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Abstract

Consider a nonlinear Schrödinger equation in R
3 whose linear part has three or more

eigenvalues satisfying some resonance conditions. Solutions which are initially small in
H1 ∩ L1(R3) and inside a neighborhood of the first excited state family are shown to
converge to either a first excited state or a ground state at time infinity. An essential
part of our analysis is on the linear and nonlinear estimates near nonlinear excited
states, around which the linearized operators have eigenvalues with nonzero real parts
and their corresponding eigenfunctions are not uniformly localized in space.
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1 Introduction

Consider the nonlinear Schrödinger equation in R
3,

i∂tψ = H0ψ + κ|ψ|2ψ, ψ|t=0 = ψ0, (1.1)

where H0 = −∆ + V is the linear Hamiltonian with a localized real potential V , κ = ±1,
and ψ(t, x) : R × R

3 → C is the wave function. We often drop the x dependence and write
ψ(t). We assume ψ0 ∈ H1 is localized, say ψ0 ∈ L1, so that its dispersive component decays
rapidly under the evolution. For any solution ψ(t) ∈ H1(R3) its L2-norm and energy

E [ψ] =

∫
1

2
|∇ψ|2 +

1

2
V |ψ|2 +

1

4
κ|ψ|4 dx (1.2)

are constant in t. The global well-posedness for small solutions in H1(R3) can be proven
using these conserved quantities no matter what the sign of κ is.

We assume that H0 has K + 1 simple eigenvalues e0 < e1 < · · · < eK(< 0) with
normalized real eigenfunctions φk, k = 0, 1, . . . , K, where K ≥ 2. They are assumed to
satisfy

e0 < 2 e1 < 4 e2, (1.3)

and some generic conditions to be specified later. Through bifurcation around zero along
these eigenfunctions, one obtains K + 1 families of nonlinear bound states Qk,n = nφk + h,
h = O(n3) and1 (h, φk) = 0 for k = 0, . . . , K, and n > 0 sufficiently small, which solve the
equation

(−∆ + V )Q + κ|Q|2Q = EQ, (1.4)

for some E = Ek,n = ek + O(n2), see Lemma 2.1. They are real and decay exponentially
at spatial infinity. Each of them gives an exact solution ψ(t, x) = Q(x)e−iEt of (1.1). The
family Q0,n are called the nonlinear ground states while Qk,n, k > 0, are called the k-th
nonlinear excited states.

Our goal is to understand the long-time dynamics of the solutions at the presence of
nonlinear bound states. The first question is the stability problem of nonlinear ground
states. It is well-known that nonlinear ground states are orbitally stable in the sense that
the difference

inf
n,θ

∥∥∥ψ(t) − Q0,n eiθ
∥∥∥

H1(R3)
(1.5)

remains uniformly small for all time t if it is initially small. On the other hand, the difference
is expected to approach zero locally since the majority of which is a dispersive wave that
scatters to infinity. Hence one expects that it is asymptotically stable in the sense that

∥∥∥ψ(t) − Q0,n(t) eiθ(t)
∥∥∥

L2
loc

→ 0 (1.6)

1The L2 inner product ( , ) is (f, g) =
R

R3 f̄ g dx. For a function φ ∈ L2, we denote by φ⊥ the L2-subspace
˘

g ∈ L2 : (φ, g) = 0
¯

.
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as t → ∞, for a suitable choice of n(t) and θ(t). Here ‖·‖Lp
loc

denotes a local Lp norm,

‖φ‖Lp
loc

= ‖φ‖Lp
−r0

(1.7)

for some fixed r0 > 10, and for r ∈ R

‖φ‖Lp
r

= ‖〈x〉r φ(x)‖Lp(R3) , 〈x〉 = (1 + |x|2)1/2. (1.8)

One is also interested in how fast (1.6) converges and whether n(t) has a limit.
The second question is the asymptotic problem of the solution when ψ(0) is small but

not close to ground states. It is delicate since nonlinear excited states stay there forever
but are expected to be unstable from physical intuition. Thus, a solution may stay near an
excited state for an extremely long time but then moves on and approaches another excited
state.

We now review the literature, assuming ψ0 is small in H1 ∩ L1.
If −∆+V has only one bound state, i.e., with no excited states, the asymptotic stability

of ground states is proved in [26, 27], with convergence rate t−3/2. It is then shown in [22]
that all solutions with small initial data, not necessarily near ground states, will locally
converge to a ground state.

Suppose −∆ + V has two bound states. the asymptotic stability of ground states is
proved in [31], with a slower convergence rate t−1/2 due to the persistence of the excited
state. The problem becomes more delicate when the initial data are away from ground
states. It is proved in [33] that, near excited states, there is a finite co-dimensional manifold
of initial data so that the corresponding solutions locally converge to excited states. Outside
of a small wedge enclosing this manifold, all solutions exit the excited state neighborhood
and relax to ground states [32]. It is further showed in [34] that for all small initial data
in H1 ∩ L1, there are exactly three types of asymptotic profiles: vacuum, excited states or
ground states. The last problem is also considered in [29].

Suppose −∆ + V has three or more bound states. The asymptotic stability of ground
states is proved in [30]. In fact, it is shown that all solutions with

‖ψ0‖3−ε
H1∩L1 ≤ |(φ0, ψ0)| ≪ 1, 0 < ε ≪ 1, (1.9)

relax to ground states. It ensures that the solution is away from excited states but allows
the ground state component to be much smaller than other components.

We also mention a few related results on the asymptotic stability of ground states of
nonlinear Schrödinger equations with more general nonlinearities. For small solutions, one
extension is to replace the resonance condition (1.3) by weaker conditions, e.g. those by
[10] and by [8]. Another extension is to assume ψ0 ∈ H1 without assuming ψ0 ∈ L1. It is
first proved in [12] for K = 0 and dimension N = 3 and then extended by [19, 20] for K = 0
and N = 1, 2. It is also extended by [8] for K ≥ 1 with (1.3) replaced by weaker conditions
used by [10]. A third extension is to allow subcritical nonlinearity ±|ψ|p−1ψ, p < 1 + 4/N ,
see e.g. [15]. A fourth extension is to assume K = 1 and e1 has multiplicity, see [11, 13].

The stability of large solitary waves is considered for K = 0, 1, by [3, 4, 5] for N = 1
and by [6, 7] for N = 3.

See [18, 24, 13] and their references for construction of stable manifolds similar to that
in [33].

In this paper, our goal is to continue the study of [30] under the same assumptions,
with initial data ψ0 now inside a neighborhood of the first excited state Q1,n. This is the
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easiest interesting case not covered in [30]. Guided by the K = 1 case, one expects that the
solution should either converge to a first excited state (with the ground state component
always negligible), or leave the excited state neighborhood after some time (which may be

extremely long, say greater than ee−1/n
), and then relax to a ground state.

The new difficulty of the K > 1 case is the existence of higher excited state components.
If the solution is to converge to a first excited state with the ground state component always
negligible, one can think that the ground state component is absent and the first excited
state as a new ground state. Thus, in the K > 1 case the convergence to a first excited
state is expected to be in the rate t−1/2, much slower than t−3/2 in the K = 1 case.

When the difference is of order t−3/2, one can use centered orthogonal coordinates as in
[22, 34],

ψ(t) = Q1,n(t)e
iθ(t) + h(t), h(t) = x0(t)φ0 + ξ(t), ξ ∈ Ec(H0). (1.10)

The equations of ṅ(t) and θ̇(t) contain linear terms in h. When x0(t) is negligible, these
linear terms are of order t−3/2 and hence integrable in t, ensuring the convergence of the
parameters. However, when K > 1, the difference is order t−1/2 and one cannot show
the convergence of the parameters if their equations contain linear terms. To remove linear
terms, one is forced to use linearized coordinates around the first excited state, to be specified
later in §3.2.

We now describe a few special properties of the linearized operator around an excited
state. When the function ψ is close to a nonlinear bound state Q = Qm,n with corresponding
frequency E = Em,n, one writes ψ = (Q(x)+h(t, x))e−iEt. The perturbation h(t, x) satisfies

∂th = Lh + nonlinear terms, (1.11)

where the linearized operator L around Q is given by

Lh = −i
{
(H + κQ2)h + κQ2 h

}
, H = −∆ + V − E + κQ2. (1.12)

Note HQ = 0. Since L does not commute with i, it is not useful to consider its spectral
properties. Instead one looks at its matrix version acting on

[
Re h
Im h

]
:

L =

[
0 H

−H − 2κQ2 0

]
. (1.13)

The spectral property of L for m > 0 is studied in [33] and recalled in Proposition 2.4.

It is a perturbation of J(H0 − em) with J =

[
0 1
−1 0

]
which has eigenvalues ±i(ek − em),

k = 0, . . . , K. When m > 0, k < m and ek < 2em, the eigenvalues ±i(ek−em) are embedded
in the continuous spectrum ±i [|em|,∞). These embedded eigenvalues split into a quadruple
of eigenvalues of L, ±λk and ±λ̄k, with Imλk = |ek−em|+O(n2) and C−1n4 < Re λk < Cn4

(assuming the generic condition (1.17)). The size of their corresponding eigenvectors are
roughly2

OL2
100

(1) +
O(n2)

〈x〉 1|x|<n−4 . (1.14)

The second part is not localized; It is small in L∞∩L3, of order 1 in L2, and of order n6−12/p

in Lp for p < 2. In particular, the projection PL
c onto the continuous spectral subspace EL

c

of L is of order n6−12/p ≫ 1 in Lp for p < 2, giving an extra difficulty to the usual analysis.

2Denote 〈ξ〉 = (1 + |ξ|2)1/2 for ξ ∈ R
d, d ≥ 1. For r ∈ R, denote by L2

r the weighted L2 spaces with
‖f‖L2

r
= ‖〈x〉r f(x)‖L2 .
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To overcome this difficulty, we prove decay estimates of the form (see Lemma 2.11)
∥∥∥etLP ♯

c ϕ
∥∥∥

Lp
≤ Cpt

− 3
2
+ 3

p 〈t〉
3
2p ‖ϕ‖Lp′ , (t ≥ 0) (1.15)

for 3 ≤ p < 6, with constant Cp independent of n. Here P ♯
c is an extended projection:

It is the sum of PL
c and all projections onto eigenspaces whose corresponding eigenvalues

have negative real parts. As shown in Remark (iii) after Lemma 2.11, these estimates with

n-independent constant are false if P ♯
c is replaced by PL

c . Also note that (1.15) is time-
direction sensitive: it is true only for t ≥ 0. The decay exponent above is not as good as the
usual free Schrödinger evolution, but it is sufficient for us if we take p < 6 close to 6. A side
benefit of extending Pc to P ♯

c is that we no longer need to track the component (P ♯
c −Pc)h.

Our assumptions on the operator H0 = −∆ + V are as follows:
Assumption A0. H0 = −∆+V acting on L2(R3) has K +1 simple eigenvalues e0 < e1 <
. . . < eK < 0, K ≥ 2, with normalized real eigenfunctions φ0, . . . , φK .
Assumption A1. V (x) is a real-valued function satisfying |∇αV (x)| . 〈x〉−5−2r1 for
|α| ≤ 3, for some r1 > 9/2 to be given by Lemma 2.2. 0 is not an eigenvalue nor a
resonance for H0.
Assumption A2. Resonance condition. We assume that

e0 < 2 e1 < 4 e2. (1.16)

We further assume that, for some small s0 > 0,

γ0 ≡ inf
0≤m≤1,|s|<s0

m<k,l≤K

lim
r→0+

Im

(
φmφ2

k ,
1

−∆ + V + em − ek − el − s − ri
PH0

c φmφ2
k

)
> 0.

(1.17)
Assumption A3. No-resonance condition (between eigenvalues). Let jmax = 3. For all
j = 2, . . . , jmax and for all k1, . . . , kj , l1, . . . , lj ∈ {0, . . . , K}, if ek1 + · · ·+ekj = el1 + · · ·+elj ,
then there is a permutation s of {1, . . . , j} such that (l1, . . . , lj) = (ks1, . . . , ksj).

Assumption A1 ensure several estimates for linear Schrödinger evolution such as decay
estimates and the W k,p estimates for the wave operator WH0 = limt→∞ eitH0eit∆. They are
certainly not optimal. The main assumption in A2 is the condition ek−1 < 2ek. It ensures
that H0 + em − ek − el is not invertible in L2 for m < k, l, and provides (for our cubic
nonlinearity) the required resonance between eigenvalues through the continuous spectrum.
Since the expression for γ0 is quadratic, it is non-negative and γ0 > 0 holds generically.
Assumption A3 is a condition to avoid direct resonance between the eigenvalues. It is
trivial if K = 0, 1. It holds true generically and is often seen in dynamical systems of
ODE’s. If we relax the assumption (1.16), we may need to increase jmax.

Now we are ready to state our main theorem.

Theorem 1.1 Assume Assumptions A0–A3 and fix 0 < δ ≤ 1
10 . There are constants

C0, C1 > 0, and small n0 > 0 such that the following hold. If n = (φ1, ψ0) ∈ (0, n0) and
‖ψ0 − nφ1‖H1∩L1 ≤ n1+δ, then the solution ψ(t) of (1.1) with ψ(0) = ψ0 satisfies

lim sup
t→∞

∥∥∥ψ(t) − Qm,n+eiθ(t)
∥∥∥

L2
loc

t1/2 ≤ C0/n (1.18)

for m = 0 or m = 1, for some n+ ∈ (C−1
1 n, C1n) and some θ(t) ∈ C([0,∞), R).

5



In fact we have more detailed estimates of the solution for all time, see Propositions 4.2,
5.1, 6.3, 6.7, and 7.2. In particular, if the initial data ψ0 is placed in the neighborhood of an
excited state Qm,n with m ≥ 2, even if K > 2, Propositions 4.2, 5.1, 6.3, 6.7 show that the
solution will either converge to Qm,n+ for some n+, or eventually exits the neighborhood,
stays away from bound states for a time interval of order between n−4 log 1

n and n−4−2δ,
until it reaches the neighborhood of another bound state Qm′,n′ , m′ < m. If m′ = 0, then
Proposition 7.2 shows that ψ(t) will converge to some Q0,n+ . However, if m′ > 0, our
current analysis is not sufficient to control its evolution after this time.

We now sketch the structure of our proof and this paper.
In §2 we give the linear analysis, including the decay estimates (1.15).
In §3 we consider the decomposition of the solutions in different coordinates and the

normal forms of their equations.
In §4 we start with the solution in a n1+δ-neighborhood of Q1,n and use linearized

coordinates (3.17). We follow the evolution as long as the ground state component z0 is
negligible, characterized by |z0(t)| < n−3(n−4−2δ + t)−1. If it is always negligible, we prove
that the solution converges to an excited state with convergence rate t−1/2.

In §5 we consider the case that |z0(tc)| ≥ n−3(n−4−2δ + tc)
−1 in a first time tc ∈ [0,∞),

which may be 0 or extremely large, say > ee−1/n
. After an initial layer, we show that |z0(t)|

starts to grow exponentially with exponent Cn4 until it reaches the size 2n1+δ at time to.
The time it takes, to − tc, is of order n−4 log 2n1+δ

|z0(tc)| . Along the way higher excited states

may have size larger than |z0(t)| but can be controlled. This section is the most difficult
part in the nonlinear analysis because it involves estimates not previously studied.

In §6 we study the dynamics after to when there are at least two components of size
greater than 2n1+δ, and change to orthogonal coordinates

ψ = x0φ0 + · · · + xKφK + ξ, ξ ∈ Ec(H0). (1.19)

Although ξ(to) is already non-localized, we can prove “outgoing estimates” for ξ(to), in-
troduced in [32, 34], to capture the time-direction sensitive information of the dispersive
waves. We show that, after a time of order between n−4 log 1

n and n−4−2δ, the ground state
component x0 grows to order n while all other components become smaller than n1+δ. (This
is called the transition regime.)

In §7 the ground state component becomes dominant and we change to linearized coor-
dinates around it. Again we need to keep track of out-going estimates during the coordinate
change. We show that the solutions will converge to ground states with convergence rate
t−1/2. The analysis is similar to §4 but easier because it has no unstable direction. (This is
called the stabilization regime.)

Analysis similar to §6 and §7 is done in [30], (and in the two-eigenvalue case near ground
states in [4, 31, 32, 7, 5]). However, with weaker decay estimates like (1.15), we need more
refined analysis. For example, since the nonlinearity is of constant order n3 in the transition
regime, we need to make this time interval as short as possible by taking δ > 0 small. We
also take p < 6 close to 6 to minimize our loss in estimating the Lp-norm of the dispersive
component during this interval.

New proof of linear decay estimates for ground states

We end this introduction by noting that, our linear analysis, Lemmas 2.11 and 2.13, in the
case m = 0, provide a new proof of linear estimates for the linearized operators around
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ground states, which is used to prove the stability of ground states in 3D, see [6, 31, 30].
Proofs in these references either use the wave operator between L and −i(H0 − E), or use
a similarity transform L = U(−iA)U−1 for some self-adjoint perturbation A of H0 − E
and non-self-adjoint operator U . Our proof here use simple perturbation argument and
requires less assumptions on the potential V . Moreover, this perturbation argument allows
the operator V to be more general than a potential, as long as the decay and singular decay
estimates for −∆ + V hold.

2 Linear analysis

In this section we will study various properties of the linearized operator around a fixed
bound state, in particular an excited state. The starting point is the following lemma on
the existence of nonlinear bound states and their basic properties, see [26, 12].

Lemma 2.1 (Nonlinear bound states) Assume Assumptions A0–A1. There exists a
small n1 > 0 such that for each k = 0, . . . , K and n ∈ [0, n1], there is a solution Qk,n ∈
H2 ∩ W 1,1 of (1.4) with E = Ek,n ∈ R such that

Qk,n = nφk + q(n), (q, φk) = 0. (2.1)

The pair (q, E) is unique in the class ‖q‖H2 + |E − ek| ≤ n2. Moreover, ‖q‖H2∩W 1,1 . n3,∥∥ ∂
∂nq

∥∥
H2∩W 1,1 + |E − ek| . n2, and |E − ek − Ckn

2| . n4 where Ck = κ
∫

φ4
k. We also

denote ∂EQk,n = ∂
∂Ek

Qk,n = ∂
∂nQk,n/ ∂

∂nEk,n = 1
2Cnφk+OH2∩W 1,1(n), with (Qk,n, ∂EQk,n) =

1
2Ck

+ O(n).

In the following we fix m ∈ {0, . . . , K} and n ∈ [0, n1]. Let Q = Qm,n, ∂EQ = ∂EQm,n

and E = Em,n. The function Q satisfies HQ = 0 where

H = H0 − E + κQ2. (2.2)

The following lemma collects useful properties of H.

Lemma 2.2 Assume Assumptions A0-A1 and let H be defined as in (2.2). The operator
H has K + 1 real eigenvalues ẽk = ek − em + O(n2) with normalized eigenfunctions φ̃k =
φk +O(n2). In particular, ẽm = 0 and φ̃m = CQm. The projection to its continuous spectral
subspace is PH

c f = f − ∑
k(φ̃k, f)φ̃k. Furthermore, we have the following decay estimates

∥∥e−itHPH
c ϕ

∥∥
Lq ≤ C|t|−3/2+3/q ‖ϕ‖Lq′ , (2 ≤ q ≤ ∞), (2.3)

and singular decay estimates: for sufficiently large r1 > 9/2, for 0 ≤ N ≤ 3, for αj ∈ C

with Im αj > 0, |Re αj + em| ∈ [a1, a2] ⊂ (0,∞), j ≤ N ,

∥∥〈x〉−r1 e−itHΠN
j=1(H − αj)

−1PH
c ϕ

∥∥
L2 ≤ C 〈t〉−3/2 ‖〈x〉r1 ϕ‖L2 , (t ≥ 0). (2.4)

Here the constant C is independent of n, ϕ and αj.

Note that this lemma contains H = H0 as a special case with n = 0. The proof
of the first part is well-known by perturbation. Estimate (2.3) is by Journe-Soffer-Sogge
[17]. Estimate (2.4) for N = 0 is by Jensen-Kato [16] and Rauch [23]. Estimate (2.4) for
α1 = · · · = αN , N ≥ 1, was first proven by Soffer-Weinstein [28] for Klein-Gordon equations,
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then by Tsai-Yau [31] and Cuccagna [7] for (linearized) Schrödinger equations. The general
case is similar and a proof based on Mourre estimate is sketched below for completeness.
(See [7] for a different approach).

Denote the dilation operator D = x · p + p · x with p = −i∇, and the commutators

ad0
D(H) = H, adk+1

D (H) = [adk
D(H), D], k ≥ 0. (2.5)

Fix g∗ ∈ C∞
c (R) with g∗ = 1 on [−1, 1] and supp g∗ ⊂ (−2, 2). For each j, let gj(t) =

g∗((t − Re zj)/ε). If ε > 0 is sufficiently small, gj(H)adk
D(H)gj(H) are bounded operators

in L2 for k ≤ 3 and all j, and the Mourre estimate holds: For some θ > 0,

gj(H)[iH, D]gj(H) ≥ θgj(H)2, ∀j. (2.6)

See [9]. Thus the pair H, D satisfies the assumptions of the minimal velocity estimates in
[14] and Theorem 2.4 of [25], and one has

∥∥χ(D ≤ θt/2)e−itHgj(H) 〈D〉−r1
∥∥

L2→L2 ≤ C 〈t〉−r1+ε1 , (2.7)

where 0 < ε1 ≪ 1 and χ(D ≤ a) is the spectral projection of D associated to the interval
(−∞, a]. The same argument of [28] then gives (2.4).

Note that all φk, φ̃k, Qk,n and Rk,n decay exponentially at infinity, see [2].

2.1 Linearized operator

A perturbation solution ψ(x, t) of (1.1) of the exact solution Q(x)e−iEt can be written in
the form

ψ(x, t) = [Q(x) + h(x, t)]e−iEt (2.8)

for some function h which is small in a suitable sense. Then, h satisfies

∂th = Lh + nonlinear terms, (2.9)

where the operator L is defined as

Lh = −i{(H0 − E + 2κQ2)h + κQ2h̄}. (2.10)

The operator L is linear over R but not over C. As a result it is not useful to consider its
spectral properties.

Consider the injection from scalar functions to vector functions

 : L2(R3, C) → L2(R3, C2), (ϕ) = [ϕ] :=
[

Re ϕ
Im ϕ

]
. (2.11)

With respect to this injection, the operator L is naturally extended to a matrix operator
acting on L2(R3, C2) with the following form

L =

[
0 L−

−L+ 0

]
, where

{
L− = H = H0 − E + κQ2,
L+ = H + 2κQ2 = H0 − E + 3κQ2.

(2.12)

Note L is a perturbation of JH where J =
[

0 1
−1 0

]
. We will use L = −1L for computations

involving L.
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The space L2(R3, C2) is endowed with the natural inner product

(f, g) =

∫

R3

(f̄1g1 + f̄2g2) dx (2.13)

for f =
[

f1

f2

]
and g = [ g1

g2 ]. We will use the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (2.14)

2.2 Invariant subspaces

In this subsection we study the spectral subspaces of L. Since L is a perturbation of JH, we
first give the following lemma for comparison. Recall J =

[
0 1
−1 0

]
and φ̃k are eigenfunctions

of H with eigenvalues ẽk given in Lemma 2.2.

Lemma 2.3 (Invariant subspaces of JH) Assume Assumptions A0–A2. The space
L2(R3, C2) can be decomposed as the direct sum of JH-invariant subspaces

L2(R3, C2) = EJH
0 ⊕ · · · ⊕ EJH

K ⊕ EJH
c . (2.15)

For each k ∈ {0, . . . , K}, the space EJH
k is spanned by 2 eigenvectors

[
1
−i

]
φ̃k and [ 1

i ] φ̃k

with eigenvalues −iẽk and iẽk, respectively. Its corresponding orthogonal projection is

P JH
k

[
f1

f2

]
=

[
(φ̃k,f1)

(φ̃k,f2)

]
φ̃k. The subspace EJH

c has projection P JH
c f =

[
P H

c f1

P H
c f2

]
.

The proof is straightforward and skipped. We next give the corresponding statements
for L.

Proposition 2.4 (Invariant subspaces of L) Assume Assumptions A0–A2 and let r1 >
9/2 be from Lemma 2.2. Fix m ∈ {0, . . . , K} and n ∈ (0, n1]. Let Q = Qm,n, ∂EQ =
∂EQm,n and E = Em,n. The space L2(R3, C2) can be decomposed as the direct sum of
L-invariant subspaces

L2(R3, C2) = EL

0 ⊕ · · · ⊕ EL

K ⊕ EL

c . (2.16)

If f and g belong to different subspaces, then

(σ1f, g) = 0. (2.17)

These subspaces and their corresponding projections satisfy the following.

(i) EL
m is the 0-eigenspace spanned by

[
0
Q

]
and

[
∂EQ

0

]
, with L

[
0
Q

]
= [ 0

0 ] and L
[

∂EQ
0

]
=

−
[

0
Q

]
. Its projection is Pmf = cm(σ1

[
∂EQ

0

]
, f)

[
0
Q

]
+ cm(σ1

[
0
Q

]
, f)

[
∂EQ

0

]
, cm =

(Q, ∂EQ)−1.

