1

by Lemma 2.8. ([l
Recall 7®) and z are defined in (3.64) and (3.72). We now define

o) zu(t), 2D~ p2(D)lat),
M sup maxd [n2 7002 4 2000000 . Ly

0<t<T —1
[n_“ﬂpg + 8 4 202P0<t>_7/6} In® ®)llzg,,

Above v > 0 is a small constant to be chosen. We can choose ov = 0.01.

Clearly My < 3/2 if n is sufficiently small. By continuity we have My < 2 for T' > 0
sufficiently small. Our main result in this section is the following proposition, which implies
Mrp < 3/2 for all T < t. by a continuity argument.

Proposition 4.2 Suppose that for some T € [0,t.), My is well-defined and Mp < 2. Then
we have My < 3/2 and n(T)/n € (2,3).

The proof of Proposition 4.2 is decomposed to Lemmas 4.3-4.5.
Note that T' < t. and M7y < 2 imply

20(t)] < ean™'p?*(t),  zu(t) <2p(t), la(t)| < Dp(t)?,
()]l < 20°7p(t )2" 204 4Copo(t) 7, (4.12)
IOl < 2=+ 20857 4 4Capoft) T

Since [n] = n® +7®) and Hn(Q)HLQ < np? by its definition, we get
loc

In(@)llzz < np(t)? + polt) /6. (4.13)
It is sometimes convenient to use
—1/2 — —1/2
po ()2 S o) STt T2 Il + In@®) 2 S - (4.14)

38



Lemma 4.3 Recall X, X, F and F| are defined in (3.70), (3.21), and (3.68), with Z <
p < 6. Assume Mp < 2, then we have

X S np* + pop(t)*(t)" 70+ mpg(t) "7,

(4.15)
X 5 n0?p” +npop(t){t) 0 + npfi(t) ",
and, with o(1) denoting small positive constants which go to 0 as n + ||1bol| ;1 — 0,
1F o < mp? + o(1)p3(t) 4, (416)
0.64 254 7/4 5/4 :
IF = Fill gy S 6%+ n081,254 1 gl (1y=5/4.
Proof. By Hoélder’s inequality for p > 9/2, and ||n]| 2, < 1,
]y, < Wl unHLp e = o)l
foc Hp (4.17)
[77°]] o < 01 )HTIHLp o P s < o) lInllZy ™
From (3.70) with § = p and n replaced by n(T") ~ n,
X <P lnlle, + X1, X Snplnlz +X Xo=nlnllz + 7l - (418)
Using (4.12)3, (4.13), and (4.17)y, one gets for 2 < p < 6 that
X1 S n?pt + pop® ()70 +mpf ()77 (4.19)

One gets (4.15) from the above two equations.
To bound F = kQ(2|hs|? + h2) + k|he|?hs in LP' with h, = adpQ + ¢ + 7, since
1adQ|l S n~'p?, ¢l e S p for ¢ > 2, and [|n]|, < p, by (4.17)2 and (4.12) we get

pt2
1| o S 10” + 0(1) Inll 757 < mp® + o(1)pf () =10 (4.20)

Similarly, to bound F' — F; with Fy = xQ(2[¢|? + ¢?), by (4.17) we have

_11p

1F = Fill, 5 5 S0°+npllnllgz +o() lInllw ™ . (4.21)
By (4.12), p < n~ (t)"'/?, and %l < p <6, it is bounded by

S P3 +np[np2 +p0<t>_7/6] 4 [n0.6471p2.5494+pé.8333 <t>—1.2941]

(4.22)
< p3 +n0.64p2.54 +p(7)/4 <t>*5/4,

O

Lemma 4.4 (Dispersion estimates) Assume My < 2, then for all 0 <t < T, we have

3 g — o—z00 —0
()] e < =07 p(£)27 2 4+ 3Capo(t) 7,
(4.23)

w N

IO @)1z, < Sln~p* + 573 + 3Copott) TV
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Proof. We first prove the LP-bound. Since [] = €1, + e~¥n_, it suffices to estimate
1n+ll1p- By (3.50) with ¢y = 0, and by Lemmas 2.11 and 2.16,

t
In£llze < [l ne(0)]] +/0 ap(t = s)[|Frtllppr + 1 Fll Ly 1(s)ds. (4.24)

By Lemma 4.1,
e n(0)|[ ,, < Capo(t) . (4.25)

By (3.71), Lemma 4.3, and (4.14),
101 = 1Fpl S p* + 07X S p(t) + pop(8)(8) /0 + p(t) T S p(1)*. (4.26)
By (3.49), (4.14), and Lemma 2.15,
1FLll o S 1Fol (0l o + 07 al + 121) < 0% p = 9% (4.27)

By Lemma 4.3, ||F||,;» < np? + p? (t)=7/5. Thus the integral in (4.24) is bounded by
< /0 ot — 5)np(s) + pR(s) Vs < pRn () R (4.28)
Here we have used (4.5), np?(s) ~n (At +s) L, and V0 < a <o < 1
/Ot [t — 5|77 (At 4 s)"tds < (At) (At +t) 77T, (4.29)

Combining (4.25) and (4.28), we get the first estimate of Lemma 4.4.

We next prove the second estimate. Recall that nf ) = Z?Zl nf)j, where nf)] are defined
in (3.52) and (3.62) with ¢y = 0. By Lemmas 4.1 and 2.13, we get

3 _ 3 _
H”(t)l‘ o = Capolt) 7/s, Hn;(t,)2’ I~ Cnpa(t)=3/2. (4.30)
loc loc
For n4 3, by Lemma 3.5, (4.14), and (4.15),
max |py| < np? + Xp + X <np?. (4.31)
By (3.63), (4.26) and the above,
I frrl + 10 fualll 22 < nl6lp* + npmax ] < np?p® + np(np?®) < n?pP. (4.32)
It follows from Lemma 2.13 that
t
[i2],, < [te—s i < cat. (4.33)
loc 0
Here we have used, for a,b > 1 and S > 1,
t
/ ()" (S + ) ds < SU(S + 1) + (S + ), (4.34)
0

which is bounded by (S + )7 if a > b.
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For n+ 4, by Lemma 2.11, we have

t
3
[#2],, <€ [ antt = OMPelinsonsn + 1P = Fllsoponlids,  (439)
loc

where oo (t) = t1/2 (t)72/3. It follows from (4.34) that
t
[ el = 9)ployds £ o0 + 0t o0, v (4:36)
0

As for (4.27), we have ||Fri|ljo/snrs2 S p°. By Lemma 4.3, |[F — Fillosnps2 S p° +
p0-64 5254 +p(7)/4 <t>’5/4, Thus

7/4 —
7/3) ( 0.64 2'54+7’L0'97 0.54p7/3)+p0/ <t> 5/4

S (p°+n'Ppop p Po

N4
[, ws7)
<o+ o(UntfST 4 Ty

Summing (4.30), (4.33) and (4.37), we get the bound of Hn(f)Hle in the lemma. O

Lemma 4.5 (Bound states estimates) Assume My < 2, then for all 0 < t < T, we

have
wnlt) < Spl), la(t) < SDp(t, |n(t) —nl < jn. (4.38)

Proof. For 1 < k < K, from Lemma 3.7, we have a perturbation g of pi such that
k= Y _ Ditlail®ar + Year + gr, (4.39)
1£1
where
lak — Pl S Cnp?, | Re(Yy)| < Cn?2f < Cpl(t),

AR (4.40)
gl Smpt + 0o lnll 2 +npln® iz + X +npX.

