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Abstract

We compute the limit of the free energy

1

NtN
logE exp

{
1

N

∑
1≤j<k≤N

∫ tN

0

γ
(
Bj(s)−Bk(s)

)
ds

}
(N →∞)

of the mean field generated by the independent Brownian particles {Bj(s)} interacting through
the non-negative definite function γ(·). Our main theorem is relevant to the high moment
asymptotics for the parabolic Anderson models with Gaussian noise that is white in time,
white or colored in space. Our approach makes a novel connection to the celebrated Donsker-
Varadhan’s large deviation principle for the i.i.d. random variables in infinite dimensional spaces.
As an application of our main theorem, we provide a probabilistic treatment to the Hartree’s
theory on the asymptotics for the ground state energy of bosonic quantum system.
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1 Introduction

Mean field theory considers the behavior of the stochastic system consisting of large number of
small particles interacting to each other. In this paper, the independent d-dimensional Brownian
motions

{
B1(s) · · · , BN (s)

}
represent the locations of these particles at the time s, and the function

N−1γ(x − y) measures the pairwise interactions among the Brownian particles. The long term
behavior of the system is the result of the balance between two typical phenomena in the mean field
regime: increasing number of the particles (i.e., N → ∞) and uniform negligibility of individual
contribution (indicated by the multiple 1/N in the interaction function). The quantity

1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

stands for the integral potential of the system due to the interaction of the Brownian particles up
to the time tN . In this work, tN → ∞ as N → ∞. Our goal is to study the asymptotic for the
partition function

E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
. (1.1)

In the case when d = 2, a slight different quantity

E exp

{
1

N

∑
1≤j<k≤N

∫ 1

0
N2βγ

(
Nβ
(
Bj(s)−Bk(s)

))
ds

}
(1.2)

corresponds to the N -body system with Schrödinger Hamiltonian

HBEC
N =

1

2

∑
1≤j<k≤N

∆j +
1

N

∑
1≤j<k≤N

N2βγ
(
Nβ(xj − xk)

)
(1.3)

with the parameter β ∈ (0, 1] that appears in the investigation of Bose-Einstein condensation ([15]).

Our work is also motivated by the recent investigations ([7], [8] and [4]) of the spatial asymptotics

max
|x|≤R

u(t, x) R→∞

for the parabolic Anderson equation
∂u

∂t
(t, x) =

1

2
∆u(t, x) + V (t, x)u(t, x),

u(0, x) = 1,

(1.4)

where V (t, x) is a Gaussian noise which is white in time, white or colored in space, i.e.,

Cov
(
V (s, x), V (t, y)

)
= δ0(s− t)γ(x− y) (s, x), (t, y) ∈ R+ × Rd.

In these works, the most substantial step is the investigation of the high moment asymptotics for
Eu(t, x)N as N → ∞. Under proper positive homogeneity assumption on γ(·), the problem is
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relevant to the investigation proposed in this paper due to the moment representation (Theorem
5.3, [13] and Theorem 3.1, [6])

Eu(t, x)N = E exp

{ ∑
1≤j<k≤N

∫ t

0
γ
(
Bj(s)−Bk(s)

)
ds

}
. (1.5)

In this work we consider a more general phenomena beyond the setting of positive homogeneity. In
addition, we shall work with a larger (than those considered in [4]) class of the covariance functions
γ(x) which do not have to be, for instance, pointwise defined, non-negative or vanishing at infinity.
Indeed, the issues such as the singularity of γ(x) arising from some practical needs posts new
challenges. In addition, we point out that the approach given in [4] is no-longer working in the case
when γ(·) switches signs. A practically interesting example is when

γ(x) = CH

∫ ∞
−∞

eiξx|ξ|1−2Hdξ, x ∈ R (1.6)

where CH > 0 is a constant, which corresponds to the parabolic Anderson equation (1.4) with
the Gaussian noise V (t, x) being white in time, fractional (with the Hurst parameter H) in space.
Recently, it is pointed out ([12]) that the parabolic Anderson equation (1.4) is solvable with the
moment representation (1.5) as d = 1 and 1/4 < H < 1/2. On the other hand, the fact that
1− 2H > 0 indicates that γ(x) is not defined at any point x ∈ R. Later we shall show that γ(·) is
sign-switching in a suitable sense. This example provides a way to measure our capability in dealing
with the issue of singularity and sign-alternativity.

To include the cases like (1.6), γ(x) is allowed to be generalized function defined as a linear functional
γ: S(Rd) −→ R symbolically given as∫

Rd
γ(x)ϕ(x)dx ≡ 〈γ, ϕ〉, ϕ ∈ S(Rd),

where S(Rd) is the Schwartz space of rapidly decreasing and infinitely smooth functions.

The quadratic form is defined as∫
Rd×Rd

γ(x− y)ϕ(x)ψ(y)dxdy ≡ 〈γ, ϕ ∗ ψ̃〉, ϕ, ψ ∈ S(Rd),

where ψ̃(x) = ψ(−x). Finally, γ(·) is said to be non-negative definite if∫
Rd×Rd

γ(x− y)ϕ(x)ϕ(y)dxdy ≥ 0 ϕ ∈ S(Rd). (1.7)

In connection to the parabolic Anderson model given in (1.4), the covariance function is non-negative
definite. Throughout, we assume non-negative definite condition (1.7) on γ(·).

According to Bochner representation, there is a positive and symmetric measure µ(dλ) on Rd such
that ∫

Rd×Rd
γ(x− y)ϕ(x)ψ(y)dxdy =

∫
Rd
F(ϕ)(ξ)F(ψ)(ξ)µ(dξ), ϕ, ψ ∈ S(Rd), (1.8)

where

F(ϕ)(ξ) =

∫
Rd
eiξ·xϕ(x)dx (1.9)
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is the Fourier transform of ϕ(·). Further, µ(dξ) is tempered in the sense that∫
Rd

1

(1 + |ξ|2)p
µ(dξ) <∞ (1.10)

for some p > 0. Bochner representation can be written symbolically as

γ(x) =

∫
Rd
eiξ·xµ(dξ). (1.11)

Noticing that the difference of two independent Brownian motions is a constant multiple of a
Brownian motion. To make sense of the exponential moment given in (1.1), it is required that
the time integral ∫ t

0
γ
(
B(s)

)
ds

be properly defined and exponentially integrable. When µ(dξ) is a finite measure, γ(x) is pointwise-
defined, bounded and continuous. The above time integral is nothing more than an ordinary Rie-
mann integral and the exponential integrability follows from the boundedness of γ(x).

The problem is highly non-trivial in the general setting. Given ε > 0, the function

γε(x) =

∫
Rd
eiξ·x exp

{
− ε

2
|ξ|2
}
µ(dξ) (1.12)

is non-negative definite with the finite spectral measure (see (1.10))

µε(dξ) = exp
{
− ε

2
|ξ|2
}
µ(dξ).