(ii) EL

k for 0 ≤ k < m, if such k exists, is spanned by 4 eigenvectors Φk =
[ uk
−ivk

]
, Φ̄k,

σ3Φk and σ3Φ̄k, with eigenvalues λk, λ̄k, −λk, and −λ̄k, respectively. Here λk =
−i(ek − em) + O(n2), 3

4γ0n
4 ≤ Re λk ≤ Cn4, (γ0 is defined in (1.17)), uk and vk are

complex-valued functions, uk = ū+
k + ū−

k and vk = ū+
k − ū−

k , with

u+
k = φk + OL∞

3r1
(n2), u−

k = (H − iλ̄k)
−1φ∗

k + OL∞
3r1

(n2) (2.18)
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where φ∗
k = PH

c φ∗
k = OL∞

3r1
(n2). Furthermore, (uk, vk) = 0 and (uk, vℓ) = (ūk, vℓ) = 0

for k 6= ℓ. All (ūk, vk),
∥∥u+

k

∥∥
L2 and

∥∥u−
k

∥∥
L2 are equal to 1+O(n2) and

∥∥u−
k

∥∥
L2

loc
. n2.

The projection to EL

k is Pk + P ♯
k where

Pkf = ck(σ1Φ̄k, f)Φk + c̄k(σ1Φk, f)Φ̄k,

P ♯
kf = −ck(σ1σ3Φ̄k, f)σ3Φk − c̄k(σ1σ3Φk, f)σ3Φ̄k,

(2.19)

and ck = (σ1Φ̄k, Φk)
−1 = i/(

∫
2ukvk) = i/2 + O(n2).

(iii) EL

k for m < k ≤ K, if such k exists, is spanned by 2 eigenvectors Φk =
[ uk
−ivk

]
and

Φ̄k with eigenvalues λk and λ̄k, respectively. Here R ∋ iλk = ek − em +O(n2), uk and
vk are real-valued, both equal to φk + OL∞

3r1
(n2), and normalized by (uk, vk) = 1. Its

projection is Pk, also given by (2.19), with ck = i/2.

(iv) EL
c = {g : (σ1f, g) = 0,∀f ∈ Ek,∀k = 0, . . . , K}. Its projection is PL

c f = f −∑K
k=0 Pkf − ∑

k<m P ♯
kf .

Note that λk is in the first quadrant and near the imaginary axis for k < m, and in the
lower imaginary axis for k > m. They are all perturbations of −iẽk of Lemma 2.3. When
k < m, −iẽk are inside the continuous spectrum ±i[|Em|,∞) and their resonance make the
eigenvalues split.

-

6

u
E

L
m

u Φ̄j>m, λ̄j

u Φj>m, λj

u Φk<m, λk
uσ3Φ̄k,−λ̄k

u Φ̄k, λ̄k
uσ3Φk,−λk

Figure 1: Spectrum of L around Qm, 0 < m < K.

Proof. The same proof of [33, Theorem 2.2] works in our many eigenvalue case. The only
thing we need to check is the properties of u+

k and u−
k when k < m. Fix k < m. Denote

by Π the orthogonal projection from L2 onto {φ̃k, Qm}⊥, and B = 2κQ2
m. We omit the

subscript k below. By the defining equations LmΦ = λΦ and Φ = [ u
−iv ], ū satisfies

(H2 + HB)ū = −λ̄2ū. (2.20)
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By the same proof for the two-eigenvalue case in [33, section 2.1] (in which Π = PH
c ), ū can

be solved in the form

ū = φ̃ + h, h = Πh = −(H2 + ΠHBΠ + λ̄2)−1ΠHBφ̃. (2.21)

One can rewrite

h = (H2 + λ̄2)−1Ψ, Ψ = ΠΨ = [1 + ΠHBΠ(H2 + λ̄2)−1]−1ΠHBφ̃. (2.22)

By resolvent estimates and a power series expansion as in [33], the function Ψ is localized
and ‖Ψ‖L2

3r1

≤ Cn2. Since v = (iλ)−1(H + B)u, we have u± = ∓ 1
2z (H ∓ z + B)ū with

z = iλ̄ = |ek − em| + O(n2). For u+,

u+ = − 1

2z
(H − z)φ̃ − 1

2z
(H + z)−1Ψ − 1

2z
Bū. (2.23)

The first term is equal to (1 + O(n2))φ̃. Since (H + z)−1Π is order one, the remaining two
terms are OL∞

3r1
(n2), and so is φ − φ̃. This shows u+ = φ + OL∞

3r1
(n2). For u−,

u− =
1

2z
(H + z)φ̃ +

1

2z
(H − z)−1Ψ +

1

2z
Bū. (2.24)

The first term is O(n2)φ̃. Since (H − z)−1(Π−PH
c )Ψ are sum of eigenfunctions with O(n2)

coefficients, we get (2.18) with φ∗
k = 1

2zPH
c Ψ = OL∞

3r1
(n2).

The orthogonality (u, v) = 0 is equivalent to (σ1Φ, Φ) = (σ1σ3Φ, Φ) = 0, which follow
from the general fact shown in [33, §2.6] that

(σ1f, g) = 0 if Lf = λf, Lg = µg, and λ̄ 6= µ. (2.25)

It also follows from (2.25) that (uk, vℓ) = (ūk, vℓ) = 0 for k 6= ℓ. That ‖u+‖L2 = 1 + O(n2)
and ‖u−‖L2

loc
. n2 follow from (2.18). Note

0 = (ū, v̄) = (u+ + u−, u+ − u−) = (u+, u+) − (u−, u−) + (u−, u+) − (u+, u−). (2.26)

Since the last two terms are O(n2), we get ‖u−‖L2 − ‖u+‖L2 = O(n2). Finally

(ū, v) = (u+ + u−, ū+ − ū−) = (u+, ū+) − (u−, ū−) + (u−, ū+) − (u+, ū−). (2.27)

We have (u−, u+) − (u+, u−) = O(n2). By (2.18) we also have

(ū−, u−) = ((H−z̄)−1φ̄∗
k, (H−z)−1φ∗

k)+O(n4) = (φ̄∗
k, (H−z)−2φ∗

k)+O(n4) = O(n4) (2.28)

by the singular decay estimate of Lemma 2.2 with t = 0. Thus (ūk, vk) = 1 + O(n2).
Similarly, (ūk, vℓ) = O(n2) for k 6= ℓ. ¤

In the following lemma we provide more properties of u−
k .

Lemma 2.5 Assume the same as in Proposition 2.4 and fix k < m. Let r = r1. Then

(i)
∥∥u−

k

∥∥
Lp ≤ Cp(n

2 + n
6− 12

p ) for 1 ≤ p ≤ ∞, in particular
∥∥u−

k

∥∥
L2
−r

≤ Cn2.

(ii)
∥∥e−isHPH

c u−
k

∥∥
L2
−r

+
∥∥e−isH0PH0

c u−
k

∥∥
L2
−r

≤ Cn2 〈s〉−3/2 for s ≥ 0.

(iii)
∥∥u−

k

∥∥
H1 ≤ C.
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Proof. Denote z = iλ̄k and ϕ = φ∗
k. For (i), it suffices to check (H − z)−1ϕ, the main part

of u−
k in (2.18). Write H − z = −∆ + ν2 + V1 where V1 = V + κQ2

m, ν2 = Em + z with
Im ν > 0. Thus Im ν ∼ +n4. By resolvent expansion,

(H − z)−1ϕ = (−∆ − ν2)−1ϕ + (−∆ − ν2)−1V1(H − z)−1ϕ. (2.29)

Since the resolvent (−∆ − ν2)−1 has the convolution kernel G(x) = (4π|x|)−1 exp(iν|x|),
∥∥(−∆ − ν2)−1ϕ

∥∥
Lp . ‖G ∗ ϕ‖Lp . (‖G‖Lp(Bc

1) + ‖G‖L2(B1)
) · ‖ϕ‖L1∩L2 (2.30)

which is bounded by (n4−12/p + 1) · n2. Since
∥∥V1(H − z)−1ϕ

∥∥
L1∩L2 .

∥∥(H − z)−1ϕ
∥∥

L2
−r

.

n2, we have the same bound for the second term. The above show (i).
For (ii), we only need to consider e−isH0PH0

c u−
k since the other term follows from Lemma

2.2. By resolvent expansion R = (H − z)−1 = R0(1+κQ2
mR) where R0 = (H0 −Em − z)−1,

PH0
c u− = R0ϕ

′ + OL∞
3r1

(n2), ϕ′ = PH0
c (1 + κQ2

mR)ϕ = OL∞
3r1

(n2). (2.31)

Thus
e−isH0PH0

c u− = e−isH0R0ϕ
′ + OL2

−r
(n2 〈s〉−3/2). (2.32)

By the singular decay estimate for H0, the first term is also of order OL2
−r

(n2 〈s〉−3/2).

To prove (iii), it suffices to prove that ‖∇v‖L2 = O(1) where v = (H − z)−1ϕ. It can be
shown by multiplying the equation (H − z)v = ϕ by v̄ and then integrating it on R

3. ¤

We will need the following lemmas for scalar functions.

Lemma 2.6 Fix 0 ≤ k ≤ K, k 6= m. Let ϕ ∈ L2(R3, C) be a scalar function.
(i) Pk[ϕ] = Re αΦk, −1Pk[ϕ] = αū+ + ᾱu−, where

α = 2ck(σ1Φ̄k, [ϕ]) = −2cki[(u
+
k , ϕ) − (u−

k , ϕ̄)]. (2.33)

(ii) Pkϕ = 0 iff (σ1Φk, [ϕ]) = 0 iff (u+
k , ϕ) = (u−

k , ϕ̄).

(iii) For k < m, P ♯
kϕ = 0 iff (σ1σ3Φk, [ϕ]) = 0 iff (u+

k , ϕ̄) = (u−
k , ϕ).

Proof. Write [ϕ] = [ ϕ1
ϕ2 ]. Since [ϕ] is real, we have by (2.19) that Pk[ϕ] = Re αΦk with

α = 2ck(σ1Φ̄k, [ϕ]). Omitting the subscript k, we have

(σ1Φ̄k, [ϕ]) = (iv̄, ϕ1) + (ū, ϕ2) = (u+ − u−,−iϕ1) + (u+ + u−, ϕ2) = −i(u+, ϕ) + i(u−, ϕ̄),

which gives the formula for α. Thus

−1Pk[ϕ] = −1 Re α

[
u

−iv

]
=

1

2
{(αu + ᾱū) + i(−iαv + iᾱv̄)} = αū+ + ᾱu−. (2.34)

The claim (ii) follows from (i). For (iii), since σ3σ1σ3 = −σ1, (σ1σ3Φk, [ϕ]) = 0 is equivalent
to 0 = (σ1Φk, σ3[ϕ]) = (σ1Φk, [ϕ̄]) and hence to (u+

k , ϕ̄) = (u−
k , ϕ). ¤

The following lemma will be used to treat the linear term in the η equation.

Lemma 2.7 (i) For k < m,

JΦk = iΦk − 2i
[

1
−i

]
ū+

k . (2.35)

(ii) If f ∈ L2(R3, C2) and Pkf = 0, then ‖PkJf‖L2 . ‖f‖L2
−3r1

.
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Proof. For (i), rewrite
Φk =

[ uk
−ivk

]
=

[
1
−i

]
ū+

k + [ 1
i ] ū−

k . (2.36)

Applying J
JΦk = −i

[
1
−i

]
ū+

k + i [ 1
i ] ū−

k . (2.37)

Canceling u−
k we get (2.35).

For (ii), we have (σ1Φ̄k, f) = (σ1Φk, f) = 0. Using J∗ = −J , Jσ1 = −σ1J , and (2.35),

(σ1Φ̄k, Jf) = −(Jσ1Φ̄k, f) = (σ1JΦ̄k, f) = (σ1(−iΦ̄k + 2i [ 1
i ] u+

k ), f) = (2i [ i
1 ] u+

k , f).
(2.38)

Similarly (σ1Φk, Jf) = (2i
[

i
−1

]
ū+

k , f). This shows (ii). ¤

Note, in deriving (2.35) if we cancel u+
k instead of u−

k , we get

JΦk = −iΦk + 2i [ 1
i ] ū−

k . (2.39)

2.3 Decay estimate

In the following two subsections we prove decay estimates for etL with the constant inde-
pendent of n. This independence is essential for our analysis of the nonlinear dynamics both
inside a neighborhood of an excited and away from bound states. For example, it ensures
that the time spent traveling between bound states is no longer than O(n−4−2δ).

An estimate of the form
∥∥etLPL

c ϕ
∥∥

Lp ≤ C ‖ϕ‖Lp′ t−σ for 5 < p < 6, some σ > 0, and
a constant C independent of n, would be ideal. It is however false, see Remark (iii) after
Lemma 2.11. This is related to the fact that the projection PL

c as an operator acting on L1

is of order O(n−6) due to the presence of u−
k . We cannot avoid the projection PL

c : Suppose
F is the total nonlinearity in the equation of the perturbation h. Our choice of parameters
a(t) and θ(t) makes PmF = 0, but does not make F ∈ Ec. To avoid the large constant

problem, we extend the continuous spectral subspace Ec and absorb the range of P ♯
k, k < m,

which have exponential decay, into Ec. The range of Pk for k < m, which have exponential
growth, is left out and will be taken care of using the evolution with correct time direction.

Define E♯
c as the direct sum of EL

c and eigenspaces whose eigenvalues have negative real
parts

E♯
c = EL

c ⊕ spanC{σ3Φk, σ3Φ̄k : 0 ≤ k < m}. (2.40)

Its corresponding projection is denoted as

P ♯
c f = PL

c f +
∑

k<m

P ♯
k(f) = f − Pdf, Pdf =

K∑

k=0

Pk(f). (2.41)

We extend the definition of P ♯
c to scalar functions by P ♯

c ϕ = −1P ♯
c [ϕ], and similarly for

Pd. If a scalar function ϕ satisfies [ϕ] ∈ E♯
c, then (σ1Φk, [ϕ]) = 0 for all k.

The next lemma is on the uniform bound of H1-norm of etLP ♯
c ϕ for t ≥ 0.

Lemma 2.8 For any scalar function ϕ ∈ H1 we have

∥∥∥etLP ♯
c ϕ

∥∥∥
H1

≤ C ‖ϕ‖H1 , (t ≥ 0), (2.42)

where the constant C is independent of n and t ≥ 0.
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Proof. From (2.41) and (2.19), we have

etLP ♯
c ϕ = etLPL

c ϕ −
∑

k<m

[
c̄k(σ1σ3Φk, ϕ)e−λ̄ktσ3Φ̄k + ck(σ1σ3Φ̄k, ϕ)e−λktσ3Φk

]
. (2.43)

By Lemma 2.5, we have ‖Φk‖H1 = O(1) for all k < m. From this and Reλk > 0 for all
k < m, we can find a constant C > 0 independent of n such that

∥∥∥etLP ♯
c ϕ

∥∥∥
H1

≤
∥∥etLPL

c ϕ
∥∥

H1 + C ‖ϕ‖H1 . (2.44)

Moreover, by following the proof of [33, (2.6)], we see that there exists a constant C inde-
pendent of n such that ∥∥etLPL

c ϕ
∥∥

H1 ≤ C
∥∥PL

c ϕ
∥∥

H1 . (2.45)

Again, since ‖Φk‖H1 = O(1) for all k, we also have
∥∥PL

c ϕ
∥∥

H1 ≤ C ‖ϕ‖H1 for some constant
C which is independent of n. From this, (2.44), and (2.45), Lemma 2.8 follows. ¤

Lemma 2.9 If a scalar function η satisfies [η] ∈ E♯
c, then

∥∥η − PH
c η

∥∥
L∞

3r
. n2 ‖η‖L2

loc
+

∑

k<m

|(ū−
k , PH

c η)|. (2.46)

Proof. Write η′ = PH
c η and

η − η′ = (1 − PH
c )η =

∑
k(φ̃k, η)φ̃k. (2.47)

For k ≥ m, |(φ̃k, η)| ≤ O(n2 ‖η‖L2
loc

). For k < m, by Lemma 2.6 (ii),

(φ̃k, η) + O(n2 ‖η‖L2
loc

) = (u+
k , η) = (u−

k , η̄) = (u−
k , η̄′) + (u−

k , η̄ − η̄′). (2.48)

Since
∥∥u−

k

∥∥
L2

loc
. n2,

(u−
k , η̄ − η̄′) =

∑K
j=0(u

−
k , (φ̃j , η)φ̃j) = O(n2 ‖η‖L2

loc
). (2.49)

The above show the lemma. ¤

The following lemma provides decay estimates for e−itHu−
j .

Lemma 2.10 Let H∗ be the self-adjoint realization of −∆ on L2(R3). Let V be a localized
real potential so that H∗+V satisfies the decay and singular decay estimates (2.3) and (2.4).
Let 0 < n < n0 ≪ 1, a > 0, and z = a + n4i. Let ϕ(t) = n2(H∗ + V − z)−1e−it(H∗+V )Pcg
with ‖g‖L1 ≤ 1 and Pc = PH∗+V

c . Then for all p ∈ (3,∞], m = 1
2 − 3

2p ∈ [0, 1/2],

‖ϕ(t)‖Lp . t−m(1 + t)−m−min(m,1/4), ∀t > 0. (2.50)

Above the p-dependent constant is uniform in a ∈ [a1, a2] ⊂ (0,∞) and independent of t
and n.

Proof. The case V = 0 is postponed to Subsection 2.4. For general case V 6= 0, denote
R0 = (H∗ − z)−1, R = (H∗ + V − z)−1, S0(t) = e−itH∗ and S(t) = e−it(H∗+V ). By resolvent
expansion and Duhamel’s formula,

ϕ(t) = n2(R0 + R0V R0 + R0V RV R0)

(
S0(t) +

∫ t

0
S0(t − s)V S(s) ds

)
Pcg.

14



By the estimate for V = 0 case,
∥∥n2R0S0(t)Pcg

∥∥
Lp . α̃p(t) := t−m(1 + t)−m−min(m,1/4). By

(2.30), p > 3, and (L2
r ; L

2
−r)-estimate of R,

∥∥n2R0(V + V RV )R0S0(t)Pcg
∥∥

Lp .
∥∥∥n2|V |1/2R0S0(t)Pcg

∥∥∥
L2

. α̃p(t).

Thus, also by (2.3) with q = ∞, and ‖V ‖L∞→L1 . 1,

‖ϕ(t)‖Lp . α̃p(t) +

∫ t

0
α̃p(t − s) 〈s〉−3/2 ds . α̃p(t). (2.51)

¤

The following is the main result of this subsection.

Lemma 2.11 (Decay estimate) For any scalar function ϕ ∈ L9/8 ∩ L3/2,

∥∥∥etLP ♯
c [ϕ]

∥∥∥
L∞+L2

≤ Cα∞(t) ‖ϕ‖L9/8∩L3/2 , (t ≥ 0). (2.52)

For 3 < p < 6 and any scalar function ϕ ∈ Lp′,

∥∥∥etLP ♯
c [ϕ]

∥∥∥
Lp

≤ Cpαp(t) ‖ϕ‖Lp′ , (t ≥ 0). (2.53)

Above the constants are independent of n and ϕ, and

α∞(t) := t−1/2 〈t〉−2/3 , αp(t) := t
− 3

2
+ 3

p 〈t〉
3
2p . (2.54)

Remark. (i) For (2.52) we could have chosen ϕ ∈ Lq ∩ L3/2, 12
11 ≤ q < 6

5 . Then α∞(t) =

t−1/2 〈t〉−s, with s = 3/q− 2 ∈ (1/2, 3/4] by the same proof. The exponent q = 12
11 gives the

optimal decay rate that Lemma 2.10 provides for e−itHPcu
−
j . However, when we estimate∥∥η3

∥∥
Lq . ‖η‖3−3θ

L2 ‖η‖3θ
Lp , we prefer a larger q. For convenience we choose q = 9/8.

(ii) Suppose we keep q = 12
11 with α∞(t) = t−1/2 〈t〉−3/4, and estimate

∥∥η3
∥∥

L12/11 .

‖η‖3−3θ
L2 ‖η‖3θ

Lp . α∞(t), we need 11
2 < p < 6.

(iii) These estimates are false if P ♯
c is replaced by Pc. Suppose the contrary, then they

would be also true if P ♯
c is replaced by P ♯

d = P ♯
c − Pc. Consider the case m = 1 and ϕ = φ0

the e0-eigenfunction of −∆ + V . Then

∥∥∥etLP ♯
d [ϕ]

∥∥∥
Lp

∼ e−cn4t, ‖ϕ‖Lp′ ∼ 1. (2.55)

However the former is not bounded by Ct−k for all t > 0, for any k > 0 and C independent
of n.

Proof. Denote η(t) = etLP ♯
c [ϕ] and η′ = P JH

c η. Lemma 2.9 implies

‖η‖X .
∥∥η′

∥∥
X

+
∑

k<m|(ū−
k , η′)|, X = L∞ + L2. (2.56)

Denote L = JH + W1 with W1 =
[

0 0
−2κQ2

m 0

]
. By Duhamel’s formula,

η′(t) = etJHP JH
c P ♯

c [ϕ] +

∫ t

0
P JH

c e(t−s)JHW1η(s) ds. (2.57)
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By Lemma 2.6 (i),

−1P ♯
c [ϕ] = ϕ − −1 Re

∑K
j=0zjΦj = ϕ − ∑K

j=0(zj ū
+
j + z̄ju

−
j ) (2.58)

where zj ∈ C are bounded by ‖ϕ‖Lq for any q ≤ 2. Using (2.18) for j < m in particular
u−

j = (H − iλ̄j)
−1φ∗

j + OL∞
3r1

(n2), φ∗
j = OL∞

3r1
(n2), Im iλ̄j ∼ n4, and by Lemma 2.2 and

Lemma 2.10 (with p = ∞),

∥∥η′(t)
∥∥

X
. α(t) ‖ϕ‖Y +

∫ t

0
〈t − s〉−3/2 n2 ‖η(s)‖X ds, (2.59)

where α(t) = t−1/2 〈t〉−2/3 and Y = L9/8 ∩ L3/2. By the same reasons,

|(ū−
k , η′)| = (φ̄∗

k, (H − iλ̄k)
−1η′) + O(n2

∥∥η′
∥∥

X
), (2.60)

and

|(φ̄∗
k, (H − iλ̄k)

−1η′)| . n2
∥∥(H − iλ̄k)

−1η′
∥∥

L2
loc

. n2 · RHS of (2.59). (2.61)

Summing the estimates, we get ‖η(t)‖X . RHS of (2.59), which implies (2.52).
The estimate (2.53) is proved similarly with X = Lp, Y = Lp′ and α(t) = αp(t) ∼

max(α̃p(t), t
−3( 1

2
− 1

p
)
). ¤

2.4 Decay estimate for free evolution with resonant data

In this subsection we prove Lemma 2.10 for H∗ = −∆, i.e. decay estimate for ϕ(t) =
n2(H∗ − z)−1e−tH∗g where z = a + n4i, a ∼ 1, and g ∈ L1. The operator (H∗ − z)−1e−itH∗

has symbol (ξ2 − z)−1e−itξ2
and thus its Green’s function G is radial and, for r = |x|,

G(r, t) = (2π)−3

∫ ∞

0
(p2 − z)−1e−itp2

∫

|ω|=1
eiprω1dS(ω) p2dp

= (2π)−3

∫ ∞

0
(p2 − z)−1e−itp2

4π
sin(rp)

rp
p2dp

=
1

4π2ir

∫

R

(p2 − z)−1e−itp2
eirp pdp.

It is well known that G(r, 0) = 1
4πrei

√
zr. We are not aware of an explicit formula for

G(r, t). Because for 3 < p ≤ ∞ we have

‖ϕ(t)‖Lp =
∥∥n2G(t) ∗ g

∥∥
Lp . n2 ‖G(t)‖Lp ‖g‖L1 . n2 ‖G(t)‖3/p

L3,∞ ‖G(t)‖1−3/p
L∞ ‖g‖L1 ,

(2.62)
estimate (2.50) follows from (2.64) of the following lemma.

Lemma 2.12 Let H∗ be the self-adjoint realization of −∆ on L2(R3). Let G(x, t) be the
Green’s function of the operator (H∗ − z)−1e−itH∗ where z is the same as in Lemma 2.10.
Then G(x, t) = G(|x|, t) and

|G(r, t)| .





r−1/2

n4r + r1/2 + (t − r)+
, r > 1,

t

100
,

t−3/2, 1 < r <
t

100
,

min(t−1/2(1 + t)−1, r−1), r < 1.