From (3.73) and |||, < p, we have X < p?. Thus, from (4.12), (4.13) and Lemma 4.3, we
get,

gkl S o(1)n?p? + npop(t) ™% + npg(t) /. (4.41)
Since pg = n'*? and 0 < § < 3, it follows that
—3AT
[ oo < Cnpo ki) < o020, 207 (4.42)
0
Now, from (4.39), we get
|Qk| = Re(Dy)|ail*|gr| + (Re V) qx| +R€‘(|q |9k) (4.43)

1£1

for all 0 <t < n~3, by integrating this equation on (0,t), we see that |qx(t) — qx(0)] < po -
Using zi = (C s |pxl*)'/2, 21(0) < \/9/8p0 and |qi, — pr| < 1p®, we get

z(t) <1dpy, YO<t<n 3 (4.44)
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Now, let fz = (|g2|> + - + |gx|?)V/?, from (4.43) and (3.89), in particular Dyglgol? <
n*(n~tp?)? = p*, we get

S (L 4 K (4.45)
fr < === fit + Clfup” + Xislonl]-

By (4.12) and (4.42), we get
; Yon? 3 2 13 -3
Jo < _?fH +o(1)np(t)”, n° <t <t (4.46)

Let g(t) :== Ip(t). We have fy(n=3) < g(n™3) and § = —V%—"Q%gg, thus fy(t) < g(t) if
fu(t) = g(t). By comparison principle,

fu(t) <g(t)=zpt), (> <t<T), (4.47)

which together with (4.44) give the first estimate of the Lemma.
For the second estimate, recall that a = a® 4+ b with [a®| < Cn?p*(t). From Lemma
3.8, there is a perturbation b such that

d~ 7 2 2
0= bo+bot > Bulallzl® + o, (4.48)
1<LE<K

where g, and By, are defined in Lemma 3.8 and by = Boolzo|* + 2 1 ch<i Brolzo|?| 2%
We have [b— b| < Cn2p? and |bo| + |bo| < n|z0)? < e2n?p*. By Lemma 3.8, (4.12), (in
particular |zo| < egn~1p? and this is where we choose &4), (4.13), Lemma 4.3, (4.19) and
X S nto® + Il

s S %0t + 10+ canp®llnll 2+ np*lInP 2 +nXy+npX

2 4 | ~ ~ 2 2 /\—T/3 2 /\—T7/6 (4.49)
SoMnp()" + g5, go=n"p5 ()" +npop” ()7
Then, for t > At = n"2p;?, we have p(t) ~ n~1t71/2 and
T ]
/ Gl(s)ds < / s /3 4 s~ T/6-1 g < pp=/3 4 4116 < 22, (4.50)
t t

For 0 <t < At, we have p(t) ~ po and
T At [e9) At 7/
[ i< ([ [D) i 5 [0 g s @)
Using [ n?p*ds < p(t)?, we get have
T
[ 1+ al(s)ds < o0p(02, ¥t e 0.7). (15)
t
Integrating (4.48) on (t,T) and using maxy (| B|)/(K tyon?) < 2, we get
7 T D , 2 7 5. 9
[b(O)] < (T + 5 p7(t) + 0(1)p"(t) < (T + 3 Dp7(t). (4.53)
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Now, since a(T") = 0, we get
B(T)| = [a(T) = b(T)| + [B(T) = b(T)| < [P (T)| + Cn®p(T)* < n®p(t)*. (4.54)
Thus we have [b(t)| < [b(T)| + [b(t) — b(T)| < 2Dp(t)? and

la(®)] < 1a® @)] + [b(0)] + b(t) = b(1)] < sz(t)Q- (4.55)

Finally, Lemma 3.3 shows |n(T) — n(t)| < n~Ya(t)] + n® < n and the last claim of the
Lemma. ]
The proof of Lemma 4.4 and Lemma 4.5 complete the proof of Proposition 4.2.
We now distinguish the two cases that t. = co and ¢, < oc.
Suppose t. = co. By Lemma 3.3 (iii) we have for any ¢t < T' < oo

n(t)? = n(T)?| S lancr) ()] S P*(D), (4.56)

which shows that n(t) converges to some no, ~ n as t — oco. Furthermore n(t) ~ n(0) ~ ns
and [n(t) —neo| < n71p%(t). Together with the estimate My < 3/2 we have shown the main
theorem in the case the solution converges to an excited state.

In the case t. < oo, by continuity we also have M; < 3/2. we will show that the
solution escapes from the first excited state family in the next section. We prepare it with
the following lemma, whose proof is the same as that for 74 (¢) in Lemma 4.4 with the
nonlinear terms set to zero for t. < s < t.

Lemma 4.6 Suppose t. < 00. Let At = n"2py? and nx(t) = eTPO Py [n(t)] where n(t) is
as in (4.3) with respect to Qy n.). Then for allt > t., we have

1
I (k)| < M), As(t), (4.57)

where for Cy from Lemma 4.1, some C3 > 0 and p. = p(tc),

Au(t) = CalCapot) =)+ n2! g p(1)2 2,

4.58
Ao (t) = C3[Capo(t) ™0 + mp2(t — te) /0 + p(t) + /2T (1)]. 3%
Moreover, with oo := min(J, % — 4, 21’—;’5) >0andtf =t.+n"3,
A (t) + A (t) < po, (Vt > te),
Ay S po ()77 40323 Ay < po (870 + mp?, (te <t <t}), (4.59)
Ar(t) Sn'Bpl3, Ao(t) Sntt2pl, (t>t)).
Proof. From (3.51), we have
te '
LUtn, (t,) = eV (0) + / P, + €T [F]}(s)ds. (4.60)
0

We also decompose 7+ (t.) = ng ) (tc) +7]$ ) (t) with a similar formula for eL(t_tc)nf ) (tc). We
can bound e“*~t)p (¢,) in L? and eL(t_tC)n(f) (tc) in L? . using the same proof for Lemma
4.4 with the integrand set to zero for t. < s < t. We also have

LD |l < — )T Pnp? (4.61)

2
loc
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using the explicit definition of n(f ) in (3.62) and Lemma 2.13. The above shows (4.57).

We now show (4.59). Its first part is because pg (t)_l/ 2 < pe for all t > t., which follows
from (4.14).

Its second part follows from p(t) ~ p. < po.

For the third part with ¢ > ¢, it suffices to show

po (1) SnPp2 2 pg (1) 7T/0 e 2, (4.62)

If t. < At, then p ~ p. ~ po. Writing all factors as powers of n using <t>71 < n3, (4.62)
isreduced to 1+ +30 >20 — 14+ (20 —2a)(1+6) and 1 + 5+ 7/2 > 1+ 09 + 2(1 +9).
Both are valid using 2/3 < 0 < 3/4, 0 < ¢ < 3/2 and 02 < 3/2 — 0.

If t. > At, then p. ~ n~1t;Y? and (4.62) is reduced to n!*0 (t)77 < pTlt2ep ot and
niH8 (1776 < p=1to24-1 hoth are correct. O

5 Escaping from an excited state

In this section we study the dynamics near an excited state when ¢ > ¢, assuming . < oc.
We want to show that the solution will escape from the pg-neighborhood of the excited
state. Recall pg = n'*9 with 0 < § < 3/2. (We need § < 1 in next section but not here.)

Fix @ = Q1 ,n(,) and decompose 9(t) for t. <t < T¢ as in (4.3) and (4.4) with respect
to this fixed Q. At t = t, we have Lemma 4.6 and, by definition of ¢, and M;, < 3/2,

_ 3 3
|z0(te)| > eam 1p3’ zh(te) < Epm la(te)] < ZDPE» pe = p(te). (5.1)

Let
Y(t) = lgo(t)] + n°|qo(t)|"* + pe, (5.2)

where ¢o(t) is the perturbation of po(t) defined in Lemma 3.7. It will be shown to be an
upper bound for bound states.> We have defined ~(t) in terms of |gg| instead of |zg| so that
it is non-decreasing in ¢ (for t >t} :=t. +n=3).
Define
to :=sup {t >te:zp(s) <20, Vse [tc,t)} . (5.3)

The time t, is the time that z; becomes powerful enough in orthogonal coordinates. The

subscript , means “out” (of the neighborhood). It follows from Proposition 5.1 below that

to < T, and hence the decompositions (4.3) and (4.4) are valid at least slightly beyond ¢,.