It is required that for every t > 0

∫ t

0
γ
(
B(s)

)
ds

def
= lim

ε→∞

∫ t

0
γε
(
B(s)

)
ds exist in L2(Ω,A,P),

E exp

{
θ

∫ t

0
γ
(
B(s)

)
ds

}
<∞, for every θ > 0.

(1.13)

One can see that the function γ(x) in (1.13) is replicable by γ(ax) for any constant a > 0 as∫ t

0
γ
(
aB(s)

)
ds

d
= a−1

∫ at

0
γ
(
B(s)

)
ds.

In particular, the Brownian motion B(s) in (1.13) is replicable by Bj(s) − Bk(s). Finally, the
exponential moment written in (1.1) is well-defined and finite under the assumption (1.13).

Theorem 1.1 Under non-negative definite condition (1.7) and the assumption (1.13) on γ(·),

lim
N→∞

1

NtN
logE exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
=

1

2
EH , (1.14)

where

EH = sup
g∈Fd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy −
∫
Rd
|∇g(x)|2dx

}
, (1.15)

which is well-defined and finite with

Fd =
{
g ∈ W1,2(Rd); ‖g‖2 = 1

}
. (1.16)
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We now comment on the condition (1.13) by considering the following three classes of γ(x) that are
encompassed by (1.13).

The first class consists of the constant multiples of all characteristic functions γ(x) on Rd that
correspond to symmetric probability distributions µ(dξ). As mentioned, (1.13) becomes automatic
when µ(dξ) is finite. In particular, Theorem 1.1 holds for every characteristic function γ(x) on Rd.
In view of the example

γ(x) =
sinx

x
, x ∈ R,

we see that γ(x) is allowed to pick positive and negative values. In addition, one can make γ(x) pe-
riodic (in particular, γ(x) does not vanishing at∞) by considering the distribution µ(dξ) supported
on the lattice Zd.

The second class consists of all non-negative and non-negative definite γ(x). In the case when γ(·)
is not defined point-wise, “γ(·) ≥ 0” means γε(·) ≥ 0 for sufficiently small ε > 0. It is well-known
([9]) that for any non-negative definite γ(·) ≥ 0, the assumption (1.13) is equivalent to the Dalang’s
condition ∫

Rd

1

1 + |ξ|2
µ(dξ) <∞. (1.17)

This class includes some practically interesting cases such as γ(x) = δ0(x) for d = 1 where the time

integral is
∫ t

0
δ0
(
B(s)

)
ds is the Brownian local time; γ(x) = |x|−α for 0 < α < max{2, d}, where

the time integral
∫ t

0
|B(s)|−αds stands for the Riesz potential ([2]); and the covariance function

γ(x) = CH

d∏
j=1

|xj |2Hj−2 of the space-time noise Ẇ (s, x) with the Hurst indexH = (1/2, H1, · · · , Hd)

satisfying 1/2 < Hj < 1 for 1 ≤ j ≤ d.

The third class contains the non-negative definite functions γ(·) that have infinite spectral measure
and are allowed to take negative values. Dalang’s condition is no longer sufficient without assuming
γ(·) ≥ 0. A good example is given in (1.6) where ξ(dξ) = |ξ|1−2Hdξ. It has been pointed out
recently ([12]) that (1.13) holds for 1/4 < H < 1/2. On the other hand, it is easy to see that
the Dalang’s condition (1.17) holds for any 0 < H < 1. Therefore, (1.17) alone is not sufficient if
“H > 1/4” is necessary for (1.6).

To show the necessity of “H > 1/4”, we start from an easy-to-check identity

E
[ ∫ τ

0
γ
(
B(s)

)
ds

]2
= 2C2

H

∫
R×R

|ξ|1−2H

1 + 2−1|ξ|2
|η|1−2H

1 + 2−1|ξ + η|2
dξdη

= 2C2
H

∫
R×R

|ξ|1−2H

1 + 2−1|ξ|2
|η − ξ|1−2H

1 + 2−1|η|2
dξdη,

where τ is an independent exponential time with Eτ = 1. The integral on the right hand side is
bounded from below by(1

2

)1−2H ∫
{|ξ|≥2}

∫
{|η|≤1}

|ξ|2−4H

1 + 2−1|ξ|2
1

1 + 2−1|η|2
dξdη,
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which is finite only when H > 1/4. On the other hand, by Brownian scaling

E
[ ∫ τ

0
γ
(
B(s)

)
ds

]2
= t−(1+2H)

(
Eτ1+2H

)
E
[ ∫ 1

0
γ
(
B(s)

)
ds

]2
.

Summarizing our argument, “H > 1/4” is necessary for (1.6).

Finding a condition for (1.13) that is “uniformly right” for the third class appears to be a hard
problem beyond the scope of the current paper.

We now discuss the links to the high moment asymptotics of the parabolic Anderson equation and
to the model of the Bose-Einstein condensation given in (1.2). By Brownian scaling, (1.14) can be
rewritten as

lim
N→∞

1

NtN
logE exp

{
tN
N

∑
1≤j<k≤N

∫ t

0
γ
(√

tN
(
Bj(s)−Bk(s)

))
ds

}
=
t

2
EH . (1.18)

for any t > 0

In the special case when γ(·) satisfies the homogeneity γ(Cx) = |C|−αγ(x) (x ∈ Rd and C ∈ R) for
some 0 < α < 2, taking tN = N

2
2−α in (1.18) we have, in view of the moment representation (1.5),

the high moment asymptotics

lim
N→∞

N−
4−α
2−α logEu(t, x)N =

t

2
EH (1.19)

for the parabolic Anderson equation (1.4). In the special case of (1.6), α = 2 − 2H. By variable
rescaling EH = C

α/(2−α)
H E ′H , where the variation E ′H is generated by the interaction function γ(·) in

(1.6) with CH = 1. We therefore have

Corollary 1.2 When 1/4 < H < 1/2 in the setting of (1.6), for any t > 0

lim
N→∞

N−
1+H
H logEu(t, x)N (1.20)

=
t

2
C

1
H
H sup

g∈F1

{∫
R

∣∣∣∣ ∫
R
eiξxg2(x)dx

∣∣∣∣2|ξ|1−2Hdξ − ∫
R
|g′(x)|2dx

}
.

Here we point out that (1.19) is achieved in [4] under the extra assumptions that α < d (The
equality is allowed in the case d = 1 and γ(·) = δ0(·)) and γ(·) ≥ 0. These extra assumptions are
not required by Theorem 1.1. Corollary 1.2 provides a concrete example of the improvement where
γ(·) switches sign (as analyzed above) and α = 2− 2H > 1 = d.