(2.63)
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In particular,

‖G(·, t)‖L∞
x

. t−1/2(1 + t)−1/2(1 + n4t1/2)−1, ‖G(·, t)‖
L3,∞

x
. 1. (2.64)

Proof. We may assume a = 1/4. The general case follows from change of variables and is
uniform for a ∈ [a1, a2]. Introduce a regularizing factor e−δp2

and write (p2−z)−1 as a time
integral (using Re z > 0)

G(r, t) = lim
δ→0+

1

4π2r

∫

R

∫ ∞

0
e−itp2−δp2−is(p2−z)+irpds pdp

= lim
δ→0+

1

4π2r

∫ ∞

0
eisz+ ir2

4α

∫

R

e−iα(p− r
2α

)2 pdp ds, α = s + t − iδ. (2.65)

Using
∫

R
e−p2

dp =
√

π and

∫

R

e−iα(p−β)2pdp =

∫

R

e−iα(p−β)2βdp = β

∫

R

e−iαp2
dp = β(iα)−1/2√π, (2.66)

we get

G(r, t) = lim
δ→0+

1

4π2r

∫ ∞

0
eisz+ ir2

4α
r

2α
(iα)−1/2√π ds

=
1

8π3/2
√

i

∫ ∞

0
e
isz+ ir2

4(s+t) (s + t)−3/2 ds

=
1

8π3/2
√

i

∫ ∞

t
eiΦs−3/2 ds, (2.67)

where the phase Φ is

Φ(r, s) = sz − tz +
r2

4s
, Φs = z − r2

4s2
, Φss =

r2

2s3
. (2.68)

Note z = 1
4 + n4i, Φs vanishes at s = r/(2

√
z) ∼ r, and Re iΦ < 0 for s > t.

First note

|G(r, t)| .

∫ ∞

t
s−3/2 ds = Ct−1/2, (2.69)

which is valid for all r > 0 and t > 0. We will use a stationary phase argument to get
a better estimate. The main contribution should come from I ≡ r(1 − µ, 1 + µ) where
0 < µ ≤ 1

200 will be chosen. Comparing (2.69) and (2.70) below, it is clear we do not get a
better estimate unless µ is small.

We first consider the case r > 1.
Suppose t ∈ I. The contribution from s ∈ (t, r + µr) is bounded by

|
∫ r+µr

t
eiΦs−3/2ds| .

∫

I
r−3/2ds . µr−1/2. (2.70)

The contribution from (r + µr,∞) is, with t1 = r + µr,

∫ ∞

t1

eiΦs−3/2ds =

∫ ∞

t1

∂s(e
iΦ)

1

iΦs
s−3/2ds =

1

iΦs
eiΦs−3/2|s=t1 +

∫ ∞

t1

eiΦJds, (2.71)
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where

J = − ∂

∂s
(

1

iΦs
s−3/2) =

Φss

i(Φs)2
s−3/2 +

3

2iΦss5/2
. (2.72)

For s ≥ t1, we have |Φs| ∼ n4+(s−r)/r and |Φss| . s−1. Thus |J | . (|Φs|−1+|Φs|−2)s−5/2,
and the boundary term is bounded by

| 1

iΦs
eiΦs−3/2|s=t1 | .

1

|Φs(t1)|
t
−3/2
1 .

r−3/2

n4 + µ
. (2.73)

Decompose (t1,∞) = (t1, 100r) ∪ (100r,∞). On (t1, 100r), we have

|
∫ 100r

t1

eiΦJds| .

∫ 100r

t1

r2−5/2

(n4r + s − r)2
ds .

r−1/2

n4r + t1 − r
=

r−3/2

n4 + µ
. (2.74)

For s > 100r, we have |Φs| & 1 and

|
∫ ∞

100r
eiΦJds| .

∫ ∞

100r
s−5/2ds . r−3/2. (2.75)

We now choose µ ≤ 1
200 so that µr−1/2 ∼ r−3/2

n4+µ
. If r ≥ 1, we can choose µ = 1

200r−1/2(1 +

n8r)−1/2 and get for t/r ∈ (1 − µ, 1 + µ)

|G(r, t)| ≤ r−1/2

n4r + r1/2
. (2.76)

If t ∈ (r+µr, 100r), we can take t1 = t in the above estimates and ignore the contribution
from (2.70) to get the bound for r > 1

|G(r, t)| .
r−1/2

n4r + |t − r| . (2.77)

If t > 100r, we can replace 100r by t in (2.75) and ignore the contribution from (2.70)
and (2.74) to get (also true for r < 1),

|G(r, t)| . t−3/2. (2.78)

If t ∈ ( r
100 , r−µr) and r > 1, the additional contribution from s ∈ (t, r−µr) is estimated

as in (2.71)–(2.74) with t1 = r − µr and 100r replaced by r/100, and bounded by (2.77),
which is smaller than (2.76) for r > 1.

If t ∈ (0, r
100), we have |Φs| ∼ r2s−2 and |Φss| ∼ r2s−3 for s ∈ (t, r

100). The additional
contribution from s ∈ (t, r

100) is estimated as in (2.71)–(2.74) and bounded by

[
r−2s1/2

]r/100

s=t
+

∫ r/100

s=t
r−2s−1/2ds ≤ r−3/2 (2.79)

which is smaller than (2.76) for r > 1.
We now consider the case r < 1. Let α > 0 be a small number to be chosen. The

contribution from s ≥ max(t, αr) is bounded by

|
∫ ∞

αr
eiΦs−3/21s>t ds| ≤ |

∫ ∞

αr
s−3/2ds| = C(αr)−1/2. (2.80)
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If t < αr, we have |Φs|−1 ∼ r−2s2, |Φss|/|Φs| . s−1, and the contribution from s < αr is

∫ αr

t
eiΦs−3/2 ds =

[
1

iΦs
eiΦs−3/2

]s=αr

s=t

+

∫ αr

t
eiΦJds, (2.81)

which is bounded by
r−2(αr)1/2. (2.82)

We want (αr)−1/2 ∼ r−2(αr)1/2 and we can choose α = r
100 , which gives r−1 bound for

r < 1.
In conclusion, we have proved (2.63) for all r > 0 and t > 0. ¤

Remark. (i) Lemma 2.10 for the free case can be considered an estimate of (f, n2G(t)g). If
(2.63) cannot be improved, then Lemma 2.10 cannot be improved, even if assuming further
that one of f, g is in L2

r (but not both). To see it, let g be the characteristic function of
the unit ball. Note |I| ∼ µr ≫ 1 for r ≫ 1, thus (n2Gg)(r, t) has the optimal size at r ∼ t.
Since translation does not change the L1 ∩ L2-norm of f , we can put the support of f at
r ∼ t, showing the optimality of Lemma 2.10.

(ii) Although the real part of the phase, e−n4(s−t), is decaying, it does not seem to
improve our estimate. In the case t ∼ r ∼ n−8, we have |I| ∼ µr ∼ n−4 and the es-
timate (2.70) does not improve because of the factor e−n4(s−t), in view of the identity∫ n−4

0 e−n4sds = C
∫ n−4

0 ds.
(iii) Since | Im Φs| ∼ |s − r|/r . µ for s ∈ I, eiΦ almost has no oscillation on I if

µ2r ∼ µ·|I| ≪ 1. Thus, if µ = εr−1/2 with 0 < ε ≪ 1, then the upper bound in (2.70) is also

a lower bound. In the case t ∼ r ≫ ε−2n−8, we have µ ≪ n4 and µr−1/2 ≫ r−3/2

n4 ∼ r−3/2

n4+µ
.

Thus (2.63) is optimal in this case.

2.5 Singular decay estimate

We will need to identify the main part of

η(t) =

∫ t

0
e(t−s)LP ♯

c e−iαsf(s)ds (2.83)

where α ∈ C with Imα > 0 and f(s) is an L2-valued function of s with ḟ smaller than f in
a suitable sense. We will rewrite it in matrix form in order to integrate by parts. Using

[ϕ] =
[

Re ϕ
Im ϕ

]
= Re ϕ

[
1
−i

]
, (2.84)

and denoting R = (L + iα)−1, we have

η(t) = −1P ♯
c

∫ t

0
e(t−s)L Re e−iαsf(s)

[
1
−i

]
ds

= −1P ♯
c Re

(
− Re−iαtf(t)

[
1
−i

]

+ etLRf(0)
[

1
−i

]
+

∫ t

0
e(t−s)LRe−iαsḟ(s)

[
1
−i

]
ds

)
. (2.85)

To estimate the last two terms, we need the following lemma.
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Lemma 2.13 (Singular decay estimate) There is a constant C > 0 independent of α ∈
C with Im α > 0, n ∈ [0, n0], and vector function Ψ ∈ L2

r, r = 3r1, so that

∥∥∥−1 Re etL(L + iα)−1P ♯
c Ψ

∥∥∥
L2

loc

≤ C 〈t〉−3/2 ‖Ψ‖L2
r
, (t ≥ 0). (2.86)

Proof. Denote by η the scalar function to be estimated, η(t) = −1 Re etLRP ♯
c Ψ, and

η′ = PH
c η. Lemma 2.9 implies

‖η‖L2
loc

.
∥∥η′

∥∥
L2

loc
+

∑
k<m|(ū−

k , η′)|. (2.87)

Denote L = JH + W1 with W1 =
[

0 0
−2κQ2

m 0

]
, R = (L + iα)−1 and R0 = (JH + iα)−1. By

Duhamel’s formula and resolvent expansion,

η′(t) = PH
c −1 Re

(
etJHR0(1 + W1R)P ♯

c Ψ +

∫ t

0
e(t−s)JHW1η(s) ds

)
. (2.88)

Denote the first term on the right side by η′1(t). Using P ♯
c Ψ = Ψ − ∑

kPk(Ψ),

η′1(t) = −1 Re etJHR0P
JH
c

(
Ψ − ∑

k<mPk(Ψ) + Ψ1

)
, (2.89)

where Ψ1 = P JH
c [−∑

k≥m PkΨ + W1RP ♯
c Ψ] is localized with

‖Ψ1‖L2
r

. n2 ‖Ψ‖L2 + n2
∥∥∥RP ♯

c Ψ
∥∥∥

L2
loc

. n2 ‖Ψ‖L2
r
. (2.90)

Note that

etJH =

[
cos(tH) sin(tH)
− sin(tH) cos(tH)

]
=

∑

ε=±1

eiεtH 1
2(I − iεJ), (2.91)

(JH + iα)−1 = (H2 − α2)−1(−JH + iα), (2.92)

and
(I − iεJ)(−JH + iα) = −εi(H − εα)(I − εiJ). (2.93)

We conclude, for R0 = (JH + iα)−1,

etJHR0 =
∑

ε=±1

eiεtH(H + εα)−1 −εi
2 (I − εiJ). (2.94)

By (2.94), (2.90), Lemma 2.2, and Imα > 0,

∥∥−1 Re etJHR0P
JH
c (Ψ + Ψ1)

∥∥
L2

loc
. 〈t〉−3/2 ‖Ψ‖L2

r
. (2.95)

For k < m, note

(I + iJ)Φk = 2ū+
k

[
1
−i

]
, (I + iJ)Φ̄k = 2u−

k

[
1
−i

]
. (2.96)

Using (2.94) and writing PkΨ = aΦk + bΦ̄k, we have

Re etJHR0PkΨ = Re
∑

ε=±1e
iεtH(H + εα)−1 −εi

2 (I − εiJ)PkΨ

= Re e−itH
{
(H − α)−1i(aū+ + bu−) + (H + ᾱ)−1i(b̄ū+ + ū−)

} [
1
−i

]
.
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By (2.84),

−1 Re etJHR0PkΨ = e−itH
{
(H − α)−1i(aū+ + bu−) + (H + ᾱ)−1i(b̄ū+ + āu−)

}
. (2.97)

Note Im(−ᾱ) = Imα > 0. By Lemma 2.2 and (2.18),

∥∥PH
c −1 Re etJHR0PkΨ

∥∥
L2

loc
. n2 〈t〉−3/2 ‖Ψ‖L2 . (2.98)

Thus
∥∥η′(t)

∥∥
L2

loc
. 〈t〉−3/2 ‖Ψ‖L2

r
+

∫ t

0
〈t − s〉−3/2 n2 ‖η(s)‖L2

loc
ds. (2.99)

On the other hand, for j < m, by (2.18) again,

|(ū−
j , η′)| = (φ̄∗

j , (H − iλ̄j)
−1η′) + O(n2

∥∥η′
∥∥

L2
loc

). (2.100)

Note Im iλ̄j > 0. By Lemma 2.2 and the previous decomposition of η′,

|(φ̄∗
j , (H − iλ̄j)

−1η′(t))| . n2
∥∥(H − iλ̄j)

−1η′
∥∥

L2
loc

. n2 · RHS of (2.99). (2.101)

By (2.87) and summing the estimates, we get ‖η(t)‖L2
loc

. RHS of (2.99), which implies

the lemma. ¤

2.6 Upper and lower spectral projections

In this subsection we prove various estimates for the spectral projections Π± which are
defined in (2.104) and corresponds to ± Im z ≥ |E| in the spectrum of L. In particular,

Lemma 2.16 allows us to replace P ♯
c by P± = P ♯

c Π± in Lemmas 2.11 and 2.13.
Decompose L = JA+W2 = JH +W1 where A = −∆+ |E|, W2 = J(V +κQ2)+W1, and

W1 =

[
0 0

−2κQ2 0

]
. Let R(z) = (L − z)−1, R0(z) = (JA − z)−1 and R1(z) = (JH − z)−1

be their resolvents. Note R0(z) can be decomposed as

R0(z) = (JA − z)−1 =

[
−z A
−A −z

]−1

= (A2 + z2)−1

[
−z −A
A −z

]

= (A − iz)−1M + (A + iz)−1M̄, M =
1

2

[
i −1
1 i

]
.

(2.102)

R1(z) has a similar formula with A replaced by H.
Let Γc± be contours about the upper and lower continuous spectra Σ± = ±[|E|i,+∞i),

respectively. For an eigenvalue λ of L, let Γλ be a small circle centered at λ with radius
∼ n4. All contours are oriented clockwise and do not intersect. Let P∗ = 1

2πi

∫
Γ∗

R(z)dz,

∗ = c±, λ, be their corresponding spectral projections. Note Pc± are well defined in L2

and Lp by the boundedness of wave operators between LPL
c and JHP JH

c proved in [33],

although the bounds depend on n. Decompose P ♯
c as the sum of its upper and lower half

plane components:

P ♯
c = P+ + P−, P± = Pc± + PL±, PL+ =

∑

k<m

P−λ̄k
, PL− =

∑

k<m

P−λk
. (2.103)
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Also denote
Π± = P± + PR±, PR+ =

∑

k<m

Pλk
, PR− =

∑

k<m

Pλ̄k
. (2.104)

Note P± = P ♯
c Π±.

Let

δ0 =
1

4
min{|eK |, |ek − ek−1| : 1 ≤ k ≤ K}, τ0 =

1

2
eK − em. (2.105)

Note Im λN < τ0 − δ0 < τ0 + δ0 < |E|.
We collect a few estimates for R0(z) and R(z).

Lemma 2.14 Let σ0
d = {±i(ek − em) : 0 ≤ k ≤ K}, s > 1

2 and 1 ≤ p < ∞. We have

‖R0(z)‖L2
s→L2

−s
≤ C 〈z〉−1/2 , z 6∈ iR,

‖R1(z)‖L2
s→L2

−s
+ ‖R(z)‖L2

s→L2
−s

≤ C 〈z〉−1/2 , z 6∈ iR, dist(z, σ0
d) ≥ δ0,

‖R(z)‖L2
s→L2

−s
≤ Cn−4, 0 < |Re z| <

1

4
γ0n

4, dist(z, σ0
d) < δ0,

‖R0(z)‖Lp→Lp + ‖R1(z)‖Lp→Lp + ‖R(z)‖Lp→Lp ≤ Cp 〈z〉−1+εp , | Im z| = τ0.

(2.106)

Above εp = 0 for p > 1 and 0 < ε1 ≪ 1, and the constants are uniform in n ∈ [0, n0].

Proof. The first estimate is by the scalar case proved in [1, Remark 2 in Appendix A] and
by (2.102). The second estimate for R1(z) is by the scalar case proved in [16, Theorem
9.2] and by (2.102) with A replaced by H. It is true for R(z) using the resolvent series
R(z) = R1(z)

∑∞
k=0[W1R1(z)]k and the fact W1 is a small localized matrix potential. The

third estimate is proved in [33, Lemma 2.5].
The last estimate for R0(z) is by the scalar case proved in [7, Lemma 7.4] and by (2.102).

It is true for R1(z) because
∥∥(H − z)−1

∥∥
Lp→Lp . 〈z〉−1+εp for | Im z| = τ0, which follows

from

(H − z)−1f = (H − z)−1Pcf + (H − z)−1∑K
k=0(φ̃k, f)φ̃k

= W−1(A − z)−1WPcf +
∑K

k=0(ẽk − z)−1(φ̃k, f)φ̃k,
(2.107)

where W is the wave operator between H and A and φ̃k are normalized eigenfunctions
of H with eigenvalues ẽk. Finally, the estimate for R(z) follows from the resolvent series
R(z) = R1(z)

∑∞
k=0[W1R1(z)]k again. ¤

Lemma 2.15 Let K± = Π±(J ∓ i), initially defined from L2
s to L2

−s, s > 1. For any
1 ≤ p ≤ q < ∞, there is a constant c so that ‖K±u‖p ≤ c ‖u‖q for any u ∈ L2

s ∩ Lq.

This is clear for the reference self-adjoint operator JA, for which K± = 0.
Proof. Recall R0 is decomposed in (2.102), and MJ = −iM and M̄J = iM̄ . As z ap-
proaches Σ+ = [|E|i,+∞i), the upper continuous spectrum of A, the resolvent (A + iz)−1

is unbounded, and we write

R0(z)J − iR0(z) = −2iM(A − iz)−1, (z ∼ Σ+). (2.108)

Note right side is bounded. Similarly, as z approaches Σ− = −Σ+, we write

R0(z)J + iR0(z) = 2iM̄(A + iz)−1, (z ∼ Σ−). (2.109)
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We now prove the bound for K+. The case of K− is similar. Let Γ = Γc+ ∪ Γp and
Γp = ∪k<m(Γλk

∪ Γ−λ̄k
). By spectral projection formula and resolvent expansion,

Π+ =
1

2πi

∫

Γ
R(z)dz =

1

2πi

∫

Γ
[1 + R0(z)W0 + R0(z)W0R(z)W0]R0(z)dz. (2.110)

By (2.108),

Π+(J−i) =
−1

π

∫

Γ
[1+R0(z)W0+R0(z)W0R(z)W0]M(A−iz)−1dz = K0+K1+K2. (2.111)

The above sum is well-defined as operators from L2
s to L2

−s.
Note that K0 is zero since (A − iz)−1 is regular inside Γ and the rest of the integrand

of K0 does not depend on z.
For K1, the integral over Γc+ is bounded from Lq to Lp by Lemma 7.6 of Cuccagna [C2]

using Coifman-Meyer multi-linear estimates. The integral over Γp is also bounded from Lq

to Lp since
∫

Γp

∥∥R0(z)W0M(A − iz)−1
∥∥

Lq→Lp |dz|

≤
∫

Γp

‖R0(z)‖Lp→Lp

∥∥(A − iz)−1
∥∥

Lq→Lq .

∫

Γp

n−4 · 1 . 1.

(2.112)

For K2, the integrand is analytic in z and has enough decay in B(L2
s → L2

−s) in |z| by
Lemma 2.14. Thus we can change the contour to Γ1 = R+τ0i, By Lemma 2.14, ‖K2‖Lq→Lp

is bounded by

∫

Γ1

‖R0(z)‖Lp→Lp · ‖R(z)‖Lq→Lq · ‖R0(z)‖Lq→Lq |dz| ≤ C. (2.113)

Summing the estimates we get the lemma. ¤

Lemma 2.16 The projection operators Π± are bounded from L2
s to L2

−s, s > 1, and from
Lp to Lp for any 1 ≤ p ≤ ∞.

Proof. From the definition of K± in Lemma 2.15, we have

K+ = Π+(J − i), K− = (1 − Π+ − Π0)(J + i), (2.114)

where Π0 =
∑

j≥m Pj is bounded in Lp. Thus

Π+ =
i

2
[K+ + K− − (1 − Π0)(J + i)], (2.115)

where shows Π+ is bounded in Lp for p < ∞ by Lemma 2.15. Similarly Π− and Π∗
± are

bounded in Lp for p < ∞. The boundedness of Π± in L∞ follows from that of Π∗
± in L1

and duality. ¤

As a corollary, Lemmas 2.11 and 2.13 hold with P ♯
c replaced by P± since P± = P ♯

c Π±.
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2.7 Fermi Golden Rule

In this subsection we prove Corollary 2.20, which gives the key resonance coefficients in the
normal form equations in Lemmas 3.7 and 3.8.

For any k 6= m, recall (2.36) that

Φk =
[

1
−i

]
ū+

k + [ 1
i ] ū−

k . (2.116)

From (2.18), we introduce Φ+
k and Φ−

k which satisfy the equation Φk = Φ+
k + Φ−

k where Φ+
k

is localized and

Φ−
k = [ 1

i ] (H − ᾱk)
−1φ̄∗

k, Φ+
k =

[
1
−i

]
φk + OL2

r
(n2), (2.117)

Note that φ∗
k = OL2

r
(n2) is defined in (2.18) and αk = iλ̄k = |ek−em|+O(n2) with Imαk > 0.

Moreover, since Φk = Φ+
k + Φ−

k , from (2.19), we see that for all function f ∈ L2(R2, C2)

Pkf = ck(σ1Φ̄k, f)Φ+
k + c̄k(σ1Φk, f)Φ̄+

k + ck(σ1Φ̄k, f)Φ−
k + c̄k(σ1Φk, f)Φ̄−

k ,

(Pk)
∗f = ck(Φ̄k, f)σ1Φ

+
k + c̄k(Φk, f)σ1Φ̄

+
k + ck(Φ̄k, f)σ1Φ

−
k + c̄k(Φk, f)σ1Φ̄

−
k .

(2.118)

Since Φ+
k is localized and Φ−

k = OL2
loc

(n2), it follows from Lemma 2.3 and (2.118) that for

all functions f such with ‖f‖L2
r

= O(δ)

(Pk − P JH
k )f = O(n2δ)Φk + O(n2δ)Φ̄k + O(δ)Φ−

k + O(δ)Φ̄−
k + OL2

r
(n2δ)

(Pk − P JH
k )∗f = O(n2δ)σ1Φk + O(n2δ)σ1Φ̄k + O(δ)σ1Φ

−
k + O(δ)σ1Φ̄

−
k + OL2

r
(n2δ).

(2.119)

Throughout this subsection, let ω and ǫ be two fixed numbers such that

ω ± Im λk = O(1) 6= 0, 0 < ǫ ≪ 1. (2.120)

Let α = −iω + ǫ and
R = (L − α)−1, R0 = (JH − α)−1. (2.121)

Note that we have
R = R0 + R0WR0 + R0WRWR0, (2.122)

where W is a localized potential which is of order ‖Q‖2.

Lemma 2.17 For any k 6= m, there exist C > 0 independent of ǫ and n such that
∥∥R0Φ

−
k

∥∥
L2

loc
,

∥∥R0Φ̄
−
k

∥∥
L2

loc
,

∥∥(R0)
∗σ1Φ

−
k

∥∥
L2

loc
,

∥∥(R0)
∗σ1Φ̄

−
k

∥∥
L2

loc
≤ Cn2. (2.123)

Proof. We write

R0 = (JH − α)−1 = (H2 + α2)−1

[
−α −H
H −α

]
. (2.124)

Then, it follows that

R0Φ
−
k =

[−i
1

]
(H + iα)−1(H − ᾱk)

−1φ̄∗
k

R0Φ̄
−
k = [ i

1 ] (H − iα)−1(H − αk)
−1φ∗

k

(R0)
∗σ1Φ

−
k =

[
1
−i

]
(H + iᾱ)−1(H − ᾱk)

−1φ̄∗
k,

(R0)
∗σ1Φ̄

−
k = [ 1

i ] (H − iᾱ)−1(H − αk)
−1φ∗

k.

(2.125)

Since Re α > 0 and Im(αk) > 0 and φ∗
k ∈ OL2

r
(n2), our claim follows. ¤
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Lemma 2.18 There exists C > 0 such that for any function f, g ∈ L2(R2, C2) with f, g =
OL2

r
(n):

|(f, (L − α)−1P ♯
c (P ♯

c − P JH
c )g)| ≤ Cn4,

|(f, (P ♯
c − P JH

c )(L − α)−1P ♯
c g)| ≤ Cn4.

(2.126)

Proof. Since the proofs of both estimates in (2.126) are similar, we shall only prove the
first estimate. From (2.119), we have

(P ♯
c − P JH

c )g =
K∑

k=0

{O(n3)Φk + O(n3)Φ̄k + O(n)Φ−
k + O(n)Φ̄−

k } + OL2
r
(n3). (2.127)

Since LΦk = λkΦk and λk − α, λ̄k − α are all non-zero order one, we get

(f, P ♯
c R(P ♯

c − P JH
c )g) = O(n4) + (f, P ♯

c R[O(n)Φ−
k + O(n)Φ̄−

k ]). (2.128)

By similarity, we only need to show that |(f, P ♯
c RΦ−

k )| ≤ Cn3. Let g̃ = [WR0+WRWR0]Φ
−
k .