Hecall 27 Sp—9 2 3
p—

— <p<6b6 = = - <o< . 5.4

S <p<6 o=ol) =T T<o<] (54)

The main result of the section is the following proposition.

/2 is included in 7 so that 2z < 7. Explicitly: The bound of ||5]|,, includes n'!|gol,

18,7 where m — 11/6 as

®The term n°|qo|
see (5.32). By (5.21), the bound of ”773||L9/80L3/2 and hence |\17(3)HL% contains n

p — 6. To bound zm by 7y, we need ||77HL? < ny? for (5.49) and v = |qo| + pe is insufficient.
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Proposition 5.1 There exist constants Cs, D1 > 0, uniform in n, (with Cs greater than
that in Lemma 4.6), such that for all t. <t < t,, we have

1
l90() = qo(s)] < JgEan o (te < s <t<HTi=tetnT),
0 (¢)] € [e3ReA0)(1=5) (FRX)E=9)] (4 < g < p),
|q0(s)] -
6D
2 (t) < %V(t)y la(t)] < D177, (5.5)

1
@ < ”UIV(t)Q + §A1(t), 01 =40 -3 —q,

1
Hn<3) (t)‘ < Cany(1)* + Cay (1)’ + Sha(t),

2
loc

where o > 0 is so small that —% + 20 < 0 = @ —a <0, and Ai(t) and Ax(t) are
defined in (4.57). In particular, to < T, and for some constants ¢ and cs,

2po 4 2p0
<t, <tc.+con “log .
ZL<tc) ° ¢ ZL(tc)

te + c1n*log (5.6)

The main term in the integrand of 7 is of order nz?. In the first term of its LP-bound
we lose some powers of n due to integration over a time interval of order n=%. On the other
hand, the first term v3 of ||n(t)]| L2 estimate is optimal and comes from recent time terms

of order z? in the integrand.

Proof. The lemma clearly holds true for ¢t = t.. By a continuity argument, it suffices to
prove the lemma with additional weaker assumptions:

1 _
maﬂ—%wﬂs§mn1£,(u§sstsﬂx

|90(t)]
|g0(s)]

zp(t) < 2\/6;710)7@), la(t)| < 2D1~2, (5.7)

()]l 0 < 207 (1) + 2A4(2),
[, < 20am™(0)? + 2057(1)° + 282(0).

loc

c [ei(Re)\o)(t—s)’ e2(ReAc>)(1ﬁ—S)], (75;r <s<t),

At least for ¢ near t., the assumptions of Lemma 3.7 are satisfied and hence |z9| < |qo| +
Ipo—qo| < v¥+Cny? = (1+0(1))y. Together with (5.7) and [n] = n® +7®), the assumptions
of Lemmas 3.4-3.7 are valid until ¢t = ¢, with § = (1 + o(1))~(¢), and

Jz0(t)] < (1+o(1))(2),
()2 < Cny?(1) + Aa(t), (5.8)
17622, o < 1(2):

Here we have used (4.59).
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It is convenient to have an upper bound of 7 in terms of |gg|. Clearly
V(1) ~ laol* +n'lgo| + pZ < €1 nlao(t)] + g3 nl20(te)]- (5.9)
Since |20(te)| < lao(te)| + Cry(te)? < lao(8)] + Cry(H)?, we get
Y2(t) S extnlgo(t)]. (5.10)
Thus we get an improved zp estimate,
20| < lao| + Cny? < (1 +0(1))]go]- (5.11)

We can also derive from (5.7) and |zo(t.)| > eqn~1p? that, for any t. < s < t < t,,
6
40(s)| < Zlao(t) e 1 A=), (5.12)

We now give error estimates. For X; = n||n||%l2 + H173HL1 , using (5.7), (5.8), and
oc loc
Hoélder inequality, we have

X1 <yt + A2) + (ny? 4 M)A (%A% + Ay, (5.13)
with A = 2;’%26 and B = z%' We claim that
n’yz, (Vt > t.),
X1(t) S npd (1) 4 n28 (. <t < ), (5.14)
n*8y4, (t>th).

The first estimate is because A; + A2 < pe. The last estimate is, using (4.59)3 and 1.4 <
A<15<B<16with A+ B =23,

Xl(t) S n374 + (TL’)/Z)A<TL1/3’}/4/3)B _ n3,y4 + (n,y>2A/3n,y4 S TL2'8"}/4. (5.15)
When t. <t < tF, using p ~ pe < po, (4.59)2, 01 > —1/3, and the previous estimate,

Xl(t) 5 n3fy4 + nlg% <t>—7/3 + (Po <t>_7/6 + n,YQ)A(pO <t>—o + n1/374/3)B

< g )T/ 1 28 (5.16)
For X and X defined in (3.70), we have
X 372||77||L?oc + X1 <yt 4200 + X1 (1), (5.17)
X <nylnllgz + X1 <n®y? 4+ nyhs + Xa(t). '
For X, defined in (3.73) we have
Ry =z [l + 12 [l + 0O L, -

S ntan (Pt + A7) + 002 (0792 + Ar) + 00O (03710 1 A7),

Using Young’s inequality on ntzp A% +n822 Ay, and 6(6 — p)/p+ 301 = 01 — 200 > —1/2, we
get,

X, S0yt 4 0Bz 4 nSEP/PAS, (5.19)
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From (3.22), (3.26), Lemmas 3.4, 3.5 and (5.7), (5.17) and (4.59)2, we get

0] < B2+ 01X <2+ (0P + nyAs + X)) S A2

. (5.20)

Pl Sntep + 0B+ X, + X Sntzp 40P + Xy Sntap

We now estimate the main terms. By Hoélder inequality,

2(2p—9) 11p 921

2 9 2
90 < 5 I Il mgore <l 2 I (20

Using 36/7 <p <6and —5 <01 =40 -3 -a=3-"-a<0,

( do—3— a72)P+2 S ( 40’737&72)9(1,1_172) S 0(1),)/37 (522)

for @ > 0 sufficiently small. By Lemma 3.4 and |||, < o(1), we get

1Fl o S 09 + X +nlnl e + 0] S 07° + 6,
HF - F1HL9/8QL3/2 g '73 +X +n HWH%P + HnSHLQ/SmLs/z S 73 + 527 (5'23)
52(t) = = ny(t) Ao (t) + nA2(t).
In deriving the above estimates most terms in X; are controlled by do except

nA,yZAAlB < (nA—B/272A)(nB/2AJIB) S (nA—B/2,y2A)2/(2—B) + (nB/QAlB)2/B 5 73 +TZA%
(5.24)
Estimates (5.5) now follows from Lemmas 5.2 and 5.3 below.
In particular, taking s = ¢t and t = t,, (5.5)y together with Re \g ~ n~* and |zg| =
(14 0(1))lgo| imply (5.6). O

Lemma 5.2 (Dispersion estimates) For allt. <t <'t,, we have

@)l < 792+ )@, [[iO0)|, < 0™+ 0’ + 8200, (5.25)

L120C
Note that A;(¢) may compete with the main terms for ¢ near t. but decay rapidly.
Proof.  We first estimate ||7(¢)||;,. It suffices to estimate 74 with

¢
n+(t) = eL(t_tc)ni(tc) + / eL(t_S)Pi{FLi + e:FwJ[F]}ds. (5.26)

le

By Lemma 2.11, we have

mgwmwuw%%mwm+[%ﬁ—mwum+wmuww (5.27)

By Lemma 4.6, we have ||eL(!=te)n, (¢ < $A1(t). By (3.49) and (5.20), we get

[P
|Frsllpnposanss S 1Al + 0 al + 120 S 2% - (5.28)

From this, (5.23), (5.27), and X1 < np?, we get
t t
/t ap(t = ) Frxll o + 1 Fll L ](s)ds < /t ap(t — 5)(n7y(s)* + ba(s))ds. (5.29)
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Recall v2 ~ |qo|? +n'0|qo| + p2. By (5.7), Re \g ~ n* and ft [t —s|77e =9 ds < a7,

t t
/ ap(t — 8)n|QO|2(s)ds < / ap(t — 8)n|q0|(t)26_i ReXo(t—s) 74
te .