In case d = 2, substituting tN = N2β into (1.18) for some β > 0, we obtain the following asymptotic
law for the model of the Bose-Einstein condensation given in (1.2):

lim
N→∞

1

N1+2β
logE exp

{
1

N

∑
1≤j<k≤N

∫ 1

0
N2βγ

(
Nβ
(
Bj(s)−Bk(s)

))
ds

}
=

1

2
EH . (1.21)

The proof of Theorem 1.1 consists two steps: The first step is carried out in Section 2 where we prove
Theorem 1.1 in the special case when the spectral measure µ(dξ) is finite. The main idea in this step
is linearization and tangent approximation. A fascinating feature of our treatment is its relevance to
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the famous Donsker-Varadhan large deviation principle for the i.i.d. random variables with values
in infinite dimensional spaces. The general setting is treated in step 2 that is given in Section 3,
where γ(·) is approximated by γε(·) defined in (1.11). After completing this work mathematically,
we became aware of the literature on bosonic quantum system, the very recent development [16] on
Hartree’s theory and their relevance to the main topic of our paper. We therefore add Section 4 to
address this link.

2 When the measure µ(dξ) is finite

In this case, everything stated in Theorem 1.1 can be directly defined. In particular, the fact that
γ(x) is uniformly bounded implies that EH <∞. Notice that

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds =

1

2

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds−Nµ(Rd).

Theorem 1.1 can be restated as

lim
N→∞

1

NtN
logE exp

{
1

2N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
=

1

2
EH . (2.1)

2.1 Lower bound for (2.1)

By integral substitution

1

N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds = NtN

∫ 1

0

∫
Rd

∣∣∣∣ 1

N

N∑
j=1

eiξ·Bj(tNs)
∣∣∣∣2µ(dξ)ds.

Let H ⊂ L2([0, 1] × Rd; ds ⊗ µ) be the subspace consists of the functions with f(s,−λ) = f(s, λ).
Then H is a real Hilbert space. Here we point out that in order for H to be a real Hilbert space,
the functions in H do not have to be real valued. What matters is that for any real number c1, c2
and h1, h2 ∈ H, c1h1 + c2h2 ∈ H and that the linear functional

〈h1, h2〉 =

∫ 1

0

∫
Rd
h1(s, ξ)h2(s, ξ)µ(dξ)ds =

∫ 1

0

∫
Rd
h1(s, ξ)h2(s,−ξ)µ(dξ)ds

takes real values. All those hold thanks to the symmetry of µ(dξ).

Let f ∈ H be a fixed bounded function. By the fact that ‖h‖2 ≥ −‖f‖2 + 2〈f, h〉 for all h ∈ H, we
have that ∫ 1

0

∫
Rd

∣∣∣∣ 1

N

N∑
j=1

eiξ·Bj(tNs)
∣∣∣∣2µ(dξ)ds

≥ −‖f‖2 +
2

N

N∑
j=1

∫ 1

0
f̄
(
s,Bj(tNs)

)
ds

= −‖f‖2 +
2

NtN

N∑
j=1

∫ tN

0
f̄
( s

tN
, Bj(tNs)

)
ds

7

Jan 28 2015 10:35:13 EST
Vers. 1 - Sub. to TRAN



where
f̄(s, x) =

∫
Rd
eiξ·xf(s,−ξ)µ(dξ) 0 ≤ s ≤ 1, x ∈ Rd.

By independence

E exp

{
1

2N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}

≥

(
exp

{
− 1

2
‖f‖2tN

}
E exp

{∫ tN

0
f̄
( s

tN
, B(s)

)
ds

})N
.

By Proposition 3.1 in [5],

lim
N→∞

1

tN
logE exp

{∫ tN

0
f̄
( s

tN
, B(s)

)
ds

}
= sup

g∈Ad

{∫ 1

0

∫
Rd
f̄(s, x)g2(s, x)dxds− 1

2

∫ 1

0

∫
Rd
|∇xg(s, x)|2dxds

}
= sup

g∈Ad

{∫ 1

0

∫
Rd
f(s,−ξ)

[ ∫
Rd
eiξ·xg2(s, x)dx

]
µ(dξ)ds− 1

2

∫ 1

0

∫
Rd
|∇xg(s, x)|2dxds

}
where

Ad =

{
g(s, x); g(s, ·) ∈ Fd ∀0 ≤ s ≤ 1

}
. (2.2)

Thus,

lim inf
N→∞

1

NtN
logE exp

{
1

N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
(2.3)

≥ sup
g∈Ad

{
− 1

2
‖f‖2 +

∫ 1

0

∫
Rd
f(s,−ξ)

[ ∫
Rd
eiλ·xg2(s, x)dx

]
µ(dξ)ds

− 1

2

∫ 1

0

∫
Rd
|∇xg(s, x)|2dxds

}
.

Notice that the relation ‖h‖2 ≥ −‖f‖2 + 2〈f, h〉 becomes an equality when h = f . Hence, for any
dense sub-space H0 of H′

sup
f∈H0

{
− ‖f‖2 + 2〈f, h〉

}
= ‖h‖2 h ∈ H. (2.4)

We call the identity approximation by tangent planes.

Let H0 be the space of the bounded functions in H. Taking supremum over f ∈ H0 on the right

8
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hand side of (2.3), it becomes

sup
g∈Ad

{
sup
f∈H0

(
− 1

2
‖f‖2 +

∫ 1

0

∫
Rd
f(s,−ξ)

[ ∫
Rd
eiξ·xg2(s, x)dx

]
µ(dξ)ds

)
− 1

2

∫ 1

0

∫
Rd
|∇xg(s, x)|2dxds

}
=

1

2
sup
g∈Ad

{∫ 1

0

∫
Rd

∣∣∣∣eiξ·xg2(s, x)dx

∣∣∣∣2µ(dξ)ds−
∫ 1

0

∫
Rd
|∇xg(s, x)|2dxds

}
=

1

2
sup
g∈Fd

{∫
Rd

∣∣∣∣eiξ·xg2(x)dx

∣∣∣∣2µ(dξ)−
∫
Rd
|∇g(x)|2dx

}
=

1

2
EH .

Summarizing our estimates, we obtain the lower bound for (2.1):

lim inf
N→∞

1

NtN
logE exp

{
1

2N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
≥ 1

2
EH . (2.5)

2.2 Upper bound for (2.1)

Let t > 0 be fixed but large. For the sake of simplification we assume that tN/t always remains to
be an integer. By Markov property,

E exp

{
1

2N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
(2.6)

≤

(
sup
b̃

E exp

{
1

N

∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·bjeiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

})tN/t
,

where the supremum is taken over b̃ = (b1, · · · , bN ) ∈ (Rd)N .