By Lemma 2.17, ‖g̃‖L2
r
≤ Cn4. Then, using (2.122), (2.118) and Lemma 2.17, we have

|(f, P ♯
c RΦ−

k )| = |((P ♯
c )∗f, R0Φ

−
k + R0g̃)|

≤ |((Pd)
∗f, R0Φ

−
k ) + ((R0)

∗(Pd)
∗f, g̃)| + Cn3

≤ C
{

n
∑

j 6=m

|(σ1Φ
−
j , R0Φ

−
k )| + n

K∑

j 6=m

|(σ1Φ̄
−
j , R0Φ

−
k )| + n3

}

≤ C
{

n
K∑

j 6=m

|(σ1Φ
−
j , R0Φ

−
k )| + n

K∑

j 6=m

|(σ1Φ̄
−
j , R0Φ

−
k )| + n3

}

(2.129)

Note that from (2.117) and (2.125), we get

|(σ1Φ
−
j , R0Φ

−
k )| ≤ Cn4, (σ1Φ̄

−
j , R0Φ

−
k ) = 0. (2.130)

So, from (2.129), we obtain
|(f, P ♯

c RΦ−
k )| ≤ Cn3. (2.131)

This completes the proof of Lemma 2.18. ¤

Corollary 2.19 For any function f, g ∈ L2(R2, C2) with f, g = OL2
r
(n), we have

(f, P ♯
c (L − α)−1P ♯

c g) = (f, P JH0
c (J(H0 − E) − α)−1P JH0

c g) + O(n4). (2.132)

Proof. Using (2.122) and Lemma 2.18, we have

(f, P ♯
c (L − α)−1P ♯

c g) = (f, P JH
c (JH − α)−1P JH

c g) + O(n4). (2.133)

Now, since that H − (H0 −E) = κQ2 = O(n2) and P JH
c −P JH0

c = OL2
r
(n2), we can use the

same method as in Lemma 2.18 to obtain

(f, P ♯
c (L − α)−1P ♯

c g) = (f, P JH0
c (J(H0 − E) − α)−1P JH0

c g) + O(n4). (2.134)

This completes the proof of Corollary 2.19. ¤
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Corollary 2.20 Let f, g ∈ L2(R3, C) be localized real functions of order n and let f1 = [ 1
i ] f

and g1 = [ i
1 ] f . We then have

〈
[

1
−i

]
f, (L − α)−1P ♯

c [ i
1 ] g〉 = −2(f, PH0

c (H0 − E − iα)−1PH0
c g) + O(n4),

〈[ 1
i ] f, (L − α)−1P ♯

c

[−i
1

]
g〉 = −2(f, PH0

c (H0 − E + iα)−1PH0
c g) + O(n4),

〈[ 1
i ] f, (L − α)−1P ♯

c [ i
1 ] g〉 = O(n4),

〈
[

1
−i

]
f, (L − α)−1P ♯

c

[−i
1

]
g〉 = O(n4).

(2.135)

Proof. By Corollary 2.19, we have

〈
[

1
−i

]
f, (L−α)−1P ♯

c [ i
1 ] g〉 = 〈

[
1
−i

]
f, P JH0

c (J(H0−E)−α)−1P JH0
c [ i

1 ] g〉+O(n4). (2.136)

On the other hand,

(J(H0 − E) − α)−1P JH0
c [ i

1 ] g = (H0 − E + α2)−1PH0
c

[
−α −(H0 − E)

H0 − E −α

]
[ i
1 ] g

=
[−1

i

] [
(H0 − E − iα)−1

(H0 − E − iα)−1

]
PH0

c g.

So, the first identity of our corollary follows. Similarly, we can prove all of the last three
identities of the corollary. ¤

3 Equations and main terms

In our analysis we use different coordinate systems. When the solution is away from bound
states, we use the orthogonal coordinates (1.19), i.e., we decompose the solution as a sum
of different spectral components with respect to −∆ + V . When the solution is near a
nonlinear bound state, we use the linearized coordinates (3.17), i.e., decomposition with
respect to the corresponding linearized operator instead. In subsection 3.1 we recall the
equations and normal forms in orthogonal coordinates from [30]. The rest of this section
is devoted to analysis in linearized coordinates. We will not use the centered orthogonal
coordinates (1.10).

3.1 Orthogonal coordinates

Let t0 be a fixed initial time. For t ≥ t0 we may decompose the solution with respect to H0

as

ψ(t) =
K∑

j=0

xj(t)φj + ξ, ξ ∈ Hc(H0), ∀ t ≥ t0. (3.1)

Then for t ≥ t0, as in [30, Section 4] we have

iẋj = ejxj + (φj , G), (j = 0, . . . , K),

i∂tξ = H0ξ + PH0
c G, G := κψ2ψ̄.

(3.2)

Let

G3 := κ

∣∣∣∣∣∣

K∑

j=0

xjφj

∣∣∣∣∣∣

2 


K∑

j=0

xjφj


 = κ

K∑

l,m,j=0

xlxmx̄jφlφmφj . (3.3)
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We then decompose ξ as (for details, see [30, Section 4])

ξ(t) = ξ(2)(t) + ξ
(3)
1 (t) + ξ

(3)
2 (t) + · · · + ξ

(3)
5 (t), ∀ t ≥ t0, (3.4)

where

ξ(2)(t) :=
K∑

l,m,j=0

xlxmx̄j(t)ξ
j
lm, with

ξj
lm := −κ lim

r→0+
[H0 − el − em + ej − ri]−1PH0

c φmφlφj ,

(3.5)

and, with uj(t) = eiejtxj(t) which have less oscillation than xj(t),

ξ
(3)
1 (t) := e−iH0(t−t0)ξ(t0), ξ

(3)
2 (t) := −e−iH0(t−t0)ξ(2)(t0),

ξ
(3)
3 (t) := −

∫ t

t0

e−iH0(t−s)PH0
c

K∑

l,m,j=0

ei(−el−em+ej)s
d

ds
(ulumūj)ξ

j
lmds,

ξ
(3)
4 (t) :=

∫ t

t0

e−iH0(t−s)PH0
c i−1(G − G3 − κξ2ξ̄)ds,

ξ
(3)
5 (t) :=

∫ t

t0

e−iH0(t−s)PH0
c i−1(κξ2ξ̄)ds.

(3.6)

We recall the following two lemmas from [30]:

Lemma 3.1 (Lemma 4.1 [30]) Let p, p′ such that 4 ≤ p < 6, (p)−1+(p′)−1 = 1. Suppose
that for a fixed time t ≥ t0 and for 0 < n ≤ n0 ≪ 1, we have

max
j

|xj(t)| ≤ 2n, ‖ξ(t)‖L2
loc∩Lp ≤ 2n, ‖ξ(t)‖L2 ≪ 1. (3.7)

Then for uj(t) = eiejtxj(t),

‖G‖L1
loc

+ max
j

|u̇j | . n3 and
∥∥G − G3 − κξ2ξ̄

∥∥
L1∩Lp′ . n2 ‖ξ‖L2

loc
. (3.8)

Lemma 3.2 (Lemma 4.2 [30]) Let p, uj be as in Lemma 3.1. Suppose that for some
0 < n ≤ n0 and for some t ≥ t0,

max
j

|xj(t)| ≤ 2n, ‖ξ(t)‖L2
loc∩Lp ≤ 2n and ‖ξ(t)‖L2 ≤ α ≪ 1. (3.9)

Then, there are perturbations µj(t) of uj(t), j ∈ I, such that

µ̇j(t) =
K∑

l=0

cj
l |µl|2µj +

K∑

a,b=0

dj
ab|µa|2|µb|2µj + gj , (3.10)

and

|uj(t) − µj(t)| . n3,

|gj(t)| . n7 + n2
∥∥∥ξ(3)

∥∥∥
L2

loc

+ n ‖ξ‖2
L2

loc
+ ‖ξ‖

2(p−3)
p−2

L2
loc

‖ξ‖
p

p−2

Lp .
(3.11)
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Moreover, all of the coefficients cj
l and dj

ab are of order one. The coefficients cj
l are all

purely imaginary and
Re dj

ab = (2 − δb
a)γ

j
ab − 2(2 − δb

j)γ
a
jb, (3.12)

with δb
a = 1 if a = b and δb

a = 0 if a 6= b, and

γl
ab = κ2 Im

(
φaφbφl, (H0 − ea − eb + el − i0+)−1PH0

c φaφbφl

)
, ∀ a, b, l ∈ I. (3.13)

By the resonance condition Assumption (A2), the number γl
ab ≥ 0 and it is positive if

and only if l < a, b.

3.2 Linearized coordinates

When the solution ψ lies in a neighborhood of an excited state Q = Qm,n, m ∈ J , it is
natural to decompose ψ − Q into invariant subspaces of the linearized operator around Q,
see Lemma 2.4. The collection of these components is called the linearized coordinates.

Lemma 3.3 There are small positive constants n0 and ε3 such that the following hold.
Suppose ‖ψ‖H1 ≤ n0 satisfies ‖ψ − (ψ, φm)φm‖L2 ≤ ε3|(ψ, φm)|.

(i) For any 0 < n < n0, there exist unique a, θ ∈ R such that

ψ = [Qm,n + a∂EQm,n + h]eiθ, (3.14)

where Qm,n and ∂EQm,n are given by Lemma 2.1, Pmh = 0, and |n−1a|+‖h‖H1 ≤ ε3n.

(ii) There exist unique n(ψ) ∈ (0, n0) and θ ∈ R such that a = 0. Moreover, if ψ is
decomposed as in (i) with respect to another n, then

n(ψ) = n +
a

2Cn
+ O(n3), C = κ

∫
φ4

m. (3.15)

(iii) If ψ is decomposed as in (i) with respect to n1 and n2 with ‖hj‖ ≤ ρ ≤ ε3n, |aj | ≤ Cρ2,
and |n1 − n2| . n−1ρ2, then

C(n2
1 − n2

2) + a1 − a2 = O(ρ|n1 − n2|). (3.16)

The proof of Lemma 3.3 is similar to those for [31, Lemmas 2.1–2.4].
By Lemma 3.3, when ψ(t) is in a sufficiently small neighborhood of an excited state

Q = Qm,n, there is a unique choice of real a(t) and θ(t) so that

ψ(t) = [Q + a(t)∂EQ + h(t)]e−iEt+iθ(t), Pmh(t) = 0. (3.17)

Here ∂EQ = ∂EQm,n and E = Em,n. We can further decompose

h = ζ + η, ζ =
∑

k 6=m

ζk, [η] ∈ E♯
c, (3.18)

where, for each k 6= m,

ζk := −1 Re(zkΦk) = zkū
+
k + z̄ku

−
k , u±

k :=
1

2
(ūk ± v̄k). (3.19)
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Substituting (3.17) into (1.1) and using LiQ = 0 and L∂EQ = −iQ, we get

∂th − Lh = Fh ≡ i−1(F + θ̇(Q + a∂EQ + h)) − aiQ − ȧ∂EQ, (3.20)

where
F = κQ(2|hσ|2 + h2

σ) + κ|hσ|2hσ, hσ = a∂EQ + h. (3.21)

We choose θ̇ and ȧ so that PmFh = 0. Thus Fh = (1 − Pm)i−1(F + θ̇(a∂EQ + h)) and

{
ȧ = (cmQ, Im(F + θ̇h)),

θ̇ = Fθ ≡ − [a + (cm∂EQ, Re F )] · [1 + (cm∂EQ, ∂EQ)a + (cm∂EQ,Re h)]−1 .
(3.22)

Taking P ♯
c of (3.20), we get

∂tη − Lη = P ♯
c i−1(F + θ̇(a∂EQ + h)). (3.23)

Note zk = 2ck(σ1Φ̄k, [h]). Taking 2ck(σ1Φ̄k, [·]) of (3.20), k 6= m, we get

żk − λkzk = Zk := 2ck(σ1Φ̄k, [Fh]). (3.24)

A direct computation using (2.36) shows3

Zk = −2ck

{
(u+

k , F ) + (u−
k , F ) +

[
(u+

k , h) + (u−
k , h) + (ūk, ∂EQ)a

]
θ̇
}

. (3.25)

Let ωk := − Im λk and let pk(t) = zk(t)e
iωkt. We have

ṗk = (Re λk)pk + eiωktZk. (3.26)

Also, for any k 6= m, let rk := e−λktzk, we have,

ṙk = e−λktZk. (3.27)

Note that rk = pk for all k > m and rk = e−Re(λk)tpk for k < m. We shall use rk in
computing the normal form for the equation of a.

Definition 3.1 Denote I = {0, 1, · · · , K}, I∗ = {0∗, 1∗, · · · , K∗}. For all m ∈ I, let
I>m = {m + 1, · · · , K}, I<m = {0, · · · , m − 1}, Im = I \ {m}, I∗m = I∗ \ {m∗} and
Ωm := Im ∪ I∗m. For j ∈ Im, let

λj∗ = λ̄j , ωj∗ = −ωj , zj∗ = z̄j , rj∗ = r̄j , pj∗ = p̄j , u±
j∗ = ū±

j , and v±j∗ = v̄±j .
(3.28)

It then follows that for all j ∈ Ωm, we have zj(t) = e−iωjtpj(t) and rj = e−λjtzj .

3Note −2ck ∼ −i which is the coefficient of [30, page 242, line 5].
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3.3 Decomposition of a

Recall ȧ = (cmQ, Im(F + θ̇h)). Let F1 := κQ(2|ζ|2 + ζ2), A(2) := cm(Q, Im F1) and A(3) :=
cm(Q, Im(F − F1 + θ̇h)). Then, we have ȧ = A(2) + A(3). We shall impose the boundary
condition of a at t = T , which is in fact the condition imposed on the choice of E = E(T ).
Hence, we have

a(t) = a(T ) +

∫ t

T
[A(2)(s) + A(3)(s)]ds. (3.29)

Recall that
ζ =

∑

k∈Im

ζk, ζk = zkū
+
k + z̄ku

−
k . (3.30)

Therefore,
Im ζkζl = Im[(zkzl)(ū

+
k ū+

l − ū−
k ū−

l ) + (zkz̄l)(ū
+
k u−

l − ū−
k u+

l )]. (3.31)

Let
akl,1 := κcm(Q2, ū+

k ū+
l − ū−

k ū−
l ), akl,2 = κcm(Q2, ū+

k u−
l − ū−

k u+
l ). (3.32)

Note that akl,1, akl,2 = O(n2), akl,1, akl,2 are real if both k, l > m, and akk,2 are purely
imaginary. In particular akk,2 = 0 if k > m. We have

A(2) = κcm(Q2, Im
∑

k,l∈Im

ζkζl) = Im
∑

k,l∈Im

{akl,1zkzl + akl,2zkz̄l}

= b0(t) + Im(A
(2)
1 ),

(3.33)

where

b0(t) =
∑

k<m

b0k|zk|2, b0k := Im akk,2, b̃0(t) :=

∫ t

T
b0(s)ds, (3.34)

A
(2)
1 :=

∑

k,l∈Im

akl,1zkzl +
∑

k 6=l

akl,2zkz̄l. (3.35)

Note |b0k| . n2
∥∥u−

k

∥∥
L2

loc
= O(n4) for k < m by Lemmas 2.4 and 2.5.

We shall integrate A
(2)
1 by parts. Note that for all λk + λl = −i(ωk + ωl) + O(n4) and

λk + λ̄l = −i(ωk−ωl)+O(n4). Therefore, λk +λl = O(1) for all k, l ∈ Im and λk + λ̄l = O(1)
for all k, l ∈ Im and k 6= l. We then write

A
(2)
1 =

∑

k,l∈Im

akl,1e
(λk+λl)trkrl +

∑

k 6=l

e(λk+λ̄l)takl,2rkr̄l

=
∑

k,l∈Im

akl,1

λk + λl

[
d

dt
(zkzl) − e(λk+λl)t

d

dt
(rkrl)

]

+
∑

k 6=l

akl,2

λk + λ̄l

[
d

dt
(zkz̄l) − e(λk+λ̄l)t

d

dt
(rkr̄l)

]
.

(3.36)

Now, define

a(2)(t) := Im
∑

k,l∈Im

akl,1

λk + λl
zkzl + Im

∑

k 6=l

akl,2

λk + λ̄l
zkz̄l

A2,rm := Im
∑

k,l∈Im

akl,1e
(λk+λl)t

λk + λl

d

dt
(rkrl) + Im

∑

k 6=l

akl,2e
(λk+λ̄l)t

λk + λ̄l

d

dt
(rkr̄l).

(3.37)
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We shall get

Im(A
(2)
1 ) =

d

dt
a(2)(t) − A2,rm(t). (3.38)

So, we have A(2) = d
dta

(2)(t) + b0(t) − A2,rm(t). Therefore,

a(t) = a(2)(t) + b(t), (3.39)

where b(t) satisfies

ḃ = b0 + cm(Q, Im(F − F1 + θ̇h)) − A2,rm, b(T ) = a(T ) − a(2)(T ). (3.40)

Moreover, let akl,3 := 2akl,1(λk+λl)
−1 and akl,4 := 2akl,2(λk+λ̄l)

−1. Since akl,1 and akl,2 are
of order n2, so are akl,3 and akl,4. Moreover, akl,3, akl,4 are purely imaginary for k, l ∈ I>m.
Using (3.27), akl,1 = alk,1 and akl,2 = −ālk,2, we obtain

A2,rm = Im
∑

k,l∈Im

akl,3zkZl + Im
∑

k 6=l

akl,4Zkz̄l. (3.41)

It worths noting that the benefits from using rk instead of pk in (3.37) is that we do not
have terms of order zzk for k ∈ I<m in (3.41). This is very essential in the normal forms.

3.4 Decomposition of η

We shall single out the main terms in η. Recall from (3.23) that

∂tη − Lη = P ♯
c i−1(F + θ̇(a∂EQ + ζ + η)). (3.42)

In the vector form, we have

∂t[η] = L[η] + P ♯
c Jθ̇[η] + P ♯

c J [(F + θ̇(a∂EQ + ζ))]. (3.43)

We first deal with the non-localized linear term Jθ̇[η] using Lemma 2.15, following Buslaev-
Perelman [4], also see [5, 7].4 We need to revise their original statement and proof to take
care of eigenvalues near the continuous spectrum.

Recall P± are defined in subsection 2.6. Taking projection P± of (3.43), and using

P±J ∓ iP± = P±(P±J ∓ iP±) = P±[K± − (PR±J ∓ iPR±)] = P±K±, (3.44)

we get

∂tP±[η] = LP±[η] ± iθ̇P±[η] + P±K±θ̇[η] + P±J [(F + θ̇(a∂EQ + ζ))]. (3.45)

Denote
η± := e∓iθP±[η]. (3.46)

4The term iθ̇η is not a problem in [31] in which L is factorized in the form L = U−1JAU for some
scalar self-adjoint operator A. Such factorization does not exist for linearized operators near excited states.
In [33], the term iθ̇η is removed by introducing η̃ = P ♯

c eiθη and using Strichartz estimates to control the
(small) commutator term. This last method is not suitable for Lp-decay approach since the commutator
term, although smaller, has the same decay rate as η itself. The approach of Buslaev-Perelman has the
further benefit of being applicable to the large soliton case.
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We have
∂tη± = Lη± + e∓iθP±

[
K±θ̇[η] + J [(F + θ̇(a∂EQ + ζ))]

]
. (3.47)

Recall that [ζk] = (zkΦk + z̄kΦ̄k)/2. Note the term e∓iθP±Jθ̇[ζ] is not localized. However,
by formula (2.35)

P ♯
c JΦk = P ♯

c Φ′
k, P ♯

c JΦ̄k = P ♯
c Φ̄′

k Φ′
k =

[−2i
−2

]
ū+

k (3.48)

and note Φ′
k is localized. Thus we can rewrite the linear terms in (3.47) as

FL± := e∓iθθ̇
{

K±[η] + J [a∂EQ] +
∑

j∈Im
(zjΦ

′
j + z̄jΦ̄

′
j)

}
, (3.49)

where all functions are localized, and (3.47) becomes

∂tη± = Lη± + P±
[
e∓iθJ [F ] + FL±

]
. (3.50)

In other words, for some t0 ≥ 0 and for all t ≥ t0, we have

η±(t) = eL(t−t0)η±(t0) +

∫ t

t0

eL(t−s)P±{e∓iθJ [F ] + FL±}(s)ds. (3.51)

We will decompose η± as follows. Denote

η
(3)
±,1(t) := eL(t−t0)η±(t0),

η
(3)
±,4(t) :=

∫ t

t0

eL(t−s)P±{FL± + e∓iθJ [F − F1]}(s)ds.
(3.52)

Then, we have

η±(t) = η
(3)
±,1(t) + η

(3)
±,4(t) +

∫ t

t0

eL(t−s)P±{e∓iθJ [F1]}(s)ds. (3.53)

We shall integrate the last term in (3.53). Recall that F1 = κQ(2|ζ|2 + ζ2) is the main term
in F with

ζ =
∑

k∈Im

ζk =
∑

k∈Im

(zkū
+
k + z̄ku

−
k ), u+

k = φk + OL2
r
(n2), u−

k = OL2
loc

(n2). (3.54)

So,

F1 =
∑

k,l∈Im

Fkl[zkzl + 2zkz̄l] +
∑

k,l∈Ωm

F̃klzkzl, Fkl = κQφkφl, F̃kl = OL∞
3r

(n3). (3.55)

In other words, we can write

F1 = κ
∑

k,l∈Ωm

zkzlΦkl, (3.56)

for some localized functions Φkl which can be computed explicitly. In particular, Re Φkl =
O(n) and ImΦkl = O(n3) for all k, l ∈ Ωm.

To integrate P±e∓iθJ [F1] in the η± equation, we want to integrate terms of the form

I±(t) =

∫ t

t0

e(t−s)Le−iωsP±f(s) ds, (3.57)
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where ω ∈ R, f(s) ∈ L2(R3, C2) and ḟ(s) decays faster than f . We re-write I± as

I±(t) = etL

∫ t

t0

e−s(L+iω)P±f(s)ds. (3.58)

Denote R = limε→0+(L + iω − ε)−1. Integration by parts gives

I±(t) = −e−iωtRP±f(t) + e(t−t0)Le−iωt0RP±f(t0) +

∫ t

t0

e(t−s)LRP±e−iωsḟ(s)ds. (3.59)

The choice of the sign of ε ensures that etLRP± has singular decay estimate according to
Lemma 2.13. We can now identify the main term of η±. Since i−1F1 = −iκ

∑
zkzlΦkl with

summation over k, l ∈ Ωm,

J [F1] = −Re
∑

iκzkzlΦkl

[
1
−i

]
= −Re

∑
fkl(s)e

−i(ωk+ωl)s, (3.60)

where fkl = iκpkplΦkl

[
1
−i

]
. We decompose P± = Π±P ♯

c since Π± does not commute with

Re. Denote Rkl = limε→0+(L + i(ωk + ωl) − ε)−1P ♯
c and ωkl = ωk + ωl. We get

∫ t

t0

e(t−s)LP±e∓iθ(s)J [F1]ds = η
(2)
± + η

(3)
±,2 + η

(3)
±,3 (3.61)

where

η
(2)
± = e∓iθ(t)Π± Re

∑
k,l∈Ωm

Rkle
−iωkltfkl(t)

η
(3)
±,2 = −e(t−t0)Le∓iθ(t0)Π± Re

∑
k,l∈Ωm

Rkle
−iωklt0fkl(t0)

η
(3)
±,3 = −

∫ t

t0

e(t−s)Le∓iθ(s)Π±
∑

k,l∈Ωm

(
Re Rkle

−iωklsḟkl ∓ i Re Rkle
−iωklsθ̇fkl

)
(s)ds.

(3.62)

Observe that

‖|ḟkl| + |θ̇fkl|‖L2
r

. n|θ̇|β2 + nβ max |ṗk|, β = max |pk|. (3.63)

Now, let

η
(3)
± (t) :=

4∑

j=1

η
(3)
±,j(t), η(j) := eiθη

(j)
+ + e−iθη

(j)
− , j = 2, 3. (3.64)

Then, from (3.53) and (3.62), we obtain the decomposition of η± and η as

η± = η
(2)
± + η

(3)
± , [η] = eiθη+ + e−iθη− = η(2) + η(3). (3.65)

We now compute the explicit form of η(2) which will be used in the computation of the
key coefficients in the normal forms of zk. By (3.65), (3.62), Π+ + Π− = P ♯

c , and (3.55),

η(2) = eiθη
(2)
+ + e−iθη

(2)
−

= Re
∑

k,l∈Ωm
Rkle

−i(ωk+ωl)tfkl(t)

= Re
∑

k,l∈Im

{
Rklzkzl [ i

1 ]Fkl + 2Rkl∗zkz̄l [ i
1 ] Fkl

}
+

∑

k,l∈Ωm

zkzlRklOL2
r
(n3).

(3.66)

Recall Fkl = κQφkφl. Thus the first sum contains terms of order O(nz2).
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3.5 Decomposition of F

We now decompose F into appropriate terms of the same order. We write

F = F1 + F2 + · · · + F5, (3.67)

where

F1 = κQ(2|ζ|2 + ζ2),

F2 = 2κQ∂EQb(2ζ + ζ̄) + 3κQ∂EQ2b2 + κ(ζ + b∂EQ)2(ζ̄ + b∂EQ),

F3 = 2κQ∂EQa(2)(2ζ + ζ̄), F4 = 2κQ[(ζ + ζ̄)η + ζη̄],

F5 = κQ
[
2|ηa|2 + η2

a

]
+ 2κQ∂EQb(2ηa + η̄a)

+ κ(a∂EQ + h)2(a∂EQ + h̄) − κ(ζ + b∂EQ)2(ζ̄ + b∂EQ),

(3.68)

with ηa = η + a(2)∂EQ. Note that F1 consists of terms of order nz2; F2, F3 and F4 consist
of terms no smaller than n2z3; and F5 higher order terms.