< Cn' g0 ().

(5.30)

The integral of nn'®|qo|, part of d, is bounded in the same way by Cn*(@=D+11|g|(2).
For p?, we have

¢
/ ap(t — s)nptds S np? (t — t)' 77 = plo—3-/2. p2pa/2pl-o (5.31)
te

where a > 0 is to be chosen and T = n' (t — t.). Let A = in~*Re\g which is of order 1.
If AT <10log %, then n®/2T=7 = o(1) if n is sufficiently small. If AT > 10log %, then by
(5.12)

p2T'=% < Cnlgo(t.)|TT 7 < Cnlqo(t)|e 2ATT =7, (5.32)

Since e~ AT < n!'% and e=ATT'=7 < C, it is bounded by Cn'!|qo(t)].

Using (4.59), the error term d5(t) = ny(t)Aso(t) + nA2(t) is bounded by n7/3p? when
t>tF and by n™/3p2 + np2 ()7 when t < tF. The term n/3p? is smaller than the main
term ny? in (5.29) and can be absorbed, while

td

| bty o de S (5.33)
t

c

which can be checked using p. ~ pg for t. < At and p. ~ n"'t. 2 for te > At.
Thus the integral in (5.27) is bounded by n?'y? with 07 = 40 — 3 — «, and we have
shown the first estimate of (5.25) for ||n||,,.

Next, we estimate ||| 1z - Decompose nf) = Z?:l nf)j, where nf)] are defined

explicitly in (3.52) and (3.62) with t9 = t.. From Lemmas 2.13 and 4.6, we get

<

1
h As(1).
n 57 2() (5.34)

Ma(t), ||

3)
Nt
L120()

By (3.63) and (5.20), we have

L S0 +n7[p| S n(v?)7? + ny(n'y +n7?)
L2 (5.35)
< B2 4 nyP,

H|fkl|+ ‘éfklw

By Lemma 2.13 again and v(s) < v(t) for s < t, we obtain

o 5 [0 s S 0. (536

loc te

e

Finally, ‘

77$)4HL2 is bounded by fttc Qoo (t — 8)I4(s)ds by Lemma 2.11, with

loc

Iy = ||Frtll possarsre + | F = Fillpossarsre S7° + 02 (5.37)
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by (5.28) and (5.23)2. Using d2(t) = ny(t)Aa(t) + nA3(t) and the explicit form of A; in
(4.58) together with the integral bound (4.34), we get

t
(3) ‘ < / o (f — $)[AP
S 00 72 + d9|(s)ds
[724],, % | astt=9)1 +aal(s) 59
S0 + gt (670 + 02T S A2 (1) + o(1)Aa(B).
Summing the above estimates, we get the second estimate of (5.25) for Hn(?’) HL2 . O
loc

Lemma 5.3 (Bound states estimates) There is a uniform in n constant D1 > 0 such
that for all t. <t <t,, we have

1 _
lq0(t) — qo(te)| < —=ean™tp2,  (t. <t <)),

— 10
10| _ [ L(Rero)(t—s) .3 (Rero)(t—s) +
<
|q0(3)| € [62 , €2 ]7 (tc —S<t)7 (539)
6D
2 (t) <[ —(t), la(t)] < Diy(t)*.

70
Proof. First we estimate go(t). From Lemma 3.7, we have
do(t) = (ReAo)qo + Yoqo + g0, lao — po| Sn7?,  |Re(Yp)| < CnPy® < n'. (5.40)

Here Y, = Yy + Y.,y Dot|ai|®. Moreover, from (3.90), (5.17) and (5.10), we have

g0l < CIn®y2 +my* ¥y [l a4+ [0]| |+ Xy + K] < o(Dnlaol + 6, (5.41)

2
Lloc

where 63 = C(nSO=P/PAS £ 42N, + X). Tf t < t}, by (4.59)2, (5.14)9 and (5.33),

83(t) S mpp ()70 4 npt + n?p? 4+ Sy,
: (5.42)

la0(t) = ao(te)l < | Cnlaol + 5(s)ds < o(1)(lqo(te)| +ean™p7),
te

This shows the go(t)-estimate for ¢ < ¢I. Suppose now t} < t. By (4.59)3, (5.14)3, and
(5.10),
03(t) S mOO=PP(n1Bpl/3)3 4y 2 1Ho2 g2 4 284t < g (5.43)

Since Re \g > 0 is of order n*, Eq. (5.40) gives
1 d 3
0 < 5(Redo)lao] < —laol < 5(Re do)lgol, (5.44)

which implies the estimate of |go(¢)| for ¢ > ¢
Next, we estimate zp(t). For any k > 1, by Lemma 3.7, we have

d

0k = > Dilalax + Yeak + 9 gk — pil < CnA®. (5.45)
1>1
Moreover, we have
D < Dn%, |Re(Y3)| < Dn2|z%  Re(Dy) < —%ﬁ, vi> 1. (5.46)
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So, we have

d
@(’%D <- %Iq0* gk + |gx|- (5.47)
>1
Let f(t) = (3oq lal?)/2. We have f(t.) < pe and
f(t) < - f3 +2Dn%|qol* () + > |gkl- (5.48)
k>1

On the other hand, from (3.90), we have

g6l < Cly* + %9 + 0Pyl + 0y [0 | +na%y + K] <o(0)n2? + 81, (5.49)
loc

where 34 = C(nynSO=P/PA3 4 nyAy + X1). If t < tF, by (4.59)2, (5.14)9 and (5.33)

0a(t) S mpd ()70 + mPply + nBy*

" (5.50)
1F(t) = f(t)| < [ On?pd + 8a(s)ds < Cnp? < pe.
te

Thus f(t) < pe for t < tF. When t} < t, since d4(t) < n?v° + n2t92+3 4 n2841 <« 243 for
~ _ (16D\1/2

7= (350)7"

Qn

ft) < 2=

Since 7(t) is nondecreasing and f(t1) < 4(t}), by comparison we get

-3, (t>th. (5.51)

ft) <7(), Vit>th (5.52)

Thus 22(t) < F(£) + [£(H) — 2 ()] < 7() + Cnr?(t) < /Lo (o).