We now claim that for any b̃ = (b1, · · · , bN ) ∈ (Rd)N , and integer n ≥ 1,

E

[∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·bjeiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

]n
≤ E

[∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

]n
. (2.7)

Indeed,

E

[∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·bjeiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

]n

=

∫
[0,t]N

∫
(Rd)N

E
n∏
l=1

∣∣∣∣ N∑
j=1

eiξl·bjeiξl·Bj(sl)
∣∣∣∣2µ(dξ1) · · ·µ(dξN )ds1 · · · dsN .
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Write
n∏
l=1

∣∣∣∣ N∑
j=1

eiξl·bjeiξl·Bj(sl)
∣∣∣∣2

=
n∏
l=1

( N∑
j=1

eiξl·bjeiξ·Bj(sl)
)( N∑

j=1

e−iξl·bje−iξ·Bj(sl)
)

=

N∑
j1,··· ,jn=1

C(j1, · · · , jn) exp

{
i

n∑
l=1

αl ·Bjl(sjl)
}
,

where C(j1, · · · , jn) are deterministic complex numbers with norm 1, and αl ∈ Rd are deterministic
such that

N∑
j1,··· ,jn=1

exp

{
i
n∑
l=1

αl ·Bjl(sjl)
}

=

∣∣∣∣ n∏
l=1

N∑
j=1

eiξl·Bj(sl)
∣∣∣∣2.

Therefore,

E

[∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·bjeiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

]n

=

∫
[0,t]N

∫
(Rd)N

[
N∑

j1,··· ,jn=1

C(j1, · · · , jn)E exp

{
i
n∑
l=1

αl ·Bjl(sjl)
}]

× µ(dξ1) · · ·µ(dξN )ds1 · · · dsN

≤
∫
[0,t]N

∫
(Rd)N

[
N∑

j1,··· ,jn=1

E exp

{
i

n∑
l=1

αl ·Bjl(sjl)
}]

µ(dξ1) · · ·µ(dξN )ds1 · · · dsN

=

∫
[0,t]N

∫
(Rd)N

E
( n∏
l=1

∣∣∣∣ N∑
j=1

eiξl·Bj(sl)
∣∣∣∣2)µ(dξ1) · · ·µ(dξN )ds1 · · · dsN

= E

[∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

]n

where the inequality follows from the fact that

E exp

{
i

n∑
l=1

αl ·Bjl(sjl)
}
> 0.

Thus, we have proved (2.7). From (2.7), and by Taylor expansion, for any b̃ = (b1, · · · , bN ) ∈ (Rd)N ,

E exp

{
1

2N

∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·bjeiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}

≤ E exp

{
1

2N

∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
.
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Then, in view of (2.6), we have

E exp

{
1

2N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
(2.8)

≤

(
E exp

{
1

2N

∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

})tN/t
.

Recall the following Donsker-Varadhan’s large deviation principle (Theorem 5.3, [11]): Let E be a
real separable Banach space with E∗ as its topological dual. Let {X,Xk}k≥1 be a sequence of i.i.d.
random variables taking values in E such that

E exp
{
θ‖X‖

}
<∞ ∀θ > 0.

Then for any close set F ⊂ E,

lim sup
N→∞

1

N
logP

{
1

N

N∑
j=1

Xj ∈ F
}
≤ − inf

x∈F
Λ∗(x)

and for any open set G ⊂ E,

lim inf
N→∞

1

N
logP

{
1

N

N∑
j=1

Xj ∈ G
}
≥ − inf

x∈G
Λ∗(x)

where the rate function is given as the convex conjugate

Λ∗(x) = sup
f∈E∗

{
〈f, x〉 − Λ(f)

}
x ∈ E

of the convex functional
Λ(f) = logE exp

{
〈f,X〉

}
f ∈ E∗.

This result appears to be an infinite dimensional extension of Cramer’s large deviation (Theorem
2.2.3, p.27, [10]) We refer an interested reader also to [1] for an elegant proof of the Donsker-Varadhan
large deviation principle.

Recall thatH ⊂ L2([0, t]×Rd; ds⊗µ) is the subspace consists of the functions with f(s,−ξ) = f(s, ξ)
a.e.. Also, note that H is a real Hilbert space. To apply Donsker-Varadhan large deviation principle
to the space E = H, we define the i.i.d. H-valued random variables {Xk}k≥1 as

Xk(s, ξ) = eiξ·Bk(s) (s, ξ) ∈ [0, t]× Rd.

By the fact that ‖X‖ ≤ tµ(Rd), the condition of Donsker-Varadhan large deviation principle holds.
Further, by Varadhan integral lemma (Theorem 4.3.1, [10]),

lim
N→∞

1

N
logE exp

{
1

2N

∫ t

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}
= sup

h∈H

{1

2
‖h‖2 − Λ∗(h)

}
. (2.9)
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Some delicate steps are needed in handling the variation on the right hand side. To this end we
first claim that Λ∗(h) =∞ for any h ∈ H with ‖h‖∞ > 1, where

‖h‖∞ = sup

{
c ≥ 0; ds⊗ µ

{
(s, ξ); |h(s, ξ)| ≥ c

}
> 0

}
.

Indeed, applying Hahn-Banach theorem there is a ε > 0 and f ∈ L([0, t]× Rd) such that∫ t

0

∫
Rd
|f(s, ξ)|µ(dξ)ds = 1,

and 〈f, h〉 > 1 + ε. In addition, we may make f ∈ H. In particular,

〈f,X〉 =

∫ t

0

∫
Rd
eiξ·B(s)f(s,−ξ)µ(dξ)ds ≤

∫ t

0

∫
Rd
|f(s, ξ)|µ(dξ)ds = 1.

Hence, for any C > 0

Λ(Cf) = logE exp
{
C〈f,X〉

}
≤ C.

Thus,
Λ∗(h) ≥ C〈f, h〉 − Λ(Cf) ≥ (1 + ε)C − C = εC

which leads to Λ∗(h) =∞ as C can be arbitrarily large.

Thus,

sup
h∈H

{1

2
‖h‖2 − Λ∗(h)

}
= sup
‖h‖∞≤1
h∈H

{1

2
‖h‖2 − Λ∗(h)

}
. (2.10)

Let
Nt =

{
f ∈ H; ‖f‖∞ ≤ 1 and f(s, ξ) is continuous on [0, t]× Rd

}
.

An obvious modification of (2.4) leads to

‖h‖2 = sup
f∈Nt

{
− ‖f‖2 + 2〈f, h〉

}
‖h‖∞ ≤ 1, h ∈ H.