3.6 Basic estimates and normal forms

In this subsection, we first give some basic estimates in Lemmas 3.4, 3.5 and 3.6. We then
give the normal forms of the equations of zk and b in Lemmas 3.7 and 3.8.

Lemma 3.4 (Basic Estimates) Suppose, for a fixed time, for some β ≪ n ≤ n0 and
p ≥ 5,

‖Q‖ = n, ‖η‖L2∩Lp ≪ 1, ‖η‖L2
loc

≤ n,

max
j 6=m

|zj | ≤ β, |a| ≤ Cβ2.
(3.69)

For all 1 ≤ r ≤ 2, denote

X := nβ ‖η‖L2
loc

+ n ‖η‖2
L2

loc
+

∥∥η3
∥∥

L1
loc

,

X̃ := β2 ‖η‖L2
loc

+ n ‖η‖2
L2

loc
+

∥∥η3
∥∥

L1
loc

, Y (r, p) := n ‖η‖2
Lp +

∥∥η3
∥∥

Lr .
(3.70)

We have

‖F5‖L1
loc

. nβ4 + X̃, ‖F3 + F4 + F5‖L1
loc

. n2β3 + X,

‖F − F1‖L1
loc

. β3 + X, ‖F‖L1
loc

. nβ2 + X,

|Fθ| . β2 + n−1X, ‖F − F1‖Lr . β3 + nβ ‖η‖L2
loc

+ Y (r, p),

‖F‖Lr . nβ2 + nβ ‖η‖L2
loc

+ Y (r, p).

(3.71)

Proof. The first five estimates of (3.71) in L1
loc can be found in [30, Lemma 3.2]. Although

[30] is for m = 0 case, for L1
loc bounds the new non-localized terms for m > 0 are similarly

estimated.
For the last two Lr-estimates of (3.71), the only non-localized terms of F are of order

(u−
k zk)

3, (u−
k zk)

2η, u−
k zkη

2, and η3 for k < m. Since |(u−
k zk)

2η|+ |u−
k zkη

2| . |u−
k zk|3 + |η|3,

they are bounded by |zk|3
∥∥u−

k

∥∥3

L3r +
∥∥η3

∥∥
Lr . β3 +

∥∥η3
∥∥

Lr . ¤
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Define

zL =
(∑m−1

k=0 |zk|2
)1/2

, zH =
(∑K

k=m+1|zk|2
)1/2

. (3.72)

If m = 0, we set zL = 0. For 9
2 < p < 6, denote

X̂ = X̂p := n4zL ‖η‖2
Lp + n6z2

L ‖η‖Lp + m · n
6(6−p)

p ‖η‖3
Lp . (3.73)

Note X̂ = 0 if m = 0. Let
D = 6Kcmaxγ

+
0 /γ0 = O(1) (3.74)

where cmax = maxk 2
∫

φ4
k and

γ+
0 = max

k,l,m∈I,|s|<s0

lim
r→0+

Im

(
φkφlφm,

1

H0 + ek − el − em − s − ri
PH0

c φkφlφm

)
. (3.75)

Note that (Qk,n, ∂EQk,n)−1 = 2κ
∫

φ4
k + o(1).

Lemma 3.5 Assume as in the Lemma 3.4, then for all k 6= m, we have

|Zk| . nβ2 + X̂p + X, if k < m, |Zk| . nβ2 + X, if k > m,

|Rk| . β3 + X̂p + X, if k < m, |Rk| . β3 + X, if k > m.
(3.76)

Here Zk is defined in (3.25) and Rk is part of Zk,

Rk := −2ck

[
(u+

k , F − F1) + (u−
k , F − F 1) +

{
(u+

k , h) + (u−
k , h) + (ūk, ∂EQ)a

}
Fθ

]
. (3.77)

Proof. Recall (3.25) that

Zk := −2ck

{
(u+

k , F ) + (u−
k , F ) +

[
(u+

k , h) + (u−
k , h) + (ūk, ∂EQ)a

]
θ̇
}

. (3.78)

For m < k ≤ K, since u+
k , u−

k are both real and localized, Pkη = 0, using Lemma 2.6 we
have

|(u+
k , η) + (u−

k , η̄)| = 2|(u−
k , η̄)| ≤ Cn2 ‖η‖L2

loc
. (3.79)

Therefore,

|Zk| ≤ ‖F‖L1
loc

+ |θ̇|[|a| + |z| + n2 ‖η‖L2
loc

]

. nβ2 + X + [β2 + n−1X](β + ‖η‖L2
loc

) . nβ2 + X.
(3.80)

Now, we consider the case when k < m. We first consider the term 2ck[(u
+
k , F ) + (u−

k , F )].
As we already see in the proof of Lemma 3.4, the only non-localized terms in F are bounded
by |η3|+ ∑

j,l,h<m |u−
j u−

l u−
h |z3

L. Thus for k < m, using Hölder’s inequality and Lemma 2.5,

|[(u+
k , F ) + (u−

k , F )]| . ‖F‖L1
loc

+ (|u−
k |, |η3| + ∑

j,l,h<m|u−
j u−

l u−
h |z3

L)

. nβ2 + X̂p + X.
(3.81)

On the other hand, using (2.38), we have

|(u+
k , η) + (u−

k , η̄)| = |(σ1Φ̄k, J [η])| . ‖η‖L2
loc

, (k < m). (3.82)

Then, it follows from Lemmas 3.4 and 2.6 that

|[(u+
k , h) + (u−

k , h̄) + (ūk, ∂EQ)a]Fθ| . [|z| + n−1|a| + ‖η‖L2
loc

]|Fθ| . β3 + X. (3.83)

This completes the proof of the estimates of Zk. The estimates of Rk are proved similarly.
¤
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Lemma 3.6 Assume as in the Lemma 3.4, then we have

|ḃ| ≤ C[n4z2
L + nβ3 + nX + n2βX̂]. (3.84)

Above X̂ = X̂p is defined in (3.73) and can be omitted if m = 0.

Proof. Recall (3.40) that

ḃ = b0 + cm(Q, Im(F − F1 + θ̇h)) − A2,rm. (3.85)

It follows from (3.34), (3.41) and Lemma 3.5 that

|b0| ≤ Cn4z2
L, |A2,rm| ≤ n2β[nβ2 + X + X̂]. (3.86)

On the other hand, we have

|cm(Q, Im(F −F1 + θ̇h))| . n ‖F − F1‖L1
loc

+n3β2 + |θ̇|[n3β+n ‖η‖L2
loc

] . nβ3 +nX. (3.87)

So, (3.84) follows. ¤

Lemma 3.7 (Normal form of zk) Fix 0 ≤ m ≤ K and 0 < n1 ∼ n ≤ n0. Let Q = Qm,n1

and L = Lm,n1. Suppose ψ is decomposed as in (3.17) with respect to L, and for some
0 < β ≪ n

‖η‖L2
loc

≤ β, ‖η‖L2∩Lp ≪ 1, max
k 6=m

|zk| ≤ β, |a| ≤ Cβ2. (3.88)

Then there exist functions qk, gk, Yk and constants Dkl for l 6= m such that

q̇k − Re(λk)qk =
∑

l>mDkl|ql|2qk + Ykqk + gk, with |qk − pk| . nβ2,

|Dkl| ≤ Dn2, Re(Dkl) ≤ −γ0n
2, ∀k, l > m, and

|Re(Yk)| . n2z2
L, (k > m); |Re(Yk)| . n2β2, (k < m).

(3.89)

Recall Re λk & n4 if k < m and Re λk = 0 if k > m. Moreover, we have

|gk| . nβ4 + n4βz2
L + n3β ‖η‖L2

loc
+ nβ

∥∥∥η(3)
∥∥∥

L2
loc

+ nβX̂p + X̃, (k > m),

|gk| . n5β2 + n4βz2
L + nβ4 + n3β ‖η‖L2

loc
+ nβ

∥∥∥η(3)
∥∥∥

L2
loc

+ X̂p + X̃, (k < m).
(3.90)

Above X̂p is defined in (3.73) and can be omitted if m = 0.

In case m = 0, Lemma 3.7 is identical to [30, Lemma 3.4]. The main difference in case
m > 0 is that u−

l are not localized and u±
l are complex for l < m. For those new terms

involving zl with l < m, we either integrate them by parts and use equations of rl, as in
(3.36), or include them in the error terms. The proof is skipped and can be found in [21].

Lemma 3.8 (Normal form of b) Assume as in Lemma 3.7. Then there exist functions
b̃, gb and numbers Bkl for k, l ∈ Im such that

˙̃
b = b0 +

∑

k,l∈I>m

Bkl|zk|2|zl|2 + gb, |b − b̃| ≤ Cnβ[β2 + n ‖η‖L2
loc

],

|gb| ≤ C[n3β4 + n5βz2
L + n2β2z2

L + nβ5 + n2zL ‖η‖L2
loc

+ n2 ‖η‖2
L2

loc
+ n

∥∥η3
∥∥

L1
loc

+ nβ2
∥∥∥η(3)

∥∥∥
L2

loc

+ nβX̂p].

(3.91)

Above b0 is define in (3.34) and can be omitted if m = 0. Moreover, we also have |Bkl| ≤ Cn2

and Bkl = − cm
2 Re Dkl +O(n4) where Dkl is defined in Lemma 3.7 and cm = (Qm, Rm)−1 =

O(1) > 0. Moreover, maxkl(|Bkl|)/(K−1γ0n
2) ≤ D

2 .

The proof is again skipped, see [21].
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4 Converging to an excited state

In this and the next sections, we study the dynamics when the solution is in a neighborhood
of some excited states Q1 at t = 0. We want to show that the solution either converges
to an excited state, or exits the neighborhood eventually. In the first case, the ground
state component is always bounded by other states. In the second case, the ground state
component becomes significant after some time, denoted tc below. In this section we study
the dynamics for t < tc. In next section we study the dynamics for t > tc if tc is finite.

Denote xj(t) = (φj , ψ(t)) and ξ(t) = PH0
c ψ(t). The assumption of Theorem 1.1 states

that, at time t = 0,

|x1(0)| = n, ‖∑j 6=1xj(0)φj + ξ(0)‖H1∩L1 ≤ ρ0, ρ0 = n1+δ. (4.1)

Denote

Te := sup
T>0

{
T :

1

ε3
‖ψ(t) − x1(t)φ1‖L2 ≤ |x1(t)| ∈ ((0.9)n, (1.1)n), 0 ≤ ∀ t ≤ T

}
. (4.2)

Above ε3 > 0 is the small constant in Lemma 3.3 and Te > 0 by (4.1). Te is the time
the solution exits the neighborhood of first excited state family. Note that (4.1)–(4.2) are
in terms of the orthogonal coordinates. For most of this section we will use linearized
coordinates which depend on the choice of Q, but (4.1)–(4.2) are independent of such a
choice.

From Lemma 3.3 and the definition of Te, for each 0 ≤ T < Te, we can find a unique
n(T ) = n(ψ(T )) ∈ (0, n0) such that the solution ψ(t) can be decomposed as

ψ(t) = [Q + a(t)∂EQ + ζ(t) + η(t)]e−iEt+iθ, ∀ 0 ≤ t < Te, (4.3)

with a(T ) = 0, where Q = Q1,n(T ), ∂EQ = ∂EQ1,n(T ) and E = E1,n(T ). The components
ζ and η are in the corresponding spectral subspaces with respect to Q1,n(T ). Moreover we
decompose

ζ =
∑

j 6=1ζj , ζj = z̄ju
−
j + zj ū

+
j , [η] = eiθη+ + e−iθη−. (4.4)

Define

ρ(t) :=
1

n
(∆t + γ0t)

−1/2, ∆t := (nρ0)
−2, ρ(0) = ρ0, (4.5)

where γ0 is given in (1.17), and let

tc := sup
0<T≤Te

{T : |z0(t)| ≤ ε4n
−1ρ(t)2, 0 ≤ t ≤ T}, (4.6)

where ε4 > 0 is a small constant to be chosen in (4.49), and z0 is the coefficient of ζ0 in
(4.4) with respect to Q1,n(T ). If there does not exist any T satisfying the right side of (4.6),
we let tc = 0.

Be definition tc ≤ Te could be finite or infinite and is independent of the choice of Q
in (4.3). If it is finite, it is the first time that z0 becomes large enough, and will not be
destroyed by other components in the future. The subscript c means “change” (of behavior).
The function ρ(t) is an upper bound for higher bound states for 0 ≤ t ≤ tc.

If tc = 0, we may skip most of this section and go directly to Lemma 4.6 and section 5.
We will bound η in Lp and L2

loc, with fixed p satisfying

27

5
< p < 6, σ = σ(p) =

3p − 9

2p
,

2

3
< σ <

3

4
. (4.7)
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From now on let 0 ≤ T < tc and ψ be decomposed as in (4.3) with respect to Q1,n(T ).
We start with the following lemma.

Lemma 4.1 (Initial estimates) Fix 27
5 < p < 6 with σ(p) = 3p−9

2p . We have

∑

k 6=1

|zk(0)|2 ≤ 9
8ρ2

0,
∥∥eLtη±(0)

∥∥
Lp 〈t〉σ(p) +

∥∥eLtη±(0)
∥∥

L2
loc

〈t〉7/6 ≤ C2ρ0 (4.8)

for t ≥ 0, for some C2 > 0 uniformly in n = n(T ), 0 ≤ T < Te.

Proof. Let ψ′ := e−iθ(0)ψ(0) − Q. From (4.3) at t = 0, we have

a(0)∂EQ + ζ(0) + η(0) = ψ′ = e−iθ(0)
(∑K

j=0xj(0)φj + ξ(0)
)
− Q. (4.9)

For k 6= 1, applying the projection Pk on this equation, we get

|zk(0)| ≤ |2ck|[|(u+
k , ψ′)| + |(u−

k , ψ′)|] ≤ (1 + o(1))[|xk(0)| + n3]. (4.10)

Thus
∑

k 6=1 |zk(0)|2 ≤ 9
8ρ2

0 by (4.1). Moreover, since ψ′ is localized and ‖ψ′‖H1∩L1 . ρ0,
using Lemma 2.16, we get the estimates of η±(0) for t > 1 by Lemma 2.11 and for 0 ≤ t ≤ 1
by Lemma 2.8. ¤

Recall η(3) and zH are defined in (3.64) and (3.72). We now define

MT := sup
0≤t≤T

max





ρ(t)−1zH(t), 2D−1ρ−2(t)|a(t)|,
[
n2σ−1ρ(t)2σ−2α + 2C2ρ0〈t〉−σ(p)

]−1
‖η(t)‖Lp ,

[
n−α/2ρ3 + n4/5ρ7/3 + 2C2ρ0〈t〉−7/6

]−1
‖η(3)(t)‖L2

loc





. (4.11)

Above α > 0 is a small constant to be chosen. We can choose α = 0.01.
Clearly M0 ≤ 3/2 if n is sufficiently small. By continuity we have MT ≤ 2 for T > 0

sufficiently small. Our main result in this section is the following proposition, which implies
MT ≤ 3/2 for all T < tc by a continuity argument.

Proposition 4.2 Suppose that for some T ∈ [0, tc), MT is well-defined and MT ≤ 2. Then
we have MT ≤ 3/2 and n(T )/n ∈ (3

4 , 5
4).

The proof of Proposition 4.2 is decomposed to Lemmas 4.3–4.5.
Note that T < tc and MT ≤ 2 imply

|z0(t)| ≤ ε4n
−1ρ2(t), zH(t) ≤ 2ρ(t), |a(t)| ≤ Dρ(t)2,

‖η(t)‖Lp ≤ 2n2σ−1ρ(t)2σ−2α + 4C2ρ0〈t〉−σ,

‖η(3)(t)‖L2
loc

≤ 2n−α/2ρ3 + 2n4/5ρ7/3 + 4C2ρ0〈t〉−7/6.

(4.12)

Since [η] = η(2) + η(3) and
∥∥η(2)

∥∥
L2

loc
. nρ2 by its definition, we get

‖η(t)‖L2
loc

. nρ(t)2 + ρ0〈t〉−7/6. (4.13)

It is sometimes convenient to use

ρ0 〈t〉−1/2 . ρ(t) . n−1 〈t〉−1/2 , ‖η‖Lp + ‖η(t)‖L2
loc

. ρ. (4.14)
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Lemma 4.3 Recall X, X̃, F and F1 are defined in (3.70), (3.21), and (3.68), with 27
5 <

p < 6. Assume MT ≤ 2, then we have

X̃ . nρ4 + ρ0ρ(t)2〈t〉−7/6 + nρ2
0〈t〉−7/3,

X . n2ρ3 + nρ0ρ(t)〈t〉−7/6 + nρ2
0〈t〉−7/3,

(4.15)

and, with o(1) denoting small positive constants which go to 0 as n + ‖ψ0‖H1 → 0,

‖F‖Lp′ . nρ2 + o(1)ρ2
0〈t〉−1.4,

‖F − F1‖
L

9
8 ∩L

3
2

. ρ3 + n0.64ρ2.54 + ρ
7/4
0 〈t〉−5/4 .

(4.16)

Proof. By Hölder’s inequality for p ≥ 9/2, and ‖η‖L2∩Lp ≪ 1,

∥∥η3
∥∥

L1
loc

≤ ‖η‖
2p−6
p−2

L2
loc

‖η‖
p

p−2

Lp ,
∥∥η3

∥∥
L1 ≤ o(1) ‖η‖

p
p−2

Lp ,

∥∥η3
∥∥

Lp′ ≤ o(1) ‖η‖
p+2
p−2

Lp ,
∥∥η3

∥∥
L9/8∩L3/2 ≤ o(1) ‖η‖

11p
9(p−2)

Lp .

(4.17)

From (3.70) with β = ρ and n replaced by n(T ) ∼ n,

X̃ . ρ2 ‖η‖L2
loc

+ X1, X . nρ ‖η‖L2
loc

+ X1, X1 = n ‖η‖2
L2

loc
+

∥∥η3
∥∥

L1
loc

. (4.18)

Using (4.12)2, (4.13), and (4.17)1, one gets for 27
5 < p < 6 that

X1 . n2ρ4 + ρ0ρ
2 〈t〉−7/6 + nρ2

0 〈t〉−7/3 . (4.19)

One gets (4.15) from the above two equations.
To bound F = κQ(2|hσ|2 + h2

σ) + κ|hσ|2hσ in Lp′ with hσ = a∂EQ + ζ + η, since
‖a∂EQ‖ . n−1ρ2, ‖ζ‖Lq . ρ for q ≥ 2, and ‖η‖Lp ≤ ρ, by (4.17)2 and (4.12) we get

‖F‖Lp′ . nρ2 + o(1) ‖η‖
p+2
p−2

Lp . nρ2 + o(1)ρ2
0 〈t〉−1.4510 . (4.20)

Similarly, to bound F − F1 with F1 = κQ(2|ζ|2 + ζ2), by (4.17) we have

‖F − F1‖
L

9
8 ∩L

3
2

. ρ3 + nρ ‖η‖L2
loc

+ o(1) ‖η‖
11p

9(p−2)

Lp . (4.21)

By (4.12), ρ ≤ n−1 〈t〉−1/2, and 27
5 < p < 6, it is bounded by

. ρ3 + nρ[nρ2 + ρ0〈t〉−7/6] + [n0.6471ρ2.5494 + ρ1.8333
0 〈t〉−1.2941]

. ρ3 + n0.64ρ2.54 + ρ
7/4
0 〈t〉−5/4 .

(4.22)

¤

Lemma 4.4 (Dispersion estimates) Assume MT ≤ 2, then for all 0 ≤ t ≤ T , we have

‖η(t)‖Lp ≤ 3

2
n2σ−1ρ(t)2σ−2α + 3C2ρ0〈t〉−σ,

‖η(3)(t)‖L2
loc

≤ 3

2
[n−αρ3 + n4/5ρ7/3] + 3C2ρ0〈t〉−7/6.

(4.23)
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Proof. We first prove the Lp-bound. Since [η] = eiθη+ + e−iθη−, it suffices to estimate
‖η±‖Lp . By (3.50) with t0 = 0, and by Lemmas 2.11 and 2.16,

‖η±‖Lp .
∥∥etLη±(0)

∥∥
Lp +

∫ t

0
αp(t − s)[‖FL±‖Lp′ + ‖F‖Lp′ ](s)ds. (4.24)

By Lemma 4.1, ∥∥etLη±(0)
∥∥

Lp ≤ C2ρ0〈t〉−σ. (4.25)

By (3.71), Lemma 4.3, and (4.14),

|θ̇| = |Fθ| . ρ2 + n−1X . ρ(t)2 + ρ0ρ(t)〈t〉−7/6 + ρ2
0〈t〉−7/3 . ρ(t)2. (4.26)

By (3.49), (4.14), and Lemma 2.15,

‖FL±‖Lp′ . |Fθ|(‖η‖Lp + n−1|a| + |z|) . ρ2 · ρ = ρ3. (4.27)

By Lemma 4.3, ‖F‖Lp′ . nρ2 + ρ2
0〈t〉−7/5. Thus the integral in (4.24) is bounded by

.

∫ t

0
αp(t − s)[nρ2(s) + ρ2

0〈s〉−7/5]ds . ρ2α
0 n2σ−1ρ(t)2σ−2α + ρ2

0〈t〉−σ. (4.28)

Here we have used (4.5), nρ2(s) ∼ n−1(∆t + s)−1, and ∀0 < α < σ < 1

∫ t

0
|t − s|−σ(∆t + s)−1ds . (∆t)−α(∆t + t)−σ+α. (4.29)

Combining (4.25) and (4.28), we get the first estimate of Lemma 4.4.

We next prove the second estimate. Recall that η
(3)
± =

∑4
j=1 η

(3)
±,j , where η

(3)
±,j are defined

in (3.52) and (3.62) with t0 = 0. By Lemmas 4.1 and 2.13, we get

∥∥∥η
(3)
±,1

∥∥∥
L2

loc

≤ C2ρ0〈t〉−7/6,
∥∥∥η

(3)
±,2

∥∥∥
L2

loc

≤ Cnρ2
0〈t〉−3/2. (4.30)

For η±,3, by Lemma 3.5, (4.14), and (4.15),

max |pk| . nρ2 + X̂p + X . nρ2. (4.31)

By (3.63), (4.26) and the above,

‖|ḟkl| + |θ̇fkl|‖L2
r

. n|θ̇|ρ2 + nρ max |ṗk| . nρ2ρ2 + nρ(nρ2) . n2ρ3. (4.32)

It follows from Lemma 2.13 that

∥∥∥η
(3)
±,3

∥∥∥
L2

loc

≤ C

∫ t

0
〈t − s〉−3/2n2ρ3(s)ds ≤ Cn2ρ3(t). (4.33)

Here we have used, for a, b > 1 and S ≥ 1,

∫ t

0
〈t − s〉−a (S + s)−bds . S1−b(S + t)−a + (S + t)−b, (4.34)

which is bounded by (S + t)−b if a ≥ b.
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For η±,4, by Lemma 2.11, we have

∥∥∥η
(3)
±,4

∥∥∥
L2

loc

≤ C

∫ t

0
α∞(t − s)[‖FL±‖L9/8∩L3/2 + ‖F − F1‖L9/8∩L3/2 ](s)ds, (4.35)

where α∞(t) = t−1/2 〈t〉−2/3. It follows from (4.34) that

∫ t

0
α∞(t − s)ρ(s)rds . ρ(t)r + n1/3ρr−2

0 ρ(t)7/3, r > 2. (4.36)

As for (4.27), we have ‖FL±‖L9/8∩L3/2 . ρ3. By Lemma 4.3, ‖F − F1‖L9/8∩L3/2 . ρ3 +

n0.64ρ2.54 + ρ
7/4
0 〈t〉−5/4. Thus

∥∥∥η
(3)
±,4

∥∥∥
L2

loc

. (ρ3 + n1/3ρ0ρ
7/3) + (n0.64ρ2.54 + n0.97ρ0.54

0 ρ7/3) + ρ
7/4
0 〈t〉−5/4

. ρ3 + o(1)n4/5ρ7/3 + ρ
7/4
0 〈t〉−5/4.