Finally, we estimate a(t). By (3.39) and Lemma 3.8, a = a® + (b — b) + b, where

@@ Sn?y?, b= b < Cnyly? +nInlle ] < Cn?y?, (5.53)
and .
Zb=bo+ g#jl Bual [’ + gv- (5.54)

Using a(t.) = 0,
ja(t) = 0] < [a® @) + [0 (t)| + (b = B)(B)] + [(b = B)(te)| + [b(t) — b(te)]

5.55
< o) / 4 (5.55)

From (3.34), bo(t) = boo|20(t)|* with boo = 2Im rco(Q?, uguy ) and |bgo|n~* < Cy for some
explicit Cy = O(1). We also have |By||z|?|2|* < n?~* and

90] < Cln*y* + 028220l + 0 + 0?20l z_+n X1 +ny? 0|

+ ny X,
L3, " (5.56)
< o(1)n?|zo? + Cn?y* + 55,
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where 05 = nX1 + (n?z +ny?)As + nynﬁ(ﬁ/p_l)/\:{’. Thus
¢
la(t)] < Cn2y2(t) + / (Cy + 0(1))ntqo(s)]? + Cn*~y1(s) + 65(s)ds. (5.57)
te

By (5.7),

t ¢ 24Cynt
[ (@1 om)ntlan(s) Pds < SCunlao(® [ e el as < Cin
te le

RIE )
_5R6A0|qo()\ (5.58)

Moreover, by the definition of ~,

t t
Cn(s)ds < / n2{go|* + n22|go|2)(s)ds + n2pl(t — t.). (5.59)
te te

The integral is bounded by n=2|qo|* + n'®|qo|? = 0(1)|qo|? similarly as in (5.58), while the

last term is bounded by n2piCn~*log lzol(t) o(1)p?. Thus this term is o(1)7.

eanp?

For the error term fttc d5(s)ds, if t <tF, by (4.59)2 and (5.14)5 we have

35(s) < n2p2 (1) 7% 4 38yt 1 (n?|go(te)] + ny?) (po (8 + np?)
+ny(te)(pd (8) %7 + npl) (5.60)
<nag (670 + o(1)n'y’.

Thus, using (5.33), we have fttc 85(s)ds < o(1)ny(te)? If t > tF, by (4.59)3 and (5.14)3 we
have d5(s) < n38y% + n2yn!tozp? 4 nynpt = o(1)(n%y* + n*4?), which is dominated by
other terms in (5.57).

In conclusion, we have shown

5Cyn*
t)] < D1¥*(t), Di:= = 0(1). 61
alt)] < D), Dii= - = 0) (5.61)
This completes the proof of the Lemma 5.3. O
The above finishes the proof of Proposition 5.1.
We now prove the following out-going estimate of n at t,.
Lemma 5.4 For some C5 > 0, for allt > t,, we have
He(t*tO)Lni(to) .- Ay(t) := A1 (t) + Csn2po(n~ +t —t,) 7,
(t—to)L T 2 ~7/6
e to < Ag(t) := As(t) + Cynpg (t —t,
e e, = Rafe) i= Aa0) + Comod (2~ 1) 562)
T+ Csp3 (t—to) Vot —ty+nH
+ Csn 3 (0P pe + p2)(t — to +n~H /0,
Proof. For all t > t,, we have
to ,
L=ty (t,) = Lttn, (t,) + / L P Fr L + Je[F]}ds. (5.63)
te
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We first bound it in LP. By Lemma 4.6, the first term is bounded in L? by A;(t). The
second term is bounded in L? as in (5.29) by

to to
< / ap(t — )| Fullpyr + [ Fll o }ds < / ap(t — )2 (s) + a(s))ds.  (5.64)
te te
Note ny2 + &3 ~ nlqo|> + n't|qo| + np? + d2. By (5.7),

to 6 to
/ ap(t — s)nlqol*(s)ds < = / ap(t — s)np%e_i Redo(to=s) g5 (5.65)
te te

Using

to to to
/ t—s| "7 tem3)/Tgs < / [t—s| 7t/ Tgs < / [t—s|7%ds ST(t—t,+T)°
to—T to—T

(5.66)
with T'=4/Re A\g ~ n~%, (5.65) is bounded by Cn=3p2(t —t, +n=*) 7.
Similarly fttp" ap(t — s)ntt|qol(s)ds is bounded by n'lpon=*(t —t, + n=*)77.
Let ¢ denote the first time in [t.,,) so that |go(t)] = p.. When ¢t > i, the integrand
p2 is dominated by |go|? and can be absorbed. By (5.7), to — t, = n~*log 222, We have

c e
ti
/ ap(t — s)nptds < np?lty — te||t — i 7. (5.67)
te
Using
_ 6 _ 1 -
pi S e naolte) S gey mpee” 111, (5.68)

and n|ty — tc\e_%Re/\O(t’“_tc) < O, the integral in (5.67) is bounded by Cn2p.|t — tx| 7.
Using (4.59), the error term d5(t) is bounded by n”/3p2 when t > t and by n7/3p? +
np3 <t>_7/ % when t < tF. The term n7/3p2 is much smaller than the main terms and can be

absorbed, while by (5.33),

te
/ ap(t — s)np? <S>_7/6 ds < np?lt —t.|7°. (5.69)
t

c

Summing the above estimates gives the first estimate of Lemma 5.4.

For the second estimate, we have n4(t,) = nf) (to) + nf) (to). By (3.52), (3.62) and
(3.64) with tg replaced by t., we have for 7 =t —1t, >0

4
ML (ty) = eLTnE_E) (to) + Z €LTT]$)]»(tO), (5.70)
j=1
with
T (3 — 7, (3 - 2
LD (o) = et (t), PP (t) = et P (1), (5.71)

)

to . . . . .
eLTnf?g (to) = — /t e(t_S)Leye(s)HizkylEQm ( Re Rygie™ "% fi; F i Re Rkle_’“”“lsﬁfkl) (s)ds,

)

to ]
L) (to) = /t e"IPL{FLL + JeTP[F — Fy)}ds. (5.72)
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From the explicit definition of n(f ) (to) in (3.62) and Lemma 2.13 we obtain

H L) H < Cnpdit — o) "3/ (5.73)
By Lemma 4.6,
T (3 1 T, (3 -
lefn@ )|, < qhe®, [P nlht)| , < Conpdt — 1) 72, (5.74)

loc loc

As in (5.36) and (5.38), we obtain

to
S / Qoo (t — 8)[0°Y2 + 72 4 09)(s)ds < I} + I + I3,  (5.75)
te
where I; are integrals over the same time interval with the following integrands
(n®|qo[* + 2" |go| + lgol® + n'®|q0|*?), (n7/3p% + p3)1 et TP (sy~"/8 Ly, - (5.76)

Then

to ”

Ii(t ,S/ oot — s 3,—1 ReXo(to—s) g < 3/ b T8 g

1(t) . ( )Po Po to_n74< ) (5.77)
<pplt—to) VOnTME—to+ )L

With constant € = n"/3p2 + p?, using (5.68) and n’(t, —t.)e” R Pholti—te) < |

I(t) S /tk oo (t — 8)eds < e(t — tg) Oty — to)(t — 1) 7"

<e(t— tk)*l/G(t — ) It — to)nps e —Re Lo (tr—te)
< 511n_3(n7/3pc + ,0(2;)(75 o tk)—l/ﬁ(t _ tc)

(5.78)

Finally, I3(t) < ft Qoo (t — 8)np3 (s)~ /6 4s < (t —t.)""/%npt. Summing the estimates we
get the second part of the Lemma. O

6 Dynamics away from bound states

In this section, we study the dynamics of the solution (t) for t, < ¢t < t;, where ¢, is
the time it leaves 2pg neighborhood of first excited states, and ¢; is the time it enters the
po-neighborhood of ground states, to be defined in (6.73). In this time interval we use
orthogonal coordinates and decompose

K
=D ai(e;+E(1), €1 B, (t210). (6.1)

=)
We first estimate xj( ) and £(t,) in Lemma 6.1, for which we recall some definitions.
Recall that At = n_2,0 _2(2+5), 0<a<xlisfixed and 0 < § < %. Moreover,
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%7 < p < 6 1is fixed, % <o= 3(7;;3) < %, and o 1= (p 2 > . Recall from Lemma 5.4 that
K2 = KQJ + KQ,Q with

Ao (t) == Ao(t) + Csnpd (t — o)~ 7C + Con=3(n"pe + p2)(t — to +n~*)~7/6,

N (6.2)
Ao (t) := Cspd (t —to) Vo4t —ty + 04"
We also define
N 3
Ag(t) = BAg(t) + Con® (L +1 — o) 32, Au(t) =D Aaj(t), (6.3)
where Cg is some uniform constant defined in (6.14) and
Mgy = Con U Ay L py=oFe Ny o= Copo(1 +1 —t,) 6.4

A473 = C’6n_1+5(n_4 +1— to)_o

Note that A4 is the second term in Ay and comes from the out-going estimate at t.; A4 3
is from the out-going estimate at t, and Ay 9 is from (6.14). Also note that
5p — 18

P >

As(t) < 3Cen®,  Au(t) < 20sn 7 0 4 Copolt — to) " .

