MATH 472 MIDTERM EXAM

March 12, 2019
(1) Consider the linear system $A x=b$, where

$$
A=\left(\begin{array}{ll}
1.297 & 0.8648 \\
0.2161 & 0.1441
\end{array}\right), \quad b=\binom{0.8644}{0.1440}
$$

Solve the system using Gauss elimination. Do all calculations using 4 decimal digit rounding arithmetic. Explain what happens.
(2) Show that the matrix A

$$
A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

is symmetric positive definite. Find its Cholesky decomposition.
(3) Find the $L D L^{T}$ factorization of the matrix

$$
A=\left(\begin{array}{rrr}
2 & -2 & 2 \\
-2 & 0 & -6 \\
2 & -6 & -2
\end{array}\right)
$$

Is this matrix positive definite? Justify your answer.
(4) Prove that an orthogonal triangular matrix is diagonal.
(5) Find the QR factorization of the matrix

$$
A=\left(\begin{array}{rrr}
0 & 0 & 6 \\
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0
\end{array}\right)
$$

using Householder transformations.
(6) Apply the Doolittle direct factorization technique to the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 6 & -2 \\
4 & -3 & 8
\end{array}\right)
$$

(7) Suppose A and B are both symmetric positive definite matrices. State whether the following statement are true or false. Give a simple proof or provide a counterexample
(a) $A+B$ is positive definite
(b) $A-B$ is positive definite
(c) A^{T} is positive definite
(d) A^{3} is positive definite
(8) Show that a Householder matrix $H(\mathbf{v})$ is not positive definite unless $\mathbf{v}=0$.
(9) Consider the overdetermined system $A \mathbf{x}=\mathbf{b}$, with

$$
A=\left[\begin{array}{rr}
2 & -1 \\
3 & 4 \\
-2 & 4
\end{array}\right], \quad \text { and } \mathbf{b}=\left[\begin{array}{r}
-2 \\
1 \\
4
\end{array}\right]
$$

(a) Use the method of normal equations to find the Least-Squares solution.
(b) Find the QR factorization of A and use it to compute the Least-Squares solution.