(4.37)

Summing (4.30), (4.33) and (4.37), we get the bound of ‖η(3)
± ‖L2

loc
in the lemma. ¤

Lemma 4.5 (Bound states estimates) Assume MT ≤ 2, then for all 0 ≤ t ≤ T , we
have

zH(t) ≤ 3

2
ρ(t), |a(t)| ≤ 3

4
Dρ(t)2, |n(t) − n| ≤ 1

4
n. (4.38)

Proof. For 1 < k ≤ K, from Lemma 3.7, we have a perturbation qk of pk such that

q̇k =
∑

l 6=1

Dkl|ql|2qk + Ykqk + gk, (4.39)

where

|qk − pk| . Cnρ2, |Re(Yk)| ≤ Cn2z2
L ≤ Cρ4(t),

|gk| . nρ4 + n3ρ ‖η‖L2
loc

+ nρ‖η(3)‖L2
loc

+ X̃ + nρX̂.
(4.40)

From (3.73) and ‖η‖Lp ≤ ρ, we have X̂ . ρ3. Thus, from (4.12), (4.13) and Lemma 4.3, we
get

|gk| . o(1)n2ρ3 + nρ0ρ〈t〉−7/6 + nρ2
0〈t〉−7/3. (4.41)

Since ρ0 = n1+δ and 0 < δ < 3
2 , it follows that

∫ n−3∧T

0
|gk|(t)dt ≤ Cnρ0; |gk|(t) ≤ o(1)n2ρ3(t), ∀t ≥ n−3. (4.42)

Now, from (4.39), we get

d

dt
|qk| =

∑

l 6=1

Re(Dkl)|ql|2|qk| + (Re Yk)|qk| + Re(
q̄k

|qk|
gk). (4.43)

for all 0 ≤ t ≤ n−3, by integrating this equation on (0, t), we see that |qk(t) − qk(0)| ≪ ρ0 .
Using zH = (

∑
k>1|pk|2)1/2, zH(0) ≤

√
9/8ρ0 and |qk − pk| . nρ2, we get

zH(t) ≤ 1.1ρ0, ∀ 0 ≤ t ≤ n−3. (4.44)
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Now, let fH = (|q2|2 + · · · + |qK |2)1/2, from (4.43) and (3.89), in particular Dk0|q0|2 .

n2(n−1ρ2)2 = ρ4, we get

ḟH ≤ −γ0n
2

2
f3

H + C[fHρ4 +
∑K

k=2|gk|]. (4.45)

By (4.12) and (4.42), we get

ḟH ≤ −γ0n
2

2
f3

H + o(1)n2ρ(t)3, n−3 ≤ t ≤ tc. (4.46)

Let g(t) := 7
5ρ(t). We have fH(n−3) < g(n−3) and ġ = −γ0n2

2
25
49g3, thus ḟH(t) < ġ(t) if

fH(t) = g(t). By comparison principle,

fH(t) ≤ g(t) =
7

5
ρ(t), (n−3 ≤ t ≤ T ), (4.47)

which together with (4.44) give the first estimate of the Lemma.
For the second estimate, recall that a = a(2) + b with |a(2)| ≤ Cn2ρ2(t). From Lemma

3.8, there is a perturbation b̃ such that

d

dt
b̃ = b0 + b̂0 +

∑

1<l,k≤K

Bkl|zl|2|zk|2 + gb, (4.48)

where gb and Bkl are defined in Lemma 3.8 and b̂0 = B00|z0|4 + 2
∑

1<k≤K Bk0|z0|2|zk|2.
We have |b − b̃| ≤ Cn2ρ2 and |b0| + |b̂0| . n4|z0|2 . ε2

4n
2ρ4. By Lemma 3.8, (4.12), (in

particular |z0| ≤ ε4n
−1ρ2 and this is where we choose ε4), (4.13), Lemma 4.3, (4.19) and

X̂ . n4ρ3 + ‖η‖3
Lp ,

|gb| . n3ρ4 + nρ5 + ε4nρ2‖η‖L2
loc

+ nρ2‖η(3)‖L2
loc

+ nX1 + nρX̂

. o(1)n2ρ(t)4 + g̃b, g̃b = n2ρ2
0 〈t〉−7/3 + nρ0ρ

2 〈t〉−7/6 .
(4.49)

Then, for t ≥ ∆t = n−2ρ−2
0 , we have ρ(t) ∼ n−1t−1/2 and

∫ T

t
|g̃b|(s)ds .

∫ ∞

t
[n4s−7/3 + s−7/6−1]ds . n4t−4/3 + t−7/6 . n2ρ(t)2. (4.50)

For 0 ≤ t ≤ ∆t, we have ρ(t) ∼ ρ0 and

∫ T

t
|g̃b|(s)ds ≤

(∫ ∆t

t
+

∫ ∞

∆t

)
|g̃b|(s)ds .

∫ ∆t

t
n2ρ2

0 〈s〉−7/6 ds + n2ρ2
0 . n2ρ2

0. (4.51)

Using
∫ ∞
t n2ρ4ds . ρ(t)2, we get have

∫ T

t
|b0 + gb|(s)ds ≤ o(1)ρ(t)2, ∀ t ∈ [0, T ). (4.52)

Integrating (4.48) on (t, T ) and using maxkl(|Bkl|)/(K−1γ0n
2) ≤ D

2 , we get

|̃b(t)| ≤ |̃b(T )| + D

2
ρ2(t) + o(1)ρ2(t) ≤ |̃b(T )| + 5

9
Dρ2(t). (4.53)
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Now, since a(T ) = 0, we get

|̃b(T )| = |a(T ) − b(T )| + |b(T ) − b̃(T )| ≤ |a(2)(T )| + Cn2ρ(T )2 . n2ρ(t)2. (4.54)

Thus we have |̃b(t)| ≤ |̃b(T )| + |̃b(t) − b̃(T )| ≤ 5
8Dρ(t)2 and

|a(t)| ≤ |a(2)(t)| + |̃b(t)| + |̃b(t) − b(t)| ≤ 3

4
Dρ(t)2. (4.55)

Finally, Lemma 3.3 shows |n(T ) − n(t)| . n−1|a(t)| + n3 ≪ n and the last claim of the
Lemma. ¤

The proof of Lemma 4.4 and Lemma 4.5 complete the proof of Proposition 4.2.
We now distinguish the two cases that tc = ∞ and tc < ∞.
Suppose tc = ∞. By Lemma 3.3 (iii) we have for any t < T < ∞

|n(t)2 − n(T )2| . |an(T )(t)| . ρ2(t), (4.56)

which shows that n(t) converges to some n∞ ∼ n as t → ∞. Furthermore n(t) ∼ n(0) ∼ n∞
and |n(t)−n∞| . n−1ρ2(t). Together with the estimate MT ≤ 3/2 we have shown the main
theorem in the case the solution converges to an excited state.

In the case tc < ∞, by continuity we also have Mtc ≤ 3/2. we will show that the
solution escapes from the first excited state family in the next section. We prepare it with
the following lemma, whose proof is the same as that for η±(t) in Lemma 4.4 with the
nonlinear terms set to zero for tc < s < t.

Lemma 4.6 Suppose tc < ∞. Let ∆t = n−2ρ−2
0 and η±(t) = e∓iθ(t)P±[η(t)] where η(t) is

as in (4.3) with respect to Q1,n(tc). Then for all t ≥ tc, we have

∥∥∥eL(t−tc)η±(tc)
∥∥∥

Lp
≤ 1

4
Λ1(t),

∥∥∥eL(t−tc)η±(tc)
∥∥∥

L2
loc

≤ 1

4
Λ2(t), (4.57)

where for C2 from Lemma 4.1, some C3 > 0 and ρc = ρ(tc),

Λ1(t) = C3[C2ρ0〈t〉−σ(p) + n2σ−1ρ2α
0 ρ(t)2σ−2α],

Λ2(t) = C3[C2ρ0〈t〉−7/6 + nρ2
c〈t − tc〉−7/6 + ρ3(t) + n4/5ρ7/3(t)].

(4.58)

Moreover, with σ2 := min(δ, 3
2 − δ, 2+5δ

15 ) > 0 and t+c := tc + n−3,

Λ1(t) + Λ2(t) . ρc, (∀t > tc),

Λ1 . ρ0 〈t〉−σ + n1/3ρ4/3
c , Λ2 . ρ0 〈t〉−7/6 + nρ2

c , (tc < t < t+c ), (4.59)

Λ1(t) . n1/3ρ4/3
c , Λ2(t) . n1+σ2ρ2

c , (t > t+c ).

Proof. From (3.51), we have

eL(t−tc)η±(tc) = eLtη±(0) +

∫ tc

0
eL(t−s)P±{FL± + e∓iθJ [F ]}(s)ds. (4.60)

We also decompose η±(tc) = η
(2)
± (tc)+η

(3)
± (tc) with a similar formula for eL(t−tc)η

(3)
± (tc). We

can bound eL(t−tc)η±(tc) in Lp and eL(t−tc)η
(3)
± (tc) in L2

loc using the same proof for Lemma
4.4 with the integrand set to zero for tc < s < t. We also have

∥∥∥eL(t−tc)η
(2)
± (tc)

∥∥∥
L2

loc

. 〈t − tc〉−3/2nρ2
c (4.61)
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using the explicit definition of η
(2)
± in (3.62) and Lemma 2.13. The above shows (4.57).

We now show (4.59). Its first part is because ρ0 〈t〉−1/2 ≤ ρc for all t ≥ tc, which follows
from (4.14).

Its second part follows from ρ(t) ∼ ρc < ρ0.
For the third part with t > t+c , it suffices to show

ρ0 〈t〉−σ . n2σ−1ρ2σ−2α
c , ρ0 〈t〉−7/6 . n1+σ2ρ2

c . (4.62)

If tc < ∆t, then ρ ∼ ρc ∼ ρ0. Writing all factors as powers of n using 〈t〉−1 ≤ n3, (4.62)
is reduced to 1 + δ + 3σ > 2σ − 1 + (2σ − 2α)(1 + δ) and 1 + δ + 7/2 > 1 + σ2 + 2(1 + δ).
Both are valid using 2/3 < σ < 3/4, 0 < δ < 3/2 and σ2 < 3/2 − δ.

If tc > ∆t, then ρc ∼ n−1t
−1/2
c , and (4.62) is reduced to n1+δ 〈t〉−σ . n−1+2αt−σ+α

c and

n1+δ 〈t〉−7/6 . n−1+σ2t−1
c , both are correct. ¤

5 Escaping from an excited state

In this section we study the dynamics near an excited state when t > tc assuming tc < ∞.
We want to show that the solution will escape from the ρ0-neighborhood of the excited
state. Recall ρ0 = n1+δ with 0 < δ < 3/2. (We need δ ≪ 1 in next section but not here.)

Fix Q = Q1,n(tc) and decompose ψ(t) for tc ≤ t < Te as in (4.3) and (4.4) with respect
to this fixed Q. At t = tc we have Lemma 4.6 and, by definition of tc and Mtc ≤ 3/2,

|z0(tc)| ≥ ε4n
−1ρ2

c , zH(tc) ≤
3

2
ρc, |a(tc)| ≤

3

4
Dρ2

c , ρc := ρ(tc). (5.1)

Let
γ(t) := |q0(t)| + n5|q0(t)|1/2 + ρc, (5.2)

where q0(t) is the perturbation of p0(t) defined in Lemma 3.7. It will be shown to be an
upper bound for bound states.5 We have defined γ(t) in terms of |q0| instead of |z0| so that
it is non-decreasing in t (for t > t+c := tc + n−3).

Define
to := sup

{
t ≥ tc : zL(s) < 2n1+δ, ∀ s ∈ [tc, t)

}
. (5.3)

The time to is the time that zL becomes powerful enough in orthogonal coordinates. The
subscript o means “out” (of the neighborhood). It follows from Proposition 5.1 below that
to < Te and hence the decompositions (4.3) and (4.4) are valid at least slightly beyond to.

Recall
27

5
< p < 6, σ = σ(p) =

3p − 9

2p
,

2

3
< σ <

3

4
. (5.4)

The main result of the section is the following proposition.

5The term n5|q0|
1/2 is included in γ so that zH . γ. Explicitly: The bound of ‖η‖Lp includes n11|q0|,

see (5.32). By (5.21), the bound of
‚

‚η3
‚

‚

L9/8∩L3/2
and hence ‖η(3)‖L2

loc
contains n18zm

L where m → 11/6 as

p → 6. To bound zH by γ, we need ‖η‖L2

loc
. nγ2 for (5.49) and γ = |q0| + ρc is insufficient.
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Proposition 5.1 There exist constants C3, D1 > 0, uniform in n, (with C3 greater than
that in Lemma 4.6), such that for all tc ≤ t ≤ to, we have

|q0(t) − q0(s)| ≤
1

10
ε4n

−1ρ2
c , (tc ≤ s ≤ t ≤ t+c := tc + n−3),

|q0(t)|
|q0(s)|

∈ [e
1
2
(Re λ0)(t−s), e

3
2
(Re λ0)(t−s)], (t+c ≤ s < t),

zH(t) ≤
√

6D

γ0
γ(t), |a(t)| ≤ D1γ

2,

‖η(t)‖Lp ≤ nσ1γ(t)2 +
1

2
Λ1(t), σ1 = 4σ − 3 − α,

∥∥∥η(3)(t)
∥∥∥

L2
loc

≤ C3n
5γ(t)2 + C3γ(t)3 +

1

2
Λ2(t),

(5.5)

where α > 0 is so small that −1
3 + 2α < σ1 = 3(p−6)

p − α < 0, and Λ1(t) and Λ2(t) are
defined in (4.57). In particular, t0 ≤ Te and for some constants c1 and c2,

tc + c1n
−4 log

2ρ0

zL(tc)
≤ to ≤ tc + c2n

−4 log
2ρ0

zL(tc)
. (5.6)

The main term in the integrand of η is of order nz2. In the first term of its Lp-bound
we lose some powers of n due to integration over a time interval of order n−4. On the other
hand, the first term γ3 of ‖η(t)‖L2

loc
estimate is optimal and comes from recent time terms

of order z3 in the integrand.

Proof. The lemma clearly holds true for t = tc. By a continuity argument, it suffices to
prove the lemma with additional weaker assumptions:

|q0(t) − q0(s)| ≤
1

2
ε4n

−1ρ2
c , (tc ≤ s ≤ t ≤ t+c ),

|q0(t)|
|q0(s)|

∈ [e
1
4
(Re λ0)(t−s), e2(Re λ0)(t−s)], (t+c ≤ s < t),

zH(t) ≤ 2

√
6D

γ0
γ(t), |a(t)| ≤ 2D1γ

2,

‖η(t)‖Lp ≤ 2nσ1γ(t)2 + 2Λ1(t),∥∥∥η(3)(t)
∥∥∥

L2
loc

≤ 2C3n
5γ(t)2 + 2C3γ(t)3 + 2Λ2(t).

(5.7)

At least for t near tc, the assumptions of Lemma 3.7 are satisfied and hence |z0| ≤ |q0| +
|p0−q0| ≤ γ+Cnγ2 = (1+o(1))γ. Together with (5.7) and [η] = η(2)+η(3), the assumptions
of Lemmas 3.4–3.7 are valid until t = to with β = (1 + o(1))γ(t), and

|z0(t)| ≤ (1 + o(1))γ(t),

‖η(t)‖L2
loc

≤ Cnγ2(t) + Λ2(t),

‖η(t)‖L2
loc∩Lp ≤ γ(t).

(5.8)

Here we have used (4.59).
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It is convenient to have an upper bound of γ in terms of |q0|. Clearly

γ2(t) ∼ |q0|2 + n10|q0| + ρ2
c . ε−1

4 n|q0(t)| + ε−1
4 n|z0(tc)|. (5.9)

Since |z0(tc)| ≤ |q0(tc)| + Cnγ(tc)
2 ≤ |q0(t)| + Cnγ(t)2, we get

γ2(t) . ε−1
4 n|q0(t)|. (5.10)

Thus we get an improved z0 estimate,

|z0| ≤ |q0| + Cnγ2 ≤ (1 + o(1))|q0|. (5.11)

We can also derive from (5.7) and |z0(tc)| ≥ ε4n
−1ρ2

c that, for any tc ≤ s < t < to,

|q0(s)| ≤
6

5
|q0(t)|e−

1
4
(Re λ0)(t−s). (5.12)

We now give error estimates. For X1 = n ‖η‖2
L2

loc
+

∥∥η3
∥∥

L1
loc

, using (5.7), (5.8), and

Hölder inequality, we have

X1 . n(n2γ4 + Λ2
2) + (nγ2 + Λ2)

A(nσ1γ2 + Λ1)
B, (5.13)

with A = 2p−6
p−2 and B = p

p−2 . We claim that

X1(t) .





nγ2, (∀t > tc),

nρ2
0 〈t〉−7/6 + n2.8γ4, (tc < t < t+c ),

n2.8γ4, (t > t+c ).

(5.14)

The first estimate is because Λ1 + Λ2 . ρc. The last estimate is, using (4.59)3 and 1.4 <
A < 1.5 < B < 1.6 with A + B = 3,

X1(t) . n3γ4 + (nγ2)A(n1/3γ4/3)B = n3γ4 + (nγ)2A/3nγ4 . n2.8γ4. (5.15)

When tc < t < t+c , using ρ ∼ ρc < ρ0, (4.59)2, σ1 > −1/3, and the previous estimate,

X1(t) . n3γ4 + nρ2
0 〈t〉−7/3 + (ρ0 〈t〉−7/6 + nγ2)A(ρ0 〈t〉−σ + n1/3γ4/3)B

. nρ2
0 〈t〉−7/6 + n2.8γ4.

(5.16)

For X̃ and X defined in (3.70), we have

X̃ ≤ γ2 ‖η‖L2
loc

+ X1 ≤ nγ4 + γ2Λ2 + X1(t),

X ≤ nγ ‖η‖L2
loc

+ X1 ≤ n2γ3 + nγΛ2 + X1(t).
(5.17)

For X̂p defined in (3.73) we have

X̂p = n4zL ‖η‖2
Lp + n6z2

L ‖η‖Lp + n6(6−p)/p ‖η‖3
Lp

. n4zL(n2σ1γ4 + Λ2
1) + n6z2

L(nσ1γ2 + Λ1) + n6(6−p)/p(n3σ1γ6 + Λ3
1).

(5.18)

Using Young’s inequality on n4zLΛ2
1 + n6z2

LΛ1, and 6(6− p)/p + 3σ1 = σ1 − 2α > −1/2, we
get

X̂p . n3/2γ4 + n8.5z3
L + n6(6−p)/pΛ3

1. (5.19)
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From (3.22), (3.26), Lemmas 3.4, 3.5 and (5.7), (5.17) and (4.59)2, we get

|θ̇| . β2 + n−1X . γ2 + n−1(n2γ3 + nγΛ2 + X1) . γ2,

|ṗk| . n4zL + nβ2 + X̂p + X . n4zL + nγ2 + X1 . n4zL + nγ2.
(5.20)

We now estimate the main terms. By Hölder inequality,

∥∥η3
∥∥

Lp′ ≤ ‖η‖
2(p−4)

p−2

L2 ‖η‖
p+2
p−2

Lp ,
∥∥η3

∥∥
L9/8∩L3/2 ≤ ‖η‖

2(2p−9)
2(p−2)

L2 ‖η‖
11p

9(p−2)

Lp . (5.21)

Using 36/7 < p < 6 and −1
2 < σ1 = 4σ − 3 − α = 3 − 18

p − α < 0,

(n4σ−3−αγ2)
p+2
p−2 ≤ (n4σ−3−αγ2)

11p
9(p−2) ≤ o(1)γ3, (5.22)

for α > 0 sufficiently small. By Lemma 3.4 and ‖η‖L2 ≤ o(1), we get

‖F‖Lp′ . nγ2 + X + n ‖η‖2
Lp +

∥∥η3
∥∥

Lp′ . nγ2 + δ2,

‖F − F1‖L9/8∩L3/2 . γ3 + X + n ‖η‖2
Lp +

∥∥η3
∥∥

L9/8∩L3/2 . γ3 + δ2,

δ2(t) : = nγ(t)Λ2(t) + nΛ2
1(t).

(5.23)

In deriving the above estimates most terms in X1 are controlled by δ2 except

nAγ2AΛB
1 ≤ (nA−B/2γ2A)(nB/2ΛB

1 ) . (nA−B/2γ2A)2/(2−B) + (nB/2ΛB
1 )2/B . γ3 + nΛ2

1.
(5.24)

Estimates (5.5) now follows from Lemmas 5.2 and 5.3 below.
In particular, taking s = t+c and t = to, (5.5)2 together with Re λ0 ∼ n−4 and |z0| =

(1 + o(1))|q0| imply (5.6). ¤

Lemma 5.2 (Dispersion estimates) For all tc ≤ t ≤ to, we have

‖η(t)‖Lp ≤ [nσ1γ2 + Λ1](t),
∥∥∥η(3)(t)

∥∥∥
L2

loc

≤ [C3n
5γ2 + C3γ

3 + Λ2](t). (5.25)

Note that Λj(t) may compete with the main terms for t near tc but decay rapidly.

Proof. We first estimate ‖η(t)‖Lp . It suffices to estimate η± with

η±(t) = eL(t−tc)η±(tc) +

∫ t

tc

eL(t−s)P±{FL± + e∓iθJ [F ]}ds. (5.26)

By Lemma 2.11, we have

‖η±(t)‖Lp .
∥∥∥eL(t−tc)η±(tc)

∥∥∥
Lp

+

∫ t

tc

αp(t − s){‖FL±‖p′ + ‖F‖p′}(s)ds. (5.27)

By Lemma 4.6, we have
∥∥eL(t−tc)η±(tc)

∥∥
Lp ≤ 1

4Λ1(t). By (3.49) and (5.20), we get

‖FL±‖Lp′∩L9/8∩L3/2 . |θ̇|[‖η‖Lp + n−1|a| + |z|] . γ2 · γ. (5.28)

From this, (5.23), (5.27), and X1 ≪ nρ2
c , we get

∫ t

tc

αp(t − s)[‖FL±‖Lp′ + ‖F‖Lp′ ](s)ds .

∫ t

tc

αp(t − s)(nγ(s)2 + δ2(s))ds. (5.29)
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Recall γ2 ∼ |q0|2 + n10|q0|+ ρ2
c . By (5.7), Re λ0 ∼ n4 and

∫ t |t− s|−σe−a(t−s)ds . aσ−1,

∫ t

tc

αp(t − s)n|q0|2(s)ds ≤
∫ t

tc

αp(t − s)n|q0|(t)2e−
1
4

Re λ0(t−s)ds

≤ Cn4σ−3|q0|2(t).
(5.30)

The integral of nn10|q0|, part of δ2, is bounded in the same way by Cn4(σ−1)+11|q0|(t).
For ρ2

c , we have

∫ t

tc

αp(t − s)nρ2
cds . nρ2

c 〈t − tc〉1−σ = n4σ−3−α/2 · ρ2
cn

α/2T 1−σ (5.31)

where α > 0 is to be chosen and T = n4 〈t − tc〉. Let A = 1
8n−4 Re λ0 which is of order 1.

If AT ≤ 10 log 1
n , then nα/2T 1−σ = o(1) if n is sufficiently small. If AT ≥ 10 log 1

n , then by
(5.12)

ρ2
cT

1−σ ≤ Cn|q0(tc)|T 1−σ ≤ Cn|q0(t)|e−2AT T 1−σ. (5.32)

Since e−AT ≤ n10 and e−AT T 1−σ ≤ C, it is bounded by Cn11|q0(t)|.
Using (4.59), the error term δ2(t) = nγ(t)Λ2(t) + nΛ2

1(t) is bounded by n7/3ρ2
c when

t > t+c and by n7/3ρ2
c + nρ2

0 〈t〉−7/6 when t < t+c . The term n7/3ρ2
c is smaller than the main

term nγ2 in (5.29) and can be absorbed, while

∫ t+c

tc

nρ2
0 〈t〉−7/6 dt . nρ2

c (5.33)

which can be checked using ρc ∼ ρ0 for tc < ∆t and ρc ∼ n−1t
−1/2
c for tc > ∆t.

Thus the integral in (5.27) is bounded by nσ1γ2 with σ1 = 4σ − 3 − α, and we have
shown the first estimate of (5.25) for ‖η‖Lp .

Next, we estimate ‖η(3)‖L2
loc

. Decompose η
(3)
± =

∑4
j=1 η

(3)
±,j , where η

(3)
±,j are defined

explicitly in (3.52) and (3.62) with t0 = tc. From Lemmas 2.13 and 4.6, we get

∥∥∥η
(3)
±,1

∥∥∥
L2

loc

≤ 1

4
Λ2(t),

∥∥∥η
(3)
±,2

∥∥∥
L2

loc

≤ 1

4
C3nρ2

c〈t − tc〉−3/2 ≤ 1

4
Λ2(t). (5.34)

By (3.63) and (5.20), we have

∥∥∥|ḟkl| + |θ̇fkl|
∥∥∥

L2
r

. n|θ̇|γ2 + nγ|ṗ| . n(γ2)γ2 + nγ(n4γ + nγ2)

. n5γ2 + n2γ3.
(5.35)

By Lemma 2.13 again and γ(s) . γ(t) for s < t, we obtain

∥∥∥η
(3)
±,3

∥∥∥
L2

loc

.

∫ t

tc

〈t − s〉−3/2[n5γ2 + n2γ3](s)ds . [n5γ2 + n2γ3](t). (5.36)

Finally,
∥∥∥η

(3)
±,4

∥∥∥
L2

loc

is bounded by
∫ t
tc

α∞(t − s)I4(s)ds by Lemma 2.11, with

I4 = ‖FL±‖L9/8∩L3/2 + ‖F − F1‖L9/8∩L3/2 . γ3 + δ2 (5.37)
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by (5.28) and (5.23)2. Using δ2(t) = nγ(t)Λ2(t) + nΛ2
1(t) and the explicit form of Λj in

(4.58) together with the integral bound (4.34), we get

∥∥∥η
(3)
±,4

∥∥∥
L2

loc

.