(6.5)

w| ot

Lemma 6.1 Attt =1t, we have

D
(1.9)n1* < |zg| < (2.1)n1H9, (Zyxk\2)%56,/7po, (0.9)n < |z1| < (1.1)n.  (6.6)
0

k>1

Moreover, we have for allt > t,

[emtmme)], < s, et e, < ato). (6.7)
Proof. For all 0 <t <t,, we have
Y =[Q+a(t)0pQ + ¢ + ) FH = Zwmy +E. (6.8)

Here Q = Q@) Recall n(t) = n + O(n'*2%) by substituting (6.8) with ¢ = 0 into
n =|(¢1,%0)|. For j # 1, taking the inner product of (6.8) at t = t, with ¢; we get

|2(to)| = O(n®) + (1 4+ O(n?))|zj(to)|, (G # 1) (6.9)
We also have
|21(to)] = (¢1,Q) + O(n?) = n(t) + O(n®) = n+ O(n' ). (6.10)

Since |zo(to)| = (1 + 0(1))2po and zr(to) < /6D /v0(1 + 0o(1))|z0(to)|, we have (6.6).
Next, we shall prove (6.7). Denote 0, := iEt, — i6(t,) and

K
wt =" wi(te)gs, & =e"E(t), 0" =mnlto). (6.11)
j=0
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From (6.8), we get
& = PIQ +alto)0pQ + (o) + 1" — a7} (6.12)
We write £ = & + & + &5 where

¢ = plo {Q +alto)dpQ + > zi(to)ul + Y z(to)u; — x}
i#1 i>1
& =Pz (to)ug |, & = PO’

(6.13)

From the explicit formulae of Q,@EQ,U;F, we see that £ is localized and ||€f]| < n® +
nla(t,)| + max;z1 [25|n* < n. Therefore, for all t > t,, 7 = t — t,, by Lemma 2.5 and
Lemma 2.10, we have a uniform constant Cs > max{Cs, C5} such that

He*”HOSTHng < %C’ﬁn?’(l + 7')73/2, He*”HOGHLp < %C@ng’(l + 7)70/7
| oc | (6.14)
le™ 85|, < %Cﬁn3+5(1 +7)2, |leTHeg|,, < %Capo(l +7)7

Here for 7 < 1 we have used He_”HOgHLp S &1 S 20(to)]. Next, we estimate e~ 7Hogs
in L?  and LP. Note [e"T(Ho=E)¢x] = 7/ (Ho=E)[¢x] Recall that

L=J(Hy~E) =W, []=e"n} et nl =na(te),  (6.15)
for some localized potential W of order n?. By Duhamel’s principle, we have
D) =PIy 4 [ S P ds. (610
0

From Lemma 5.4, we get

]
G| D Ol B R S S g P
¥ +

T (6.17)
< 2R (£) + Cn? ;/O I — 5|77 Ra(s + £,)ds.
Using the fact that
/Ot(t —s) et s) <o e )Th 0< B <1< B, (6.18)
we have
n2 /0 "7 = s Rals 4+ t)ds < Cr®polt — 1)~ + Cpo(AL+ 87 (6.19)
which is o(1)po(t — t,) 7. From this and (6.17), we get
™I (Ho=E)[ex] LS 271 + o(1)po(t — o) ~°. (6.20)
Similarly from (6.16) with G (t) = min{t=3/2, +=9/10},
IR S B YRS Y Rl e P
(6.21)

< 2M9(t) + Cn? Z /T Gioo (T — 8) Ao (5 4 to)ds < 3Ao(2).
— Jo

95



So, (6.7) follows from (6.14), (6.20), and (6.21). This completes the proof of Lemma 6.1. [J

For j € {0,1,---,K}, let f; := |u;j(t)|?, where y; is the perturbation of x; defined in
Lemma 3.2. Since 4|u|? = 2Re i and ¢] are all purely imaginary, from (3.10) we have

K

fj = Z Q(Re dib)fafbfj + 2Re ﬂjgj-
a,b=0

Let
K K
f:Zfl, h:ZQ_lfl, v o= min{'ygb, for a,b> 1} > 0.
I=1 =1
Then, from (6.22), Lemma 3.2 and as in [30, (4.58)], we have

d _ d _
o+ ) < 2K+ Dmax|mgl,  — (fo+ 7)) 2 —2(K + 1) max |fugil.
Moreover, we have the following lemma.
Lemma 6.2 Assume as in Lemma 3.2. We have
. . K
fo=2vffo+2Refiogo, [ <—4vfof>+ > 2Refug.
=1
Proof. From (6.22) and Lemma 3.2 in particular (3.12), we have

K

K
fo—2Refiogo =Y 2Re(dy) fafofo = Y [2(2 = 6079 — 42 — 551G fa s fo-

a,b=0 a,b=0
Note that 43, = 0 for any a and b. Thus

K

fo—2Refiogo = Y 22 =6 Salfsfo > 271 fo.

a,b=1
This proves the first part of (6.25). For the second part,

K K K
F=23 Refugi = 3" 202~ 00)ky — 22— )il fufu i,
=1

=1 a,b=0

K K K K
=Y > 202 =00 — 22 = il fafufi + DD =42 = )i fofu i

b=0 a,l=1 =1 b—0

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

By switching a and [ in the terms with factor ’yib, the summands in the first sum become
—2(2 — 55’)’% fafofi < 0. The summands of the second sum are also nonpositive. Keeping

only terms with b > 0 in the second sum, we get

f- QZRemgz < 42 — )i fofsfi < —4vfof?.

b,l=1

This proves the second part of (6.25).

O

The following proposition estimates the solution in a time interval containing [t,, t;].
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Proposition 6.3 Let §6(t) := pg(t — to> - For all t € [to,to + 7 §n=2R+9)] we have

= < max|a;| < (Tl ())? < 2n
! 3 (6.29)
IOz, <n* 4860, 6@ <0l —tl = + SAu(t).

Proof. Since (6.29) holds at t = t,, we then prove it by using the continuity argument. So,
we can assume the following weaker estimates: For ¢, <t <t, + %n‘2(2+5),

1
T < max|ay| < (Sl (0)F <3n
Iz < 20n®* + do(t)] < n?. (6.30)
IE@E) o < 203t — to] & + 3A4(t) < 02T + 3A4(2).

In particular ||§(t)Hle +[|£(t)]| ,» < n. The proof of Proposition 6.3 follows from Lemma
6.4 and Lemma 6.6 below. O

Lemma 6.4 For allt € [to, o+ > 8 =22+9)] we have

€@z <P +86(t), €@ <7t —to| 2 + FA4(®)- (6.31)

Proof. For all t —t, < Cn~22+9) by (6.30), we have

(2+6)(6—p) (548)p—6(2+95)
”g( )HLP < 3—04—2 2+2p6 P +A4(t) S C[n + Pp + —Q + 3A4(t)] (632)

We have .
£(t) = e Hol=to)e(g,) + / et pi=1G(s)ds. (6.33)

to

So, we have

t
1€, < Ault) +C / it s

Note that |G|, < |Gsll 0 + |G — G — k€%E||,, + ||c€%€]| v and [|Gs]l,» < n®. On the
other hand, from Lemma 3.1, (6.30) and (6.32), we get

(s)|| 0 ds. (6.34)

|G — G — h€%]| 1 SM2liEl 2 < (07 + 028 (0)]. (6.35)

On the other hand, using Holder’s inequality, we get

2( 74 2( 73

[K€2E]| L < NEN 27 ||€H s NEPEN L < Néls™ HéH : (6.36)

From this, (6.32) and since 0 < § < <&, we get

_ 2(p—4) pt2 p+2
w2l o < 12 NN < o(1)m® 2% + Aa(t) =2 (6.37)
By (6.5), (6.35), and (6.37), we have
~ ~ pt2

1G] < Cl® +0(1)3a(t)],  Ba(t) = [po(t — to) )7 (6.38)
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+2

Therefore, using ap > 1,

1l < M@ +C [ 1= s E D + o(1)3u(s)]ds
to (6.39)
<CnPlt —to| > + §A4(t).