Hence,

sup
‖h‖∞≤1
h∈H

{1

2
‖h‖2 − Λ∗(h)

}
= sup
‖h‖∞≤1
h∈H

{
1

2
sup
f∈Nt

{
− ‖f‖2 + 2〈f, h〉

}
− Λ∗(h)

}

= sup
f∈Nt

{
− 1

2
‖f‖2 + sup

‖h‖∞≤1
h∈H

{
〈f, h〉 − Λ∗(h)

}}
.

By duality lemma (Lemma 4.5.8, p.152, [10])

sup
‖h‖∞≤1
h∈H

{
〈f, h〉 − Λ∗(h)

}
≤ sup

h∈H

{
〈f, h〉 − Λ∗(h)

}
= Λ(f).
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Therefore, it follows that

sup
‖h‖∞≤1
h∈H

{1

2
‖h‖2 − Λ∗(h)

}
≤ sup

f∈Nt

{
− 1

2
‖f‖2 + logE exp

{
〈f,X〉

}}

= sup
f∈Nt

{
− 1

2
‖f‖2 + logE exp

{∫ t

0
f̄
(
s,B(s)

)
ds

}}
where

f̄(s, x) =

∫
Rd
f(s,−ξ)eiξ·xµ(dξ).

Combining (2.8), (2.9) and (2.10), we obtain,

lim sup
N→∞

1

NtN
logE exp

{
1

2N

∫ tN

0

∫
Rd

∣∣∣∣ N∑
j=1

eiξ·Bj(s)
∣∣∣∣2µ(dξ)ds

}

≤ 1

t
log sup

f∈Nt
E exp

{
− 1

2
‖f‖2 +

∫ t

0
f̄
(
s,B(s)

)
ds

}
.

Thus, all we need is to prove that

lim sup
t→∞

1

t
log sup

f∈Nt
E exp

{
− 1

2
‖f‖2 +

∫ t

0
f̄
(
s,B(s)

)
ds

}
≤ 1

2
EH . (2.11)

Define τt = inf{s ≥ 0; |B(s)| ≥ t2}. Then,

E exp

{
− 1

2
‖f‖2 +

∫ t

0
f̄
(
s,B(s)

)
ds

}
(2.12)

= E

[
exp

{
− 1

2
‖f‖2 +

∫ t

0
f̄
(
s,B(s)

)
ds

}
; τt ≥ t

]

+ E

[
exp

{
− 1

2
‖f‖2 +

∫ t

0
f̄
(
s,B(s)

)
ds

}
; τt < t

]
.

Notice that |f̄(s, x)| ≤ µ(Rd). The second term on the right hand side is bounded by

exp
{
tµ(Rd)

}
P
{

max
s≤1
|B(s)| ≥ t3/2

}
which is negligible.

As for the first term, first notice that

E

[
exp

{∫ t

0
f̄
(
s,B(s)

)
ds

}
; τt ≥ t

]

≤ exp
{
µ(Rd)

}
E

[
exp

{∫ t

1
f̄
(
s,B(s)

)
ds

}
; τt ≥ t

]

= exp
{
µ(Rd)

}∫
B(0,t2)

p̃1(x)Ex

[
exp

{∫ t−1

0
f̄
(
1 + s,B(s)

)
ds

}
; τt ≥ t

]
dx,
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where p̃1(x) is the density of the measure ν(A) = P{B(1) ∈ A; τt ≥ 1}.
Let p1(x) be the density of B(1) and notice that p̃1(x) ≤ p1(x) ≤ (2π)−d/2. Hence, the right hand
side is no greater than

(2π)−d exp
{
µ(Rd)

}∫
B(0,t2)

Ex

[
exp

{∫ t−1

0
f̄
(
1 + s,B(s)

)
ds

}
; τt ≥ t

]
dx

≤ (2π)−d|B(0, t2)| exp
{
µ(Rd)

}
exp

{∫ t−1

0
λ
(
f̄(1 + s, ·)

)
ds
}
,

where
λ
(
f̄(1 + s, ·)

)
= sup

g∈Fd

{∫
Rd
f̄(1 + s, x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
,

and the last step follows from Lemma 7.1 in [4].

Further, notice that∫ t−1

0
λ
(
f̄(1 + s, ·)

)
ds ≤

∫ t

0
λ
(
f̄(s, ·)

)
ds

= sup
g∈Ad(t)

{∫ t

0

∫
Rd
f(s,−ξ)

[ ∫
Rd
eiξ·xg2(s, x)dx

]
µ(dξ)ds− 1

2

∫ t

0

∫
Rd
|∇xg(s, x)|2dxds

}
,

where Ad(t) =
{
g(s, x); g(s, ·) ∈ Fd for every 0 ≤ s ≤ t

}
.

Summarizing our computation, we obtain the bound

E

[
exp

{∫ t

0
f̄
(
s,B(s)

)
ds

}
; τt ≥ t

]

≤ Ct2d exp

(
sup

g∈Ad(t)

{∫ t

0

∫
Rd
f(s,−ξ)

[ ∫
Rd
eiξ·xg2(s, x)dx

]
µ(dξ)ds− 1

2

∫ t

0

∫
Rd
|∇xg(s, x)|2dxds

})
uniformly over f ∈ Nt. By the relation −‖f‖2 + 2〈f, h〉 ≤ ‖h‖22,

E

[
exp

{
− 1

2
‖f‖2 +

∫ t

0
f̄
(
s,B(s)

)
ds

}
; τt ≥ t

]

≤ Ct2d exp

(
sup

g∈Ad(t)

{
− 1

2
‖f‖2 +

∫ t

0

∫
Rd
f(s,−ξ)

[ ∫
Rd
eiξ·xg2(s, x)dx

]
µ(dξ)ds

− 1

2

∫ t

0

∫
Rd
|∇xg(s, x)|2dxds

})

≤ Ct2d exp

(
1

2
sup

g∈Ad(t)

{∫ t

0

∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(s, x)dx

∣∣∣∣2µ(dξ)ds−
∫ t

0

∫
Rd
|∇xg(s, x)|2dxds

})
.

By the fact that

sup
g∈Ad(t)

{∫ t

0

∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(s, x)dx

∣∣∣∣2µ(dξ)ds−
∫ t

0

∫
Rd
|∇xg(s, x)|2dxds

}
≤
∫ t

0
sup
g∈Fd

{∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µ(dξ)−
∫
Rd
|∇g(x)|2dx

}
ds

= tEH ,
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we therefore reach the bound (2.11). �

3 When the measure µ(dξ) is infinite

The first thing we need to show is that EH is well defined and finite under our assumption. We
specifically point out that the integrals∫

Rd×Rd
γ(x− y)g2(x)g2(y)dxdy g ∈ Fd

have to be properly defined as g2(x) is not necessarily in S(Rd).