∫ t

tc

α∞(t − s)[γ3 + δ2](s)ds

. γ3(t) + nρ2
0 〈t〉−7/6 + n5/3ρ7/3 . γ3(t) + o(1)Λ2(t).

(5.38)

Summing the above estimates, we get the second estimate of (5.25) for
∥∥η(3)

∥∥
L2

loc
. ¤

Lemma 5.3 (Bound states estimates) There is a uniform in n constant D1 > 0 such
that for all tc ≤ t ≤ to, we have

|q0(t) − q0(tc)| ≤
1

10
ε4n

−1ρ2
c , (tc ≤ t ≤ t+c ),

|q0(t)|
|q0(s)|

∈ [e
1
2
(Re λ0)(t−s), e

3
2
(Re λ0)(t−s)], (t+c ≤ s < t),

zH(t) ≤
√

6D

γ0
γ(t), |a(t)| ≤ D1γ(t)2.

(5.39)

Proof. First we estimate q0(t). From Lemma 3.7, we have

q̇0(t) = (Re λ0)q0 + Ỹ0q0 + g0, |q0 − p0| . nγ2, |Re(Ỹ0)| ≤ Cn2γ2 ≪ n4. (5.40)

Here Ỹ0 = Y0 +
∑

l 6=1 D0l|ql|2. Moreover, from (3.90), (5.17) and (5.10), we have

|g0| ≤ C[n5γ2 + nγ4 + n3γ ‖η‖L2
loc

+ nγ
∥∥∥η(3)

∥∥∥
L2

loc

+ X̂p + X̃] ≤ o(1)n4|q0| + δ3, (5.41)

where δ3 = C(n6(6−p)/pΛ3
1 + γ2Λ2 + X1). If t < t+c , by (4.59)2, (5.14)2 and (5.33),

δ3(t) . nρ2
0 〈t〉−7/6 + nρ4

c + nγ2ρ2
c + n2.8γ4,

|q0(t) − q0(tc)| ≤
∫ t+c

tc

Cn4|q0| + δ3(s)ds ≤ o(1)(|q0(tc)| + ε4n
−1ρ2

c),
(5.42)

This shows the q0(t)-estimate for t < t+c . Suppose now t+c < t. By (4.59)3, (5.14)3, and
(5.10),

δ3(t) . n6(6−p)/p(n1/3ρ4/3
c )3 + γ2n1+σ2ρ2

c + n2.8γ4 ≪ n4|q0|. (5.43)

Since Re λ0 > 0 is of order n4, Eq. (5.40) gives

0 <
1

2
(Re λ0)|q0| ≤

d

dt
|q0| ≤

3

2
(Re λ0)|q0|, (5.44)

which implies the estimate of |q0(t)| for t > t+c .
Next, we estimate zH(t). For any k > 1, by Lemma 3.7, we have

d

dt
qk =

∑

l>1

Dkl|ql|2qk + Ykqk + gk, |qk − pk| ≤ Cnγ2. (5.45)

Moreover, we have

|Dkl| ≤ Dn2, |Re(Yk)| ≤ Dn2|z0|2, Re(Dkl) ≤ −γ0

2
n2, ∀l > 1. (5.46)
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So, we have
d

dt
(|qk|) ≤ −γ0n

2

2

∑

l>1

|ql|2|qk| + 2Dn2|q0|2|qk| + |gk|. (5.47)

Let f(t) = (
∑

l>1 |ql|2)1/2. We have f(tc) . ρc and

ḟ(t) ≤ −γ0n
2

2
f3 + 2Dn2|q0|2f(t) +

∑

k>1

|gk|. (5.48)

On the other hand, from (3.90), we have

|gk| ≤ C[nγ4 + n4γ3 + n3γ ‖η‖L2
loc

+ nγ
∥∥∥η(3)

∥∥∥
L2

loc

+ nγX̂p + X̃] ≤ o(1)n2γ3 + δ4, (5.49)

where δ4 = C(nγn6(6−p)/pΛ3
1 + nγΛ2 + X1). If t ≤ t+c , by (4.59)2, (5.14)2 and (5.33)

δ4(t) . nρ2
0 〈t〉−7/6 + n2ρ2

cγ + n2.8γ4

|f(t) − f(tc)| ≤
∫ t+c

tc

Cn2ρ3
c + δ4(s)ds ≤ Cnρ2

c ≪ ρc.
(5.50)

Thus f(t) . ρc for t < t+c . When t+c < t, since δ4(t) ≤ n2γ5 + n2+σ2γ3 + n2.8γ4 ≪ n2γ3, for
γ̃ = (16D

3γ0
)1/2γ,

ḟ(t) ≤ γ0n
2

4
[γ̃3 − f3], (t > t+c ). (5.51)

Since γ(t) is nondecreasing and f(t+c ) < γ̃(t+c ), by comparison we get

f(t) ≤ γ̃(t), ∀ t > t+c . (5.52)

Thus zH(t) ≤ f(t) + |f(t) − zH(t)| ≤ γ̃(t) + Cnγ2(t) <
√

6D
γ0

γ(t).

Finally, we estimate a(t). By (3.39) and Lemma 3.8, a = a(2) + (b − b̃) + b̃, where

|a(2)| . n2γ2, |̃b − b| ≤ Cnγ[γ2 + n ‖η‖L2
loc

] ≤ Cn2γ2, (5.53)

and
d

dt
b̃ = b0 +

∑

k,l 6=1

Bkl|zk|2|zl|2 + gb. (5.54)

Using a(tc) = 0,

|a(t) − 0| ≤ |a(2)(t)| + |a(2)(tc)| + |(b − b̃)(t)| + |(b − b̃)(tc)| + |̃b(t) − b̃(tc)|

≤ Cn2γ2(t) +

∫ t

tc

| d

dt
b̃|.

(5.55)

From (3.34), b0(t) = b00|z0(t)|2 with b00 = 2 Im κc0(Q
2, ū+

0 u−
0 ) and |b00|n−4 ≤ C4 for some

explicit C4 = O(1). We also have |Bkl||zk|2|zl|2 . n2γ4 and

|gb| ≤ C[n3γ4 + n2β2|z0|2 + nβ5 + n2|z0| ‖η‖L2
loc

+ nX1 + nγ2
∥∥∥η(3)

∥∥∥
L2

loc

+ nγX̂p]

≤ o(1)n4|z0|2 + Cn2γ4 + δ5,
(5.56)
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where δ5 = nX1 + (n2zL + nγ2)Λ2 + nγn6(6/p−1)Λ3
1. Thus

|a(t)| ≤ Cn2γ2(t) +

∫ t

tc

(C4 + o(1))n4|q0(s)|2 + Cn2γ4(s) + δ5(s)ds. (5.57)

By (5.7),

∫ t

tc

(C4 + o(1))n4|q0(s)|2ds ≤ 6

5
C4n

4|q0(t)|2
∫ t

tc

e−
1
4

Re λ0(t−s)ds ≤ 24C4n
4

5 Re λ0
|q0(t)|2. (5.58)

Moreover, by the definition of γ,

∫ t

tc

Cn2γ4(s)ds .

∫ t

tc

[n2|q0|4 + n22|q0|2](s)ds + n2ρ4
c(t − tc). (5.59)

The integral is bounded by n−2|q0|4 + n18|q0|2 = o(1)|q0|2 similarly as in (5.58), while the

last term is bounded by n2ρ4
cCn−4 log |z0|(t)

ε4nρ2
c

= o(1)ρ2
c . Thus this term is o(1)γ2.

For the error term
∫ t
tc

δ5(s)ds, if t ≤ t+c , by (4.59)2 and (5.14)2 we have

δ5(s) ≤ n2ρ2
0 〈t〉−7/6 + n3.8γ4 + (n2|q0(tc)| + nγ2)(ρ0 〈t〉−7/6 + nρ2

c)

+ nγ(tc)(ρ
3
0 〈t〉−3σ + nρ4

c)

≤ n2ρ2
0 〈t〉−7/6 + o(1)n4γ2.

(5.60)

Thus, using (5.33), we have
∫ t
tc

δ5(s)ds ≤ o(1)nγ(tc)
2. If t > t+c , by (4.59)3 and (5.14)3 we

have δ5(s) ≤ n3.8γ4 + n2γn1+σ2ρ2
c + nγnρ4

c = o(1)(n2γ4 + n4γ2), which is dominated by
other terms in (5.57).

In conclusion, we have shown

|a(t)| ≤ D1γ
2(t), D1 :=

5C4n
4

Re λ0
= O(1). (5.61)

This completes the proof of the Lemma 5.3. ¤

The above finishes the proof of Proposition 5.1.

We now prove the following out-going estimate of η at to.

Lemma 5.4 For some C5 > 0, for all t ≥ to, we have

∥∥∥e(t−to)Lη±(to)
∥∥∥

Lp
≤ Λ̃1(t) := Λ1(t) + C5n

−2ρ0(n
−4 + t − to)

−σ,
∥∥∥e(t−to)Lη±(to)

∥∥∥
L2

loc

≤ Λ̃2(t) := Λ2(t) + C5nρ2
0 〈t − to〉−7/6

+ C5ρ
3
0 〈t − to〉−1/6 n−4(t − to + n−4)−1

+ C5n
−3(n7/3ρc + ρ2

c)(t − to + n−4)−7/6.

(5.62)

Proof. For all t ≥ to, we have

eL(t−to)η±(to) = eL(t−tc)η±(tc) +

∫ to

tc

eL(t−s)P±{FL± + Jeiθ[F ]}ds. (5.63)
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We first bound it in Lp. By Lemma 4.6, the first term is bounded in Lp by Λ1(t). The
second term is bounded in Lp as in (5.29) by

.

∫ to

tc

αp(t − s)[‖FL±‖Lp′ + ‖F‖Lp′ ]ds .

∫ to

tc

αp(t − s)[nγ2(s) + δ2(s)]ds. (5.64)

Note nγ2 + δ2 ∼ n|q0|2 + n11|q0| + nρ2
c + δ2. By (5.7),

∫ to

tc

αp(t − s)n|q0|2(s)ds ≤ 6

5

∫ to

tc

αp(t − s)nρ2
0e

− 1
4

Re λ0(to−s)ds. (5.65)

Using

∫ to

|t−s|−σe−(to−s)/T ds .

∫ to

to−T
|t−s|−σe−(to−s)/T ds .

∫ to

to−T
|t−s|−σds . T (t− to +T )−σ

(5.66)
with T = 4/ Re λ0 ∼ n−4, (5.65) is bounded by Cn−3ρ2

0(t − to + n−4)−σ.
Similarly

∫ to
tc

αp(t − s)n11|q0|(s)ds is bounded by n11ρ0n
−4(t − to + n−4)−σ.

Let tk denote the first time in [tc, to) so that |q0(t)| = ρc. When t > tk, the integrand
ρ2

c is dominated by |q0|2 and can be absorbed. By (5.7), to − tk & n−4 log 2ρ0

ρc
. We have

∫ tk

tc

αp(t − s)nρ2
cds . nρ2

c |tk − tc||t − tk|−σ. (5.67)

Using

ρ2
c . ε−1

4 nq0(tc) .
6

5
ε−1
4 nρce

− 1
4

Re λ0(tk−tc), (5.68)

and n4|tk − tc|e−
1
4

Re λ0(tk−tc) ≤ C, the integral in (5.67) is bounded by Cn−2ρc|t − tk|−σ.
Using (4.59), the error term δ2(t) is bounded by n7/3ρ2

c when t > t+c and by n7/3ρ2
c +

nρ2
0 〈t〉−7/6 when t < t+c . The term n7/3ρ2

c is much smaller than the main terms and can be
absorbed, while by (5.33),

∫ t+c

tc

αp(t − s)nρ2
0 〈s〉−7/6 ds . nρ2

c |t − tc|−σ. (5.69)

Summing the above estimates gives the first estimate of Lemma 5.4.

For the second estimate, we have η±(to) = η
(2)
± (to) + η

(3)
± (to). By (3.52), (3.62) and

(3.64) with t0 replaced by tc, we have for τ = t − to ≥ 0

eLτη±(to) = eLτη
(2)
± (to) +

4∑

j=1

eLτη
(3)
±,j(to), (5.70)

with
eLτη

(3)
±,1(to) = e(t−tc)Lη±(tc), eLτη

(3)
±,2(to) = −e(t−tc)Lη

(2)
± (tc), (5.71)

eLτη
(3)
±,3(to) = −

∫ to

tc

e(t−s)Le∓iθ(s)Π±
∑

k,l∈Ωm

(
Re Rkle

−iωklsḟkl ∓ i Re Rkle
−iωklsθ̇fkl

)
(s)ds,

eLτη
(3)
±,4(to) =

∫ to

tc

e(t−s)LP±{FL± + Je∓iθ[F − F1]}ds. (5.72)
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From the explicit definition of η
(2)
± (to) in (3.62) and Lemma 2.13 we obtain

∥∥∥eLτη
(2)
± (to)

∥∥∥ ≤ Cnρ2
0〈t − to〉−3/2. (5.73)

By Lemma 4.6,

∥∥∥eLτη
(3)
±,1(to)

∥∥∥
L2

loc

≤ 1

4
Λ2(t),

∥∥∥eLτη
(3)
±,2(to)

∥∥∥
L2

loc

≤ C3nρ2
c〈t − tc〉−3/2. (5.74)

As in (5.36) and (5.38), we obtain

∥∥∥eLτ (η
(3)
±,3 + η

(3)
±,4)(to)

∥∥∥
L2

loc

.

∫ to

tc

α∞(t − s)[n5γ2 + γ3 + δ2](s)ds ≤ I1 + I2 + I3, (5.75)

where Ij are integrals over the same time interval with the following integrands

(n5|q0|2 + n15|q0| + |q0|3 + n15|q0|3/2), (n7/3ρ2
c + ρ3

c)1[tc,tk], nρ2
0 〈s〉−7/6 1[tc,t+c ]. (5.76)

Then

I1(t) .

∫ to

tc

α∞(t − s)ρ3
0e

− 1
4

Re λ0(to−s)ds . ρ3
0

∫ to

to−n−4

〈t − s〉−7/6 ds

≤ ρ3
0 〈t − to〉−1/6 n−4(t − to + n−4)−1.

(5.77)

With constant ε = n7/3ρ2
c + ρ3

c , using (5.68) and n4(tk − tc)e
−Re 1

4
λ0(tk−tc) ≤ C,

I2(t) .

∫ tk

tc

α∞(t − s)εds ≤ ε(t − tk)
−1/6(tk − tc)(t − tc)

−1

≤ ε(t − tk)
−1/6(t − tc)

−1n−4n4(tk − tc)nρ−1
c e−Re 1

4
λ0(tk−tc)

≤ ε−1
4 n−3(n7/3ρc + ρ2

c)(t − tk)
−1/6(t − tc)

−1.

(5.78)

Finally, I3(t) .
∫ t+c
tc

α∞(t − s)nρ2
0 〈s〉−7/6 ds ≤ (t − tc)

−7/6nρ2
0. Summing the estimates we

get the second part of the Lemma. ¤

6 Dynamics away from bound states

In this section, we study the dynamics of the solution ψ(t) for to ≤ t ≤ ti, where to is
the time it leaves 2ρ0 neighborhood of first excited states, and ti is the time it enters the
ρ0-neighborhood of ground states, to be defined in (6.73). In this time interval we use
orthogonal coordinates and decompose

ψ(t) =
K∑

j=0

xj(t)φj + ξ(t), ξ(t) ∈ EH0
c , (t ≥ to). (6.1)

We first estimate xj(to) and ξ(to) in Lemma 6.1, for which we recall some definitions.
Recall that ∆t = n−2ρ−2

0 = n−2(2+δ), 0 < α ≪ 1 is fixed and 0 < δ ≤ 1
10 . Moreover,
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27
5 < p < 6 is fixed, 2

3 < σ = 3(p−3)
2p < 3

4 , and σ′ := 3(p−2)
2p > σ. Recall from Lemma 5.4 that

Λ̃2 = Λ̃2,1 + Λ̃2,2 with

Λ̃2,1(t) := Λ2(t) + C5nρ2
0 〈t − to〉−7/6 + C5n

−3(n7/3ρc + ρ2
c)(t − to + n−4)−7/6,

Λ̃2,1(t) := C5ρ
3
0 〈t − to〉−1/6 n−4(t − to + n−4)−1.

(6.2)

We also define

Λ3(t) := 3Λ̃2(t) + C6n
3(1 + t − to)

−3/2, Λ4(t) :=
3∑

j=1

Λ4,j(t), (6.3)

where C6 is some uniform constant defined in (6.14) and

Λ4,1 := C6n
−1+(4+2δ)α(∆t + t)−σ+α, Λ4,2 := C6ρ0(1 + t − to)

−σ,

Λ4,3 := C6n
−1+δ(n−4 + t − to)

−σ.
(6.4)

Note that Λ4,1 is the second term in Λ1 and comes from the out-going estimate at tc; Λ4,3

is from the out-going estimate at to and Λ4,2 is from (6.14). Also note that

Λ3(t) ≤ 3C6n
3, Λ4(t) ≤ 2C6n

5p−18
p

+δ
+ C6ρ0〈t − to〉−σ,

5p − 18

p
>

5

3
. (6.5)

Lemma 6.1 At t = to we have

(1.9)n1+δ ≤ |x0| ≤ (2.1)n1+δ, (
∑

k>1

|xk|2)
1
2 ≤ 6

√
D

γ0
ρ0, (0.9)n ≤ |x1| ≤ (1.1)n. (6.6)

Moreover, we have for all t ≥ to
∥∥∥e−i(t−to)H0ξ(to)

∥∥∥
L2

loc

≤ Λ3(t),
∥∥∥e−i(t−to)H0ξ(to)

∥∥∥
Lp

≤ Λ4(t). (6.7)

Proof. For all 0 ≤ t ≤ to, we have

ψ = [Q + a(t)∂EQ + ζ + η]−iEt+iθ =
K∑

j=0

xjφj + ξ. (6.8)

Here Q = Q1,n(tc). Recall n(tc) = n + O(n1+2δ) by substituting (6.8) with t = 0 into
n = |(φ1, ψ0)|. For j 6= 1, taking the inner product of (6.8) at t = to with φj we get

|xj(to)| = O(n3) + (1 + O(n2))|zj(to)|, (j 6= 1). (6.9)

We also have

|x1(to)| = (φ1, Q) + O(n3) = n(tc) + O(n3) = n + O(n1+2δ). (6.10)

Since |z0(to)| = (1 + o(1))2ρ0 and zH(to) ≤
√

6D/γ0(1 + o(1))|z0(to)|, we have (6.6).
Next, we shall prove (6.7). Denote θ∗ := iEto − iθ(to) and

x∗ = eθ∗

K∑

j=0

xj(to)φj , ξ∗ = eθ∗ξ(to), η∗ = η(to). (6.11)
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From (6.8), we get
ξ∗ = PH0

c {Q + a(to)∂EQ + ζ(to) + η∗ − x∗}. (6.12)

We write ξ∗ = ξ∗1 + ξ∗2 + ξ∗3 where

ξ∗1 := PH0
c

{
Q + a(to)∂EQ +

∑

j 6=1

zj(to)ū
+
j +

∑

j>1

z̄j(to)u
−
j − x∗

}
,

ξ∗2 := PH0
c [z̄0(to)u

−
0 ], ξ∗3 := PH0

c η∗.

(6.13)

From the explicit formulae of Q, ∂EQ, u+
j , we see that ξ∗1 is localized and ‖ξ∗1‖ . n3 +

n|a(to)| + maxj 6=1 |zj |n2 . n3. Therefore, for all t ≥ to, τ = t − to, by Lemma 2.5 and
Lemma 2.10, we have a uniform constant C6 > max{C3, C5} such that

∥∥e−iτH0ξ∗1
∥∥

L2
loc

≤ 1

2
C6n

3(1 + τ)−3/2,
∥∥e−iτH0ξ∗1

∥∥
Lp ≤ 1

2
C6n

3(1 + τ)−σ′

,

∥∥e−iτH0ξ∗2
∥∥

L2
loc

≤ 1

2
C6n

3+δ(1 + τ)−3/2,
∥∥e−iτH0ξ∗2

∥∥
Lp ≤ 1

2
C6ρ0(1 + τ)−σ.

(6.14)

Here for τ < 1 we have used
∥∥e−iτH0ξ∗2

∥∥
Lp . ‖ξ∗2‖H1 . |z0(to)|. Next, we estimate e−iτH0ξ∗3

in L2
loc and Lp. Note [e−iτ(H0−E)ξ∗3 ] = eτJ(H0−E)[ξ∗3 ]. Recall that

L = J(H0 − E) − W, [η∗] = eiθ(to)η∗+ + e−iθ(to)η∗−, η∗± = η±(to), (6.15)

for some localized potential W of order n2. By Duhamel’s principle, we have

eτJ(H0−E)[ξ∗3 ] = PH0
c eτL[η∗] +

∫ τ

0
eJ(H0−E)(τ−s)PH0

c WeLs[η∗]ds. (6.16)

From Lemma 5.4, we get
∥∥∥eτJ(H0−E)[ξ∗3 ]

∥∥∥
Lp

≤
∑

±

∥∥eτLη∗±
∥∥

Lp + Cn2
∑

±

∫ τ

0
|τ − s|−σ′ ∥∥eLsη∗±

∥∥
L2

loc
ds

≤ 2Λ̃1(t) + Cn2
∑

±

∫ τ

0
|τ − s|−σ′

Λ̃2(s + to)ds.

(6.17)

Using the fact that
∫ t

0
(t − s)−β1(ǫ−1 + s)−β2 ≤ Cǫβ2−1(ǫ−1 + t)−β1 , 0 < β1 < 1 < β2, (6.18)

we have

n2

∫ τ

0
|τ − s|−σ′

Λ̃2(s + to)ds ≤ Cnδρ0〈t − to〉−σ′

+ Cρ0(∆t + t)−σ′

(6.19)

which is o(1)ρ0〈t − to〉−σ. From this and (6.17), we get
∥∥∥eτJ(H0−E)[ξ∗3 ]

∥∥∥
Lp

≤ 2Λ̃1 + o(1)ρ0〈t − to〉−σ. (6.20)

Similarly from (6.16) with α̃∞(t) = min{t−3/2, t−9/10},
∥∥∥eτJ(H0−E)[ξ∗3 ]

∥∥∥
L2

loc

≤
∑

±

∥∥eτLη∗±
∥∥

L2
loc

+ Cn2
∑

±

∫ τ

0
α̃∞(τ − s)

∥∥eLsη∗±
∥∥

L2
loc

ds

≤ 2Λ̃2(t) + Cn2
∑

±

∫ τ

0
α̃∞(τ − s)Λ̃2(s + to)ds ≤ 3Λ̃2(t).

(6.21)
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So, (6.7) follows from (6.14), (6.20), and (6.21). This completes the proof of Lemma 6.1. ¤

For j ∈ {0, 1, · · · , K}, let fj := |µj(t)|2, where µj is the perturbation of xj defined in

Lemma 3.2. Since d
dt |µ|2 = 2 Re µ̄µ̇ and cj

l are all purely imaginary, from (3.10) we have

ḟj =
K∑

a,b=0

2(Re dj
ab)fafbfj + 2 Re µ̄jgj . (6.22)

Let

f =
K∑

l=1

fl, h =
K∑

l=1

2−lfl, γ := min{γ0
ab, for a, b ≥ 1} > 0. (6.23)

Then, from (6.22), Lemma 3.2 and as in [30, (4.58)], we have

d

dt
(f0 + f)(t) ≤ 2(K + 1)max

l
|µ̄lgl|,

d

dt
(f0 + h)(t) ≥ −2(K + 1)max

l
|µ̄lgl|. (6.24)

Moreover, we have the following lemma.

Lemma 6.2 Assume as in Lemma 3.2. We have

ḟ0 ≥ 2γf2f0 + 2 Re µ̄0g0, ḟ ≤ −4γf0f
2 +

K∑

l=1

2 Re µ̄lgl. (6.25)

Proof. From (6.22) and Lemma 3.2 in particular (3.12), we have

ḟ0 − 2 Re µ̄0g0 =
K∑

a,b=0

2 Re(d0
ab)fafbf0 =

K∑

a,b=0

[2(2 − δb
a)γ

0
ab − 4(2 − δb

0)γ
a
0b]fafbf0. (6.26)

Note that γa
0b = 0 for any a and b. Thus

ḟ0 − 2 Re µ̄0g0 =
K∑

a,b=1

2(2 − δb
a)γ

0
abfafbf0 ≥ 2γf2f0. (6.27)

This proves the first part of (6.25). For the second part,

ḟ − 2
K∑

l=1

Re µ̄lgl =
K∑

l=1

K∑

a,b=0

2[(2 − δb
a)γ

l
ab − 2(2 − δb

l )γ
a
lb]fafbfl,

=

K∑

b=0

K∑

a,l=1

2[(2 − δb
a)γ

l
ab − 2(2 − δb

l )γ
a
lb]fafbfl +

K∑

l=1

K∑

b=0

−4(2 − δb
l )γ

0
lbf0fbfl. (6.28)

By switching a and l in the terms with factor γl
ab, the summands in the first sum become

−2(2 − δb
l )γ

a
lbfafbfl ≤ 0. The summands of the second sum are also nonpositive. Keeping

only terms with b > 0 in the second sum, we get

ḟ − 2
K∑

l=1

Re µ̄lgl ≤ −4
K∑

b,l=1

(2 − δb
l )γ

0
lbf0fbfl ≤ −4γf0f

2.