So, we have proved the estimate of [|£(¢)||,,-
We now estimate Hf(t)”le . By (3.5), (3.6), (6.30) and Lemma 6.1, we have

[SROI

By (3.6) and the estimate of max; || in Lemma 3.1, we get
H 5(3)

For §£3) (t), bounding its integrand by either L>° or LP-norm and using (6.35), we have

<n3(14t—t,) %2 (6.40)

< [0,

1,2
loc

2
loc

t
5/ 114t — 57320 ds < nd. (6.41)
to

t

| 2 S ) wine=s , ds
< [ minfle = s - o5 Y (s (642
to
<nS7% 4 026 (t).
For §é3) (t), bounding its integrand in either L% or LP, we have
HgS”( s S c/ min{|t — s| 7, [t — s o ds. (6.43)
By (6.36), & p+2 >2and 2 < p6+p4 < p because % < p < 6,
el 2, <C L Il <o) 6T (6.44)

Therefore, by (6.30),

t 3(p—2)
<o(1) [ min{lt —s| .|t —s| % S+ A2(s)]ds

" : (6.45)
< o(1)[n>* + Au(t)? + 6:(1)),

[E0)

where

(=]

S1(t) = PRt —to) P A n A (n Tt —ty) 7, (6.46)
and we have used % <o <2, (64), and (4.34) with a = 6/p < b =20 — 2a, (or b = 20).
Collecting all of the estimates of 5](3) with j = 1,2, 3,4, we have

[€P@)] , < Aa(t) + O + o(DA®? + 52() (6.47)

loc

By (6.3), we have A3(t) < n® and Ay(t)? + 07(t) < n? + d6(t). Thus
le@lz, < |¢® @)

+ Hg(?’) (t)HL2 < Cn® + o(1)d(1). (6.48)

loc

2

This completes the proof of the lemma. O
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Lemma 6.5 Fort € [t,,1, +3 57, 72C+9)] the error terms g;(t) in (3.10) satisfy

|g; ()] < o(1)n®T+ + Cn?g(t), (6.49)
where
g(t) = Aa(t) +o(1) [ 3t — 1) 7772 + AJ(1) + 67(t)] (6.50)
satisfies
/OO g(s)ds < o(l)n_%; g(t) < o(L)npg, ¥t >t,+n>. (6.51)

Proof. Recall (3.11),

2(p— 3)

L, Hnlelz + el s lels? (6.52)

loc

9 ()] S 7+ n?|[¢)]

From (6.30) and (6.47), we get

n? Hg@H < n2A3 + Cn7 + o(1)n[A2 + 57,
L2, (6.53)
nll€l2, < CI™ + ndg(t)?]

5436

and, using [n” +Aa1+ AaglP? <o(L)n2

P

||£HL EIE? < 4 ()] S (2T 4 A

2(p=3)3=a) 2p=3) _ po 6.54
<o T 4 I 4 ey OO

< o(1)[nSTH0 + pi(t — to) 77,

Summing the estimates we get (6.49). The estimates (6.51) follow from direct checking. [

Lemma 6.6 For allt € [t,,t, + %n_2(2+6)], we have
1 K 1
57 < max |z (1)) < (2j—olw;(t %)z < 2n (6.55)

Proof. From the first equation of (6.24), (6.51) and § < -

iG> We get

o+ £)0 < (o + 1)(t) + Cnmas [ oy (s)lds

< (fo+ F)(te) + Clo()n™ ™t — t,) +n? t’fg(s) 05 (6.56)
< <f0+f)<to)+0(1)pg§ [ )]<f0+f)<to)

By (3.11), (6.30), we have [1—o(1)] >, |z;1* < fo+ f. By Lemma 6.1, we get (fo+ f)(to) <

2n2. Tt follows from (6.56) that (35 |z;(t)[?)7 < 2n.
Similarly, by integrating the second equation of (6.24), we obtain

(fo+h)(&) = [L = o(V)](fo + h)(to)- (6.57)
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By (3.11), (6.30) and the definition of fy, h, we get

(fo+ m)(t) < [X212027" + (1) max | (D). (6.58)

Therefore, )
2max [z;(#)]* > [1 = o(1)](fo + h)(to) = [1 = o(1)]5 |21 (to)[* (6.59)
Hence max; |z;(t)[? > % for all t € [to,to + gn*2(2+6)]. O

Proposition 6.7 There exists t; such that t, + %n_‘l log% <t <t,+ %n—4—25 and

o 3

K
< lao(ts)] < 2n,  (0.9)p0 < (O la;(t:)[)"* < (1.1)po. (6.60)
j=1

Above 5 = max{1, (d.,)- : Va,b,l=0,...,K} and d', = O(1) are given in (3.12).
Proof. By Lemma 6.6, we already have |xg| < 2n. The proof is divided into four steps.

Step 1: Let t; :=t,+n3. For t, <t < ty, for any j, by (6.22), (6.30), (6.49), and (6.51),
we get

50~ 561 < [+l @ids S0+ [ a(olds < oh (660
In particular, for 7 = 0,1, we get
1= o(Uf(t) < F5(8) < [1+ o()]fy(t)s V£ € [torti]. (6.62)
By (3.11) and the definitions of f;, we get
11— o(1)]J5(t0)] < 5] < [1+o(D][z5(to)], ¥ ¢ € [torta], § = 0,1. (6.63)
Together with (6.6), for t € [t,,t1], we have
1.8p0 < |zo(t)| < 2.2pp, 0.8n < |z1(t)| < 1.2n. (6.64)
On the other hand, for j > 1, from (6.61), we obtain f;(t) < f;(t,) + o(1)p3 for t € [to, t1].

So, by (3.11), (6.6), and the definition of f;, we get

lz;(t)] < 1+ o(1)]f;(1)? < 7\/3;»0, Ve ty,t], Vij>1. (6.65)

Step 2: Let us define

2

ty = sup{t > t1 : fo(s) < 71%’ Vs €[t} (6.66)
By (6.64), t2 < t;. We shall prove that
t) <ty <th:=t;i+a ‘lo " a:=2 [n—2]2 (6.67)
Lo “5h) T TR0 |
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For all t; < t < ta, fo(t) < . Note h(t) > fi(t1)/2 > (1 + 0(1))(0.8n)2/2 > (0.3)n2.

10°
From (6.24) and Lemma 6.5, we get

h(t) > (fo+h)(t1) — fo(t) — 2(K + 1) max |1jllg;l(s)ds

t1
2 2

t
> (0.3)n2 — n- 6.7+5 2 ds > .
> (0.3)n 10 Cn /t1 [n +ng(s)|ds > 100

By (6.25), (6.30) and (6.68), we have, for t € [t1,t}],
2

. n
fo =27 fo — 2|pollgo| > 270(2h)* fo — 4n|go| > 2’7[%]2f0 — 4nlgol.