With the method used in proving (2.8), one can show that for any t1, t2 > 0

E exp

{
θ

∫ t1+t2

0
γ
(
B(s)

)
ds

}
≤ E exp

{
θ

∫ t1

0
γ
(
B(s)

)
ds

}
E exp

{
θ

∫ t2

0
γ
(
B(s)

)
ds

}
. (3.1)

Consequently, the limit

Λ ≡ lim
t→∞

1

t
logE exp

{
θ

∫ t

0
γ
(
B(s)

)
ds

}
exists and finite.

Recall that γε(x) is the non-negative definite function defined in (1.12). Given ε > ε′ > 0, notice
that γε′(·)− γε(·) is non-negative definite with the spectral measure(

exp
{
− ε′

2
|ξ|2
}
− exp

{
− ε

2
|ξ|2
})

µ(dξ).

For any given x ∈ Rd, t > 0 and the integer n ≥ 1, similar to (2.7)

E
[ ∫ t

0

{
γε′
(
x+B(s)

)
− γε

(
x+B(s)

)}
ds

]n
≤ E

[ ∫ t

0

{
γε′
(
B(s)

)
− γε

(
B(s)

)}
ds

]n
. (3.2)

By (1.13), this implies the moment convergence∫ t

0
γ
(
B(s)− x

)
ds

def
= lim

ε→∞

∫ t

0
γε
(
B(s)− x

)
ds x ∈ Rd.

Further, the moment comparison similar to (2.7) also leads to

E exp

{
θ

∫ t

0
γ
(
x+B(s)

)
ds

}
≤ E exp

{
θ

∫ t

0
γ
(
B(s)

)
ds

}
<∞, (3.3)

for every x ∈ Rd and θ > 0.

By Theorem 4.1.6, p.99, [3], for any ε > 0

lim
t→∞

1

t
logE exp

{
θ

∫ t

0
γε
(
B(s)

)
ds

}
= sup

g∈Fd

{
θ

∫
Rd
γε(x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
.
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By Jensen inequality and (3.3), on the other hand,

E exp

{
θ

∫ t

0
γε
(
B(s)

)
ds

}
≤
∫
Rd
pε(x)E exp

{
θ

∫ t

0
γ
(
x+B(s)

)
ds

}
dx

≤ E exp

{
θ

∫ t

0
γ
(
B(s)

)
ds

}
,

where pε(x) is the density of B(ε). Consequently,

sup
g∈Fd

{
θ

∫
Rd
γε(x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
≤ Λ. (3.4)

Noticing that for any g ∈ Fd∫
Rd×Rd

γε(x− y)g2(x)g2(y)dxdy =

∫
Rd
g2(y)

[ ∫
Rd
γε(x− y)g2(x)dx

]
dy

≤ sup
y∈Rd

∫
Rd
γε(x− y)g2(x)dx = sup

y∈Rd

∫
Rd
γε(x)g2(x+ y)dx.

Consequently, for any θ > 0 and ε > 0

sup
g∈Fd

{
θ

∫
Rd×Rd

γε(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
≤ sup

g∈Fd

{
θ sup
y∈Rd

∫
Rd
γε(x)g2(x+ y)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
= sup

y∈Rd
sup
g∈Fd

{
θ

∫
Rd
γε(x)g2(x+ y)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
= sup

g∈Fd

{
θ

∫
Rd
γε(x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
≤ Λ,

where the third step follows from translation invariance.

Thus, by the relation∫
Rd

∣∣∣∣ ∫
Rd
eiλ·xg2(x)dx

∣∣∣∣2 exp
{
− ε

2
|ξ|2
}
µ(dξ) =

∫
Rd×Rd

γε(x− y)g2(x)g2(y)dxdy

and monotonic convergence, the integral∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy ≡
∫
Rd

∣∣∣∣ ∫
Rd
eiλ·xg2(x)dx

∣∣∣∣2µ(dξ)

is well-defined and finite for every g ∈ Fd. Further,

sup
g∈Fd

{
θ

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − 1

2

∫
Rd
|∇g(x)|2dx

}
≤ Λ <∞.

In particular, EH is well-defined and finite.
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To establish (1.14), first notice that for any fixed ε > 0, γε(x) is non-negative definite with the
spectral measure µε(dξ) = e−ε|ξ|

2/2µ(dξ) that is finite by (1.10). By what have been proved,

lim
N→∞

1

NtN
E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γε
(
Bj(s)−Bk(s)

)
ds

}
(3.5)

=
1

2
sup
g∈Fd

{∫
Rd×Rd

γε(x− y)g2(x)g2(y)dxdy −
∫
Rd
|∇g(x)|2dx

}
.

For any integer n ≥ 1

E

[ ∑
1≤j<k≤N

∫ tN

0
γε
(
Bj(s)−Bk(s)

)
ds

]n

=

∫
[0,tN ]n

∫
(Rd)N

dµ(dξ1) · · ·µ(dξn)ds1 · · · dsn exp

{
− ε

2

n∑
l=1

|ξj |2
}

× E
n∏
l=1

∑
1≤j<k≤N

exp

{
iξl ·

(
Bj(sl)−Bk(sl)

)}
.

By the fact that

E
n∏
l=1

∑
1≤j<k≤N

exp

{
iξl ·

(
Bj(sl)−Bk(sl)

)}
> 0

we obtain that

E

[ ∑
1≤j<k≤N

∫ tN

0
γε
(
Bj(s)−Bk(s)

)
ds

]n
(3.6)

≤
∫
[0,tN ]n

∫
(Rd)N

dµ(dξ1) · · ·µ(dξn)ds1 · · · dsnE
n∏
l=1

∑
1≤j<k≤N

exp

{
iξl ·

(
Bj(sl)−Bk(sl)

)}

= E

[ ∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

]n
.

Therefore, it follows from Taylor expansion that

E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}

≥ E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γε
(
Bj(s)−Bk(s)

)
ds

}
.

By (3.5)

lim inf
N→∞

1

NtN
E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}

≥ 1

2
sup
g∈Fd

{∫
Rd×Rd

γε(x− y)g2(x)g2(y)dxdy −
∫
Rd
|∇g(x)|2dx

}
.
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Letting ε→ 0+ on the right hand side leads to

lim inf
N→∞

1

NtN
E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
≥ 1

2
EH . (3.7)

On the other hand, set ζε(x) = γ(x)− γε(x). We claim that

lim
ε→0+

lim sup
N→∞

1

NtN
logE exp

{
θ

N

∑
1≤j<k≤N

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds

}
= 0 (3.8)

for any θ > 0

By Jensen’s inequality

E exp

{
θ

N

∑
1≤j<k≤N

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds

}

≥ exp

{
θ

N
E

∑
1≤j<k≤N

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds

}
≥ 1,

where the last step follows from (3.6) with n = 1.