This proves the second part of (6.25). ¤

The following proposition estimates the solution in a time interval containing [to, ti].
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Proposition 6.3 Let δ6(t) := ρ2
0〈t − to〉−

6
p . For all t ∈ [to, to + 6

γ n−2(2+δ)], we have

n

5
≤ max

j
|xj | ≤ (

∑K
j=0|xj(t)|2)

1
2 ≤ 2n,

‖ξ(t)‖L2
loc

≤ n3−α + δ6(t), ‖ξ(t)‖Lp ≤ n3−α|t − to|
6−p
2p +

3

2
Λ4(t).

(6.29)

Proof. Since (6.29) holds at t = to, we then prove it by using the continuity argument. So,
we can assume the following weaker estimates: For to ≤ t ≤ to + 6

γ n−2(2+δ),

n

10
≤ max

j
|xj | ≤ (

∑K
j=0|xj(t)|2)

1
2 ≤ 3n,

‖ξ(t)‖L2
loc

≤ 2[n3−α + δ6(t)] ≤ n2,

‖ξ(t)‖Lp ≤ 2n3−α|t − to|
6−p
2p + 3Λ4(t) ≤ n2.7 + 3Λ4(t).

(6.30)

In particular ‖ξ(t)‖L2
loc

+ ‖ξ(t)‖Lp ≪ n. The proof of Proposition 6.3 follows from Lemma

6.4 and Lemma 6.6 below. ¤

Lemma 6.4 For all t ∈ [to, to + 6
γ n−2(2+δ)], we have

‖ξ(t)‖L2
loc

≤ n3−α + δ6(t), ‖ξ(t)‖Lp ≤ n3−α|t − to|
6−p
2p +

3

2
Λ4(t). (6.31)

Proof. For all t − to ≤ Cn−2(2+δ), by (6.30), we have

‖ξ(t)‖Lp . n
3−α− 2(2+δ)(6−p)

2p + Λ4(t) ≤ C[n
(5+δ)p−6(2+δ)

p
−α

+ 3Λ4(t)]. (6.32)

We have

ξ(t) = e−iH0(t−to)ξ(to) +

∫ t

to

e−iH0(t−s)Pci
−1G(s)ds. (6.33)

So, we have

‖ξ(t)‖Lp ≤ Λ4(t) + C

∫ t

to

|t − s|−
3(p−2)

2p ‖G(s)‖Lp′ ds. (6.34)

Note that ‖G‖Lp′ . ‖G3‖Lp′ +
∥∥G − G3 − κξ2ξ̄

∥∥
Lp′ +

∥∥κξ2ξ̄
∥∥

Lp′ and ‖G3‖Lp′ . n3. On the
other hand, from Lemma 3.1, (6.30) and (6.32), we get

∥∥G − G3 − κξ2ξ̄
∥∥

L1∩Lp′ . n2 ‖ξ‖L2
loc

. [n5−α + n2δ6(t)]. (6.35)

On the other hand, using Hölder’s inequality, we get

∥∥κξ2ξ̄
∥∥

Lp′ ≤ ‖ξ‖
2(p−4)

p−2

L2 ‖ξ‖
p+2
p−2

Lp ,
∥∥|ξ|2ξ

∥∥
L1 ≤ ‖ξ‖

2(p−3)
p−2

L2 ‖ξ‖
p

p−2

Lp . (6.36)

From this, (6.32) and since 0 < δ ≤ 1
10 , we get

∥∥κξ2ξ̄
∥∥

Lp′ ≤ ‖ξ‖
2(p−4)

p−2

L2 ‖ξ‖
p+2
p−2

Lp ≤ o(1)[n5−2α + Λ4(t)
p+2
p−2 ]. (6.37)

By (6.5), (6.35), and (6.37), we have

‖G(s)‖Lp′ ≤ C[n3 + o(1)δ̃2(t)], δ̃2(t) := [ρ0〈t − to〉−σ]
p+2
p−2 . (6.38)
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Therefore, using σ p+2
p−2 > 1,

‖ξ(t)‖Lp ≤ Λ4(t) + C

∫ t

to

|t − s|−( 3
2
− 3

p
)
[n3 + o(1)δ̃2(s)]ds

≤ Cn3|t − to|
6−p
2p +

3

2
Λ4(t).

(6.39)

So, we have proved the estimate of ‖ξ(t)‖Lp .
We now estimate ‖ξ(t)‖L2

loc
. By (3.5), (3.6), (6.30) and Lemma 6.1, we have

∥∥∥ξ
(3)
1 (t)

∥∥∥
L2

loc

≤ Λ3(t),
∥∥∥ξ

(3)
2 (t)

∥∥∥
L2

loc

. n3(1 + t − to)
−3/2. (6.40)

By (3.6) and the estimate of maxj |u̇j | in Lemma 3.1, we get

∥∥∥ξ
(3)
3 (t)

∥∥∥
L2

loc

.

∫ t

to

|1 + t − s|−3/2n5ds . n5. (6.41)

For ξ
(3)
4 (t), bounding its integrand by either L∞ or Lp-norm and using (6.35), we have

∥∥∥ξ
(3)
4 (t)

∥∥∥
L2

loc

.

∫ t

to

min{|t − s|−3/2, |t − s|−
3(p−2)

2p }
∥∥G − G3 − κξ2ξ̄

∥∥
L1∩Lp′ ds

.

∫ t

to

min{|t − s|−3/2, |t − s|−
3(p−2)

2p }[n5−α + n2δ6(s)]ds

. n5−α + n2δ6(t).

(6.42)

For ξ
(3)
5 (t), bounding its integrand in either L

2p
p−4 or Lp, we have

∥∥∥ξ
(3)
5 (t)

∥∥∥
L2

loc

≤ C

∫ t

to

min{|t − s|−
6
p , |t − s|−

3(p−2)
2p }

∥∥|ξ|2ξ
∥∥

L
2p

p+4 ∩Lp′
ds. (6.43)

By (6.36), p+2
p−2 > 2 and 2 < 6p

p+4 < p because 27
5 < p < 6,

∥∥|ξ|2ξ
∥∥

L
2p

p+4 ∩Lp′
≤ C ‖ξ‖Lp∩L2 ‖ξ‖2

Lp ≤ o(1) ‖ξ‖2
Lp . (6.44)

Therefore, by (6.30),

∥∥∥ξ
(3)
5 (t)

∥∥∥
L2

loc

≤ o(1)

∫ t

to

min{|t − s|−
6
p , |t − s|−

3(p−2)
2p }[n5.4 + Λ2

4(s)]ds

≤ o(1)[n5.4 + Λ4(t)
2 + δ7(t)],

(6.45)

where
δ7(t) := ρ2

0〈t − to〉−
6
p + n

−2+2δ
3 (n−4 + t − to)

− 6
p , (6.46)

and we have used 2
3 < σ < 3

4 , (6.4), and (4.34) with a = 6/p < b = 2σ − 2α, (or b = 2σ).

Collecting all of the estimates of ξ
(3)
j with j = 1, 2, 3, 4, we have

∥∥∥ξ(3)(t)
∥∥∥

L2
loc

≤ Λ3(t) + Cn5 + o(1)[Λ4(t)
2 + δ7(t)]. (6.47)

By (6.3), we have Λ3(t) . n3 and Λ4(t)
2 + δ7(t) ≤ n3 + δ6(t). Thus

‖ξ(t)‖L2
loc

≤
∥∥∥ξ(2)(t)

∥∥∥
L2

loc

+
∥∥∥ξ(3)(t)

∥∥∥
L2

loc

≤ Cn3 + o(1)δ6(t). (6.48)

This completes the proof of the lemma. ¤
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Lemma 6.5 For t ∈ [to, to + 6
γ n−2(2+δ)], the error terms gj(t) in (3.10) satisfy

|gj(t)| ≤ o(1)n6.7+δ + Cn2g(t), (6.49)

where
g(t) := Λ3(t) + o(1)[n1+3δ〈t − to〉−

pσ
p−2 + Λ2

4(t) + δ7(t)] (6.50)

satisfies
∫ ∞

to

g(s)ds ≤ o(1)n− 2
3 ; g(t) ≤ o(1)nρ2

0, ∀ t ≥ to + n−3. (6.51)

Proof. Recall (3.11),

|gj(t)| . n7 + n2
∥∥∥ξ(3)

∥∥∥
L2

loc

+ n ‖ξ‖2
L2

loc
+ ‖ξ‖

2(p−3)
p−2

L2
loc

‖ξ‖
p

p−2

Lp . (6.52)

From (6.30) and (6.47), we get

n2
∥∥∥ξ(3)

∥∥∥
L2

loc

≤ n2Λ3 + Cn7 + o(1)n2[Λ2
4 + δ7],

n ‖ξ‖2
L2

loc
≤ C[n7−2α + nδ6(t)

2],
(6.53)

and, using [n2.7 + Λ4,1 + Λ4,3]
p

p−2 ≤ o(1)n
5+3δ

2 ,

‖ξ‖
2(p−3)

p−2

L2
loc

‖ξ‖
p

p−2

Lp . [n3−α + δ6(t)]
2(p−3)

p−2 [n2.7 + Λ4]
p

p−2

≤ o(1)[n
2(p−3)(3−α)

p−2 + δ
2(p−3)

p−2

6 ][n
5+3δ

2 + ρ
3/2
0 〈t − to〉−

pσ
p−2 ]

≤ o(1)[n6.7+δ + ρ3
0〈t − to〉−

pσ
p−2 ].

(6.54)

Summing the estimates we get (6.49). The estimates (6.51) follow from direct checking. ¤

Lemma 6.6 For all t ∈ [to, to + 6
γ n−2(2+δ)], we have

1

5
n ≤ max

j
|xj(t)| ≤ (

∑K
j=0|xj(t)|2)

1
2 ≤ 2n. (6.55)

Proof. From the first equation of (6.24), (6.51) and δ ≤ 1
10 , we get

(f0 + f)(t) ≤ (f0 + f)(to) + Cn max
j

∫ t

to

|gj(s)|ds

≤ (f0 + f)(to) + C[o(1)n7.7+δ(t − to) + n3

∫ t

to

g(s)ds]

≤ (f0 + f)(to) + o(1)ρ2
0 ≤ [1 + o(1)](f0 + f)(to).

(6.56)

By (3.11), (6.30), we have [1−o(1)]
∑

j |xj |2 ≤ f0 +f . By Lemma 6.1, we get (f0 +f)(to) ≤
2n2. It follows from (6.56) that (

∑K
j=0 |xj(t)|2)

1
2 ≤ 2n.

Similarly, by integrating the second equation of (6.24), we obtain

(f0 + h)(t) ≥ [1 − o(1)](f0 + h)(to). (6.57)
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By (3.11), (6.30) and the definition of f0, h, we get

(f0 + h)(t) ≤ [
∑K

k=02
−k + o(1)] max

j
|xj(t)|2. (6.58)

Therefore,

2 max |xj(t)|2 ≥ [1 − o(1)](f0 + h)(to) ≥ [1 − o(1)]
1

2
|x1(to)|2. (6.59)

Hence maxj |xj(t)|2 ≥ n2

25 for all t ∈ [to, to + 6
γ n−2(2+δ)]. ¤

Proposition 6.7 There exists ti such that to + δ
10γ̃ n−4 log 1

n ≤ ti ≤ to + 7
γ n−4−2δ and

n

5
≤ |x0(ti)| ≤ 2n, (0.9)ρ0 ≤ (

K∑

j=1

|xj(ti)|2)1/2 ≤ (1.1)ρ0. (6.60)

Above γ̃ = max{1, (dl
ab)− : ∀a, b, l = 0, . . . , K} and dl

ab = O(1) are given in (3.12).

Proof. By Lemma 6.6, we already have |x0| ≤ 2n. The proof is divided into four steps.

Step 1: Let t1 := to + n−3. For to ≤ t ≤ t1, for any j, by (6.22), (6.30), (6.49), and (6.51),
we get

|fj(t) − fj(to)| .

∫ t1

to

[n6 + n|gj(s)|]ds . n3 + n

∫ t1

to

[n2g(s)]ds ≤ o(1)ρ2
0. (6.61)

In particular, for j = 0, 1, we get

[1 − o(1)]fj(to) ≤ fj(t) ≤ [1 + o(1)]fj(to), ∀ t ∈ [to, t1]. (6.62)

By (3.11) and the definitions of fj , we get

[1 − o(1)]|xj(to)| ≤ |xj(t)| ≤ [1 + o(1)]|xj(to)|, ∀ t ∈ [to, t1], j = 0, 1. (6.63)

Together with (6.6), for t ∈ [to, t1], we have

1.8ρ0 ≤ |x0(t)| ≤ 2.2ρ0, 0.8n ≤ |x1(t)| ≤ 1.2n. (6.64)

On the other hand, for j > 1, from (6.61), we obtain fj(t) ≤ fj(to) + o(1)ρ2
0 for t ∈ [to, t1].

So, by (3.11), (6.6), and the definition of fj , we get

|xj(t)| ≤ [1 + o(1)]fj(t)
1/2 ≤ 7

√
D

γ0
ρ0, ∀ t ∈ [to, t1], ∀ j > 1. (6.65)

Step 2: Let us define

t2 := sup{t ≥ t1 : f0(s) <
n2

10
, ∀ s ∈ [t1, t]}. (6.66)

By (6.64), t2 < t1. We shall prove that

t1 < t2 ≤ t′2 := t1 + a−1 log
n2

5f0(t1)
, a := 2γ[

n2

50
]2. (6.67)
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For all t1 ≤ t ≤ t2, f0(t) < n2

10 . Note h(t1) ≥ f1(t1)/2 ≥ (1 + o(1))(0.8n)2/2 ≥ (0.3)n2.
From (6.24) and Lemma 6.5, we get

h(t) ≥ (f0 + h)(t1) − f0(t) − 2(K + 1)

∫ t

t1

max
j

|µj ||gj |(s)ds

≥ (0.3)n2 − n2

10
− Cn

∫ t

t1

[n6.7+δ + n2g(s)]ds ≥ n2

100
.

(6.68)

By (6.25), (6.30) and (6.68), we have, for t ∈ [t1, t
′
2],

ḟ0 ≥ 2γf2f0 − 2|µ0||g0| ≥ 2γ0(2h)2f0 − 4n|g0| ≥ 2γ[
n2

50
]2f0 − 4n|g0|. (6.69)

Note the coefficient of f0 is a. Thus

f0(t) ≥ ea(t−t1)[f0(t1) − 4n

∫ t

t1

e−a(s−t1)g0(s)ds]. (6.70)

On the other hand, from (6.49), we have

n

∫ t

t1

e−a(s−t1)g0(s)ds ≤ n

∫ t

t1

[n6.7+δ + n2g(s)]ds

≤ n7.7+δ(t − t1) + n3

∫ t

t1

g(s)ds ≤ o(1)ρ2
0 ≤ o(1)f0(t1).

(6.71)

Therefore,

f0(t) ≥
1

2
ea(t−t1)f0(t1), ∀t ∈ [t1, t2]. (6.72)

This shows t2 ≤ t′2 is finite, and f0(t2) = n2

10 .

Step 3: Define
ti := sup{t ≥ t2 : f(s) > ρ2

0, ∀ s ∈ [t2, t)}. (6.73)

From (6.68), we get ti > t2. We shall prove in Steps 3 and 4 that

t2 +
δ

10γ̃
n−4 log

1

n
≤ ti ≤ t3 := t2 +

6

γ
n−4−2δ. (6.74)

By definition of ti, we get
f(t) > ρ2

0, ∀ t ∈ [t2, ti). (6.75)

From Lemma 6.2 and (6.75), we have

d

dt
(f0(t)) ≥ 2γρ4

0f0(t) − 4n|g0|, ∀ t ∈ [t2, ti). (6.76)

From this and as in (6.72), we also obtain

f0(t) ≥
1

2
e2γρ4

0(t−t2)f0(t2) ≥
n2

20
, ∀ t ∈ [t2, ti). (6.77)

From this, (6.25), and Lemma 6.5, for t ∈ [t1, ti),

d

dt
(f(t)) ≤ −4γf0(t)f(t)2 + Cn max

k>0
|gk|

≤ −γn2

5
f(t)2 + Cn[n6.7+δ + n2g(s)].

(6.78)
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From this and (6.75), (and δ ≤ 1
10), we get

n2γ

6
− Cn3ρ−4

0 g(t) <
n2γ

5
− Cn[n6.7+δ + n2g(s)]

f2
≤ − ḟ

f2
, ∀t ∈ [t2, ti). (6.79)

Note that by (6.51), (6.68), Proposition 6.3 and δ ≤ 1
10 , we have ∀ t ≥ t2

n−1−4δ

∫ t

t2

g(s)ds ≤ o(1)n−1−4δn−2(1−δ)/3 = o(1)n− 5(1+2δ)
3 ≤ o(1)f(t2)

−1. (6.80)

Integrating (6.79) in [t2, t], we get

f(t) < [f(t2)
−1/2 +

n2γ

6
(t − t2)]

−1, ∀ t ∈ [t2, ti]. (6.81)

In particular, ρ2
0 < f(t) < [n2γ

6 (t − t2)]
−1, which shows ti ≤ t3, and f(ti) = ρ2

0. From this,
(3.11) and (6.77), we get the estimates (6.60). Since

ti − to ≤ (ti − t2) + (t2 − t1) + (t1 − to) ≤
6

γ
n−4−2δ + Cn−4 log

1

n
+ n−3 (6.82)

by (6.67) and (6.64), we get the upper bound of ti − to in Prop. 6.7.

Step 4: It remains to show that ti ≥ t2 + δ
10γ̃ n−4 log 1

n . Recall g(t) ≤ o(1)nρ2
0 for all

t ≥ t1 = to + n−3 from Lemma 6.5. By (6.22) and Prop. 6.3,

ḟ(t) ≥ −9γ̃n4f(t) − Cn[n6.7+δ + n2g(t)] ≥ −10γ̃n4f(t), ∀ t ∈ [t1, ti], (6.83)

where γ̃ = max{1, (dl
ab)− : ∀a, b, l = 0, . . . , K}. This implies that

ti − t2 ≥ n−4

10γ̃
log

f(t2)

f(ti)
≥ δ

10γ̃
n−4 log

1

n
. (6.84)

For the second inequality we have used f(t2) ≥ h(t2) ≥ n2/50 by (6.68). This completes
the proof of Proposition 6.7. ¤

At t = ti the solution enters ρ0-neighborhood of ground states and we change to lin-
earized coordinates. For that purpose we prepare outgoing estimates at t = ti.

Lemma 6.8 Let ti be as in Proposition 6.7. For any t > ti, we have

∥∥∥e−iH0(t−ti)ξ(ti)
∥∥∥

L2
loc

≤ 1

2
[ΛL,1(t) + ΛL,2(t)],

∥∥∥e−iH0(t−ti)ξ(ti)
∥∥∥

Lp
≤ 1

2
[ΛG,1(t) + ΛG,2(t)],

(6.85)

where for some constant C7 ≥ C6 and σ′ = 3(p−2)
2p ,

ΛL,1(t) := 2C7[n
−1+2δ〈t − to〉−7/6 + ρ(t)3 + n4/5ρ(t)7/3],

ΛG,1(t) := 2C7[n
−1+δ〈t − to〉−σ + n−1+2(2+δ)α(∆t + t)−σ+α],

ΛL,2(t) :=
2n

5p−18+pδ
p−2 (ti − to)

t − to
〈t − ti〉−1/2,

ΛG,2(t) := 2C7n
3(ti − to)(t − to)

−σ′

.

(6.86)
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Proof. Decompose e−i(t−ti)H0ξ(ti) = χ(t) + J(t), where

χ(t) := e−i(t−to)H0ξ(to), J(t) :=

∫ ti

to

e−i(t−s)H0PcG(s)ds. (6.87)

Denote T = ti − to. By Lemma 6.1 and using n−4 log 1
n . T . n−2(2+δ), we have

‖χ(t)‖Lp ≤ Λ4(t) ≤
1

2
ΛG,1(t), ‖χ(t)‖L2

loc
≤ Λ3(t) ≤

1

2
ΛL,1(t), (6.88)

for some C7. By (6.38), we have

‖G(s)‖Lp′ ≤ C[n3 + o(1)δ̃2(s)] ∀ s ∈ [to, ti], δ̃2(s) = [ρ0〈s − to〉−σ]
p+2
p−2 . (6.89)

So, we have (using p+2
p−2 > 2)

‖J(t)‖Lp ≤ C

∫ ti

to

|t − s|−σ′ ‖G(s)‖Lp′ ds ≤ C

∫ ti

to

|t − s|−σ′

[n3 + o(1)δ̃2(s)]ds

≤ Cn3T (t − to)
−σ′

+ ρ2
0(t − to)

−σ′ ≤ 1

2
ΛG,2(t).

(6.90)

It remains to estimate ‖J(t)‖L2
loc

. By (6.35) and (6.36),

‖G(s)‖L1∩Lp′ ≤ Cn3 + Cn2 ‖ξ(s)‖L2
loc

+ o(1) ‖ξ(s)‖
p

p−2

Lp . (6.91)

By (6.30) and (6.5),

‖G(s)‖L1∩Lp′ ≤ o(1)[n
5p−18+pδ

p−2 + ρ
3/2
0 〈s − to〉−

pσ
p−2 ]. (6.92)

Thus

‖J(t)‖L2
loc

≤ C

∫ ti

to

min{(t − s)−3/2, (t − s)−σ′} ‖G(s)‖L1∩Lp′ ds

≤ o(1)

∫ ti

to

min{(t − s)−3/2, (t − s)−σ′}[n
5p−18+pδ

p−2 + ρ
3/2
0 〈s − to〉−

pσ
p−2 ]ds

≤ o(1)n
5p−18+pδ

p−2
T

t − to
〈t − ti〉−1/2 + o(1)ρ

3/2
0 (t − to)

−1〈t − ti〉−1/2,

(6.93)

which is bounded by 1
2ΛL,2(t). This completes the proof of the lemma. ¤

7 Converging to a ground state

In this section we consider the solution when it is already inside a neighborhood of the
ground states. Although similar to [4, 31, 7, 30], it requires a proof because the dispersive
component has much worse estimates. We will however content ourselves with formulating
the main proposition and skip the proof.

As in Section 4, for fixed T ≥ ti we decompose ψ(t) as (see (3.17))

ψ(t) = [Q0,n(T ) + a(t)∂EQ0,n(T ) + ζ(t) + η(t)]e−iEt+iθ(t), t ∈ [ti, T ]. (7.1)
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We have a(T ) = 0, and

ζ =
K∑

j=1

ζj , ζj = z̄ju
−
j + zju

+
j , [η] =

[
Re η
Im η

]
= eiθη+ + e−iθη−. (7.2)

Denote zH(t) = (
∑K

j=1 |zj(t)|2)1/2. From Lemma 3.3 and Proposition 6.7, (7.1) is valid at
least for T > ti sufficiently close to ti. It follows from Proposition 7.2 below that (7.1) is
valid with suitable estimates for all T ≥ ti and n(T ) converges to some n+ ∼ n as T → ∞.
We first state the initial estimates at time ti.

Lemma 7.1 (Initial estimates) There exists C8 > 0 such that if T > ti and n(T )/n(ti) ∈
(1
2 , 3

2), then
4

5
ρ0 ≤ zH(ti) ≤

6

5
ρ0, (7.3)

and, for t ≥ ti,

∥∥∥eL(t−ti)η±(ti)
∥∥∥

L2
loc

≤ ΛL(t) := ΛL,1(t) + ΛL,2(t) + C8n
3〈t − ti〉−3/2

∥∥∥eL(t−ti)η±(ti)
∥∥∥

Lp
≤ ΛG(t) := ΛG,1(t) + ΛG,2(t) + C8n

3〈t − ti〉−σ′

(7.4)

where ΛL,1, ΛL,2, ΛG,1 and ΛG,2 are defined in Lemma 6.8.

We next formulate the main proposition of this section. Denote

ρ̂(t) = ρ(t − ti) = [ρ−2
0 + γ0n

2(t − ti)]
−1/2,

δ8(t) = n− 2
3
(1−δ)(t − to)

−6/p + n6〈t − ti〉−6/p ≤ o(1)nρ̂(t)2,
(7.5)

and

M∗
T := sup

ti≤t≤T
max





ρ̂(t)−1|zH(t)|, [2Dρ̂(t)]−1|a(t)|,
[ΛG(t) + n7/9ρ̂(t)5/3]−1 ‖η‖Lp ,

[ΛL(t) + Λ2
G(t) + n−αρ̂(t)3 + δ8(t)]

−1
∥∥η(3)

∥∥
L2

loc





. (7.6)

Proposition 7.2 Suppose for T ≥ ti we have n(T )/n(ti) ∈ (1
2 , 3

2) and M∗
T ≤ 3. Then we

have M∗
T ≤ 5

2 and n(T )/n(ti) ∈ (3
4 , 5

4).

This Proposition implies Theorem 1.1 in the case k = 0, see e.g. [4, 31, 7, 30]. Since the
proof is standard, it is skipped and can be found in [21].
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