Note the coefficient of fjy is a. Thus

fot) = e fo(t1) — 4n /t e~ ") gy (5)ds].

t1

On the other hand, from (6.49), we have

t t
n/ e go(s)ds < n/ (%70 4 n2g(s)]ds

t1 t1

Therefore,

Step 3: Define
ti = sup{t >ty : f(s) > p2, ¥V s € [ta, 1)}

From (6.68), we get t; > to. We shall prove in Steps 3 and 4 that

to +

1 6
—n4 log — <t; <tg:=ts+ —p 420
10~ n ¥

By definition of t;, we get
f(t) > ps, Vteta,ty).

From Lemma 6.2 and (6.75), we have

C () = 21t Io(t) — Anlgol, V1 € [12, 1),

From this and as in (6.72), we also obtain
1 2 4(t7t ) n2
folt) > 5 fo(t3) > 2 € [ 1),

From this, (6.25), and Lemma 6.5, for t € [t1,t;),

CUF0) < 4 ol0) (1) + Crmax gy
< 2 f(0)? + Ol + n2g(s)
< 5 nin n“g(s)].
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(6.69)
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(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)



From this and (6.75), (and 0 < 55), we get

n?y 3, -4 n’y  Cn[n®™ 4 n’g(s)] f
Note that by (6.51), (6.68), Proposition 6.3 and § < 7, we have V ¢ > t,
¢
p 110 / g(s)ds < o(1)n~1 =95 =20-9/3 — 1)~ < 5(1) f(t) 1. (6.80)
to

Integrating (6.79) in [t2,t], we get

£ < 11t 2+ )] Ve (it (61

In particular, p? < f(t) < [" X (t — t2)] 7Y, which shows t; < t3, and f(t;) = pg. From this,
(3.11) and (6.77), we get the estimates (6 60). Since

(@)

1
ti—to < (ti—ta) 4+ (tg —t1) + (1 — to) < —n 12 4 Cn~*log — +n~3 (6.82)
n

)

by (6.67) and (6.64), we get the upper bound of ¢; — t, in Prop. 6.7.

Step 4: It remains to show that ¢; > to + lg;fn*‘l log 1. Recall g(t) < o(1)npf for all
t >t =t,+n"3 from Lemma 6.5. By (6.22) and Prop. 6.3,

F(t) > —93nf(t) — Cn[nST 4 n2g(t)] > —103n* f(1), V t € [t1, 1], (6.83)
where ¥ = max{1, (d\;)_ : Va,b,l =0,..., K}. This implies that
nt f(ty) > -

ti—ty > 2 log
2710y Cf(t

0 1
n~*log —. (6.84)
7 n

i)
For the second inequality we have used f(t2) > h(t2) > n?/50 by (6.68). This completes
the proof of Proposition 6.7. O

At t = t; the solution enters pp-neighborhood of ground states and we change to lin-

earized coordinates. For that purpose we prepare outgoing estimates at t = t;.

Lemma 6.8 Let t; be as in Proposition 6.7. For any t > t;, we have

< E[AL,l(t) + AL,Q(t)]u

eHotewy| <

L2

loc 1 (685)
He—zHo(t—ti)é‘(ti) 5[AG 1( ) + ACT"Q (t)]7
where for some constant C7 > Cg and o’ = 3(1;;2) ,

Apa(t) i=2C[n 2t — ,)"T/0 4 p(t) + 0P p (1),
Aga(t) = 207[71*1”(75 — 1) 4+ 12240 (At +1t)~ o+a]

5p—18+ps (6.86)

) R

AL72(t) — 2n »r — t(tZ to) <t - ti>71/27

/

Aga(t) :=20m3(t; — t,)(t —t,) 77 .
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Proof. Decompose e ("t Hog (1) = y(t) 4 J(t), where
t; )
(t) = =it g1y g(p) = / =it p 3 (5 ds.
Denote T' = t; — t,. By Lemma 6.1 and using n~* 10g% < T < n2@H9) | we have

1 1
()l < Aalt) < SAca®), IOz < Aslt) < SALi (),

for some C7. By (6.38), we have

p+2

IG() o < Cln® +0(1)02(s)] Vs € [to,ts],  a(s) = [po(s — to) 772

So, we have (using % > 2)

t; , L , -~
[Tl e < C/ 6= |77 (|G (s)llwr ds < C [ |t —s|77[n° + 0o(1)d2(s)]ds
to to

< COnPT(t—t) 7 + p2(t —t,) 7 <

It remains to estimate |]J(t)||L12 . By (6.35) an

_p
1G ()| g < On® 4+ O |E(s)2_+o0(1) €(s)IIE2

By (6.30) and (6.5),

5p—18+pd 3/2 po

1G() i <o) 272 + py/ “(s —to) 2]

Thus

t; ,
1)z < C [ min{(t— )2 (t = )" }IG(s) | g ds

to
t; ) B s )
<o(1) [ min{(t— )2 (t—5) Y T2 + gy s — to) 7 2)ds
to
5p—18+ps T’
< O(l)n%i@ — )2 4 0(1),03/2(15 )M — 1)V,

t—1,

which is bounded by 2A7 2(t). This completes the proof of the lemma.

7 Converging to a ground state

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

In this section we consider the solution when it is already inside a neighborhood of the
ground states. Although similar to [4, 31, 7, 30], it requires a proof because the dispersive
component has much worse estimates. We will however content ourselves with formulating

the main proposition and skip the proof.
As in Section 4, for fixed T' > t; we decompose ¥(t) as (see (3.17))

Y(t) = [Qoner) + a(t)0EQo nery + C(t) + n(B)]e  FHPO ¢ e [t;, 7).
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We have a(T") = 0, and

Ren

K
C:Zij G :zjuj_—i_zjuj_: [77] = |:IHI77

} = ey 4+ e . (7.2)
j=1

Denote zp(t) = (Zfil |2;(t)|?)'/2. From Lemma 3.3 and Proposition 6.7, (7.1) is valid at
least for T' > t; sufficiently close to ¢;. It follows from Proposition 7.2 below that (7.1) is
valid with suitable estimates for all T' > ¢; and n(T') converges to some ny ~n as T — oo.
We first state the initial estimates at time ;.

Lemma 7.1 (Initial estimates) There exists Cg > 0 such that if T > t; and n(T")/n(t;) €
(3:5). then

4 6
=Po < zh(t;) < =0, (7.3)

and, fort >t;,

HeL(t_ti)ﬁi(ti)

o SAL(E) == Apa(t) + Apa(t) + Cen®(t —t;) /2
Lloc / (74)
HCL(t_ti)’ni (ti)HLP S A(;(t) = AGjl(t) + AG’Q(t) + an3<t — ti>_a

where A1, Ap 2, Ag and Ag o are defined in Lemma 6.8.

We next formulate the main proposition of this section. Denote

pt) = p(t —t;) = [pg % +~yon*(t — ;)] /2,
Ss(t) = n= 3070t — ,)"0/P 4 nS(t — £,)75/P < o(1)np(t)?,

and

pt) Hzu(®)],  [2Dp(t)] a(t),
M7 = sup max [Aa(t) +n™2p(t)% 31 Inll b . (7.6)
LT [AL(E) + AZ(E) + =50 + s 0] o

Proposition 7.2 Suppose for T > t; we have n(T)/n(t;) € (3,3) and M} < 3. Then we
have M3 < 3 and n(T)/n(t;) € (3, 3).

This Proposition implies Theorem 1.1 in the case k = 0, see e.g. [4, 31, 7, 30]. Since the
proof is standard, it is skipped and can be found in [21].
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