Thus, all we need is to show the upper bound of (3.8). Write

∑
1≤j<k≤N

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds =

1

2

N∑
j=1

∑
k: k 6=j

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds.

By Hölder’s inequality,

E exp

{
θ

N

∑
1≤j<k≤N

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds

}

≤
N∏
j=1

(
E exp

{
θ

2

∑
k: k 6=j

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds

})1/N

= E exp

{
θ

2

N∑
k=2

∫ tN

0
ζε
(
B1(s)−Bk(s)

)
ds

}
.

Write

N∑
k=2

∫ tN

0
ζε
(
B1(s)−Bk(s)

)
ds =

∫
Rd

[ ∫ tN

0
eiξ·B1(s)

N∑
k=2

exp

{
− i

N∑
k=2

ξ ·Bk(s)
}
ds

]
νε(dξ)

where
νε(dξ) =

(
1− exp

{
− ε

2
|ξ|2
})

µ(dξ).
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For any n ≥ 1, by independence between B1 and {B2, · · · , BN}

E

[
N∑
k=2

∫ tN

0
ζε
(
B1(s)−Bk(s)

)
ds

]n

=

∫
(Rd)N

νε(dξ1) · · · νε(dξN )

∫
[0,tN ]N

E exp

{
i
n∑
l=1

ξl ·B1(sl)

}

× E
( n∏
l=1

N∑
k=2

exp
{
− iξl ·Bk(sl)

})
ds1 · · · dsn

≤
∫
(Rd)N

νε(dξ1) · · · νε(dξN )

∫
[0,tN ]N

E
( n∏
l=1

N∑
k=2

exp
{
iξl ·Bk(sl)

})
ds1 · · · dsn

= E

[
N∑
k=2

∫ tN

0
ζε
(
Bk(s)

)
ds

]n
,

where the inequality follows from the fact that

E
( n∏
l=1

N∑
k=2

exp
{
− iξl ·Bk(sl)

})
> 0 and 0 < E exp

{
i
n∑
l=1

ξl ·B1(sl)

}
≤ 1.

Hence, by Taylor expansion

E exp

{
θ

2

N∑
k=2

∫ tN

0
ζε
(
B1(s)−Bk(s)

)
ds

}
≤ E exp

{
θ

2

N∑
k=2

∫ tN

0
ζε
(
Bk(s)

)
ds

}

=

(
E exp

{
θ

2

∫ tN

0
ζε
(
B(s)

)
ds

})N−1
,

where the last step follows from the independence of the Brownian motions.

To prove (3.8), we need only to show that

lim
ε→0+

lim sup
N→∞

1

tN
logE exp

{
θ

2

∫ tN

0
ζε
(
B(s)

)
ds

}
≤ 0. (3.9)

To simplify our notation, we may assume tN goes to infinity along the integers. By Markov property,

E exp

{
θ

2

∫ tN

0
ζε
(
B(s)

)
ds

}
≤

(
sup
x∈Rd

E exp

{
θ

2

∫ 1

0
ζε
(
x+B(s)

)
ds

})tN
.

On the other hand, letting ε′ → 0+ in (3.2),

E

[∫ 1

0
ζε
(
x+B(s)

)
ds

]n
≤ E

[∫ 1

0
ζε
(
B(s)

)
ds

]n
for every integer n ≥ 1. Then, by Taylor expansion

E exp

{
θ

2

∫ 1

0
ζε
(
x+B(s)

)
ds

}
≤ E exp

{
θ

2

∫ 1

0
ζε
(
B(s)

)
ds

}
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for every x ∈ Rd. Therefore,

E exp

{
θ

2

∫ tN

0
ζε
(
B(s)

)
ds

}
≤

(
E exp

{
θ

2

∫ 1

0
ζε
(
B(s)

)
ds

})tN
.

Thus, (3.9) follows from the obvious fact that

lim
ε→0+

E exp

{
θ

2

∫ 1

0
ζε
(
B(s)

)
ds

}
= 1

which is clearly a consequence of the assumption (1.13).

We now prove the upper bound for (1.14). Let p, q > 1 are conjugate numbers. By Hölder inequality

E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}

≤

(
E exp

{
p

N

∑
1≤j<k≤N

∫ tN

0
γε
(
Bj(s)−Bk(s)

)
ds

})1/p

×

(
E exp

{
q

N

∑
1≤j<k≤N

∫ tN

0
ζε
(
Bj(s)−Bk(s)

)
ds

})1/q

.

By (3.5) (with γε(·) being replaced by pγε(·)), (3.8) (with θ = q) and the fact that∫
Rd×Rd

γε(x− y)g2(x)g2(y)dxdy =

∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2e−ε|ξ|2/2µ(dξ)

≤
∫
Rd

∣∣∣∣ ∫
Rd
eiξ·xg2(x)dx

∣∣∣∣2µ(dξ) =

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy

for every g ∈ Fd, we conclude that

lim sup
N→∞

1

NtN
logE exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}

≤ 1

2p
sup
g∈Fd

{
p

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy −
∫
Rd
|∇g(x)|2dxds

}
.

Letting p→ 1+ on the right hand side leads to the upper bound

lim sup
N→∞

1

NtN
logE exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
≤ 1

2
EH . (3.10)

Finally, Theorem 1.1 with its full generality follows from (3.7) and (3.10). �

4 Link to bosonic quantum system

After completion of this project, we became aware of the subject on bosonic quantum system or
more specifically, a very recent development [16] on Hartree’s theory.
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Limited to our setting and in our notation, Hartree’s theory supports the statements such that

lim
N→∞

E(N)

N
=

1

2
EH , (4.1)

where EH is given in (1.15) and is known as Hartree energy in the literature of quantum mechanics,
and (x̃ = (x1, · · · , xN ))

E(N) = sup
g∈FNd

{
1

N

∑
1≤j<k≤N

∫
RNd

γ(xj − xk)g2(x̃)dx̃− 1

2

∫
RNd
|∇g(x̃)|2dx̃

}
(4.2)

is called the ground state energy which appears as the principal eigenvalue of the N -body problem
([14]) with the Shrödinger Hamiltonian

HN =
1

2

N∑
j=1

∆j +
1

N

∑
1≤j<k≤N

γ(xj − xk). (4.3)

Here FNd is given in (1.16) with d being replaced by Nd. In quantum mechanics, HN formulates
N -body problem (see, e.g, [14]).

The statement (4.1) claims that the ground state of the non-linear Shrödinger operator (also called
Hartree operator)

H = ∆ + (γ ∗ g2)g

is approximated by the ground states of linear Shrödinger operators given in (4.2). The reason
behind (4.1) is simple: Replacing FNd by the sub-class of the functions of the form

g̃(x1, · · · , xN ) =
N∏
j=1

g(xj) g ∈ Fd (4.4)

we have
1

N

∑
1≤j<k≤N

∫
(Rd)N

γ(xj − xk)g̃2(x̃)dx̃− 1

2

∫
(Rd)N

|∇N g̃(x̃)|2dx̃

=
N − 1

2

∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy − N

2

∫
Rd
|∇g(x)|2dx.

This leads to the lower bound for (4.1):

lim inf
N→∞

E(N)

N
≥ 1

2
EH . (4.5)

The above analysis shows that (4.1) rests on the fact that the maximizer for the variation in (4.2)
is approximated in a suitable sense by the functions in the form given in (4.4) as N →∞.

Most of the earlier results (to which we refer the references cited in [16]) were for the ground state
energy

ẼV (N) = inf
g∈FNd

{
1

N

∑
1≤j<k≤N

∫
RNd

γ(xj − xk)g2(x̃)dx̃ (4.6)

+
N∑
j=1

∫
RNd

V (xj)g
2(x̃)dx̃+

1

2

∫
RNd
|∇g(x̃)|2dx̃

}
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with the conclusion that

lim
N→∞

ẼV (N)

N
=

1

2
ẼVH , (4.7)

where

ẼVH = inf
g∈FNd

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy + 2

∫
Rd
V (x)g2(x)dx+

∫
Rd
|∇g(x)|2dx

}
.

In the case when γ(·) ≡ 0, it is easy to see that the functions given in (4.4) maximize the variation
ẼVH (N), which partially explains why we have (4.7). On the other hand, (4.7) does not give a clear
picture on the role played by the function γ(·) in this “factorization” dynamics. One might take
V ≡ 0 for observing the behavior of γ(·). In the case when lim

|x|→∞
γ(x) = 0, Ẽ0H = 0 and Ẽ0(N) = 0

for all N ≥ 1, which is not necessarily the consequence of factorization, as one can make Ẽ0(N) = 0
by choosing “flat” functions g(x̃).

Therefore, it makes sense even only for the sake of understanding how the pair interaction function
γ(·) response to factorization, to switch the sign of γ(·) in the variation Ẽ0(N) so that it becomes
the problem given in (4.2) where the two terms in the variation compete against each other and
Hartree’s theory takes the form given in (4.1). On the other hand, note that, as remarked by Lewin,
Nam and Rougerie in [16, p. 579], “The validity of Hartree’s theory in this simple case 1 is already
a nontrivial problem and does not seem to have been proven before". It appears that the paper [16]
is the first work where Hartree’s theory mathematically includes the form given (4.1).

As an application of Theorem 1.1, we provide a probabilistic treatment to Hartree’s theory.

Theorem 4.1 Under the same condition as Theorem 1.1, (4.1) holds.

It should be pointed out that results obtained by Lewin, Nam and Rougerie [16] takes a form more
general than (4.1). As for the assumptions, both the condition (1.13) and the condition posted in
[16] are sufficient but “nearly necessary” for

sup
g∈Fd

{
θ

∫
Rd
γ(x)g2(x)dx− 1

2

∫
Rd
|∇g(x)|2dx

}
<∞ θ > 0

which ensures the finiteness of E(N). Our goal here is not to establish the most general form of
Hartree’s theory but to show a probabilistic relevance to Hartree’s theory.

Proof of Theorem 4.1: In view of (4.5), all we need is to establish the upper bound

lim sup
N→∞

E(N)

N
≤ 1

2
EH . (4.8)

The idea is Feynman-Kac formula. To this end we work on the (Nd)-dimensional Brownian motion

B̃(s) =
(
B1(s), · · · , BN (s)

)
s ≥ 0.

1refer to the case of finite spectrum measure µ(dξ)
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We introduce the notation x̃ = (x1, · · · , xN ) for x1, · · · , xN ∈ Rd. We use “Ex̃” for the expectation
associated with the Brownian motion B̃(s) with B̃(0) = x̃. For fixed N , the transform

Ttg(x̃) = Ex̃

[
exp

{
1

N

∑
1≤j<k≤N

∫ t

0
γ
(
Bj(s)−Bk(s)

)
ds

}
g
(
B̃(t)

)]
x̃ ∈ RNd

defines a semi-group of continuous linear operators on L2(RNd) in the sense that Ts+t = Tt ◦ Ts.
Further, the semi-group {Tt; t ≥ 0} takes the Schrödinger operator HN (given in (4.3)) as its
infinitesimal generator and is formally written as Tt = etHN . Here we mention the fact that HN is
initially a symmetric linear operator and can be extended into a self-adjoined operator by Friedrichs’s
extension.

Let ε > 0 be fixed and notice the fact that E(N) = sup
g∈Fd
〈g,HNg〉. For any N ≥ 1, one can find

gN ∈ FNd such that gN is locally supported, and 〈gN , HNgN 〉 > E(N) − Nε. Let RN > 0 be the
radius of the (Nd)-dimensional ball which supports gN and let tN → ∞ (N → ∞) with sufficient
increasing rate so that

lim
N→∞

1

NtN
log

(
‖gN‖2∞ωNdRNdN

)
= 0 (4.9)

where ωNd is the volume of the (Nd)-dimensional unit ball.

By the moment comparison similar to (2.7), one can show that for any x̃ ∈ RNd

Ex̃ exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}

≤ E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
.

Consequently,

E exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
(4.10)

≥ |B(0, RN )|−1
∫
B(0,RN )

Ex̃ exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
≥ ‖gN‖−2∞ |B(0, RN )|−1

∫
Rd
gN (x̃)

× Ex̃ exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
gN
(
BtN )

]
dx̃

= ‖gN‖−2∞
(
ωNdR

Nd
N

)−1〈
gN , TtN gN 〉.

By the spectral representation

〈
gN , TtN gN 〉 =

∫ ∞
−∞

exp{tNλ}µgN (dλ)
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where the measure µgN (dλ) satisfies µgN (R) = ‖gN‖22 = 1. In other words, µgN is a probability
measure on R. By Jensen’s inequality

〈
gN , TtN gN 〉 ≥ exp

{
tN

∫ ∞
−∞

λµgN (dλ)

}
= exp

{
tN 〈gN , HNgN 〉

}
≥ exp

{
tN (E(N)−Nε)

}
.

Combining this with (4.9) and (4.10),

lim sup
N→∞

1

NtN
logE exp

{
1

N

∑
1≤j<k≤N

∫ tN

0
γ
(
Bj(s)−Bk(s)

)
ds

}
≥ lim sup

N→∞

E(N)

N
− ε.

In view of Theorem 1.1, letting ε→ 0+ on the right hand side leads to (4.8). �
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