Math 251

Sample Test 2

1. Determine whether the set $\left\{x^{2}+76 x+23,13 x^{2}-29 x+15,-5 x^{2}+x+28\right\}$ is linearly independent or not.
2. Determine whether the set $\left\{x^{2}+76 x+23,13 x^{2}-29 x+15,-5 x^{2}+x+28, x^{2}-3 x+5\right\}$ is linearly independent or not.
3. If A is an $m \times n$ matrix, show that $\operatorname{rank}(A) \leq \min \{m, n\}$.
4. Suppose A is a 7×4 matrix. Only one of the following statements is correct. Identify it with justification
(a) $\operatorname{rank}(A)$ can be any integer between 0 and 7 .
(b) nullity (A) cannot be less that 3 .
(c) The system $A \mathbf{x}=\mathbf{0}$ cannot have any nonzero solutions.
(d) the $\operatorname{nullity}(A)$ is at most 4 .
5. Let A and B be two matrices such that $B A$ can be formed.
(a) Show that the row space of $B A$ is a subspace of the row space of A, in other words every linear combination of rows of $B A$ is a linear combination of rows of A.
(b) Show that if in addition B is square and invertible, then the row space of A is a subspace of the row space of $B A$.

In conclusion, if B is invertible then the row spaces of $B A$ and A are identical.
6. Let A and B be two matrices such that $B A$ can be formed.
(a) Show that $\operatorname{ker}(A)$ is a subspace of $\operatorname{ker}(B A)$. For this, show that if $A \mathbf{x}=\mathbf{0}$, then $B A \mathbf{x}=\mathbf{0}$.
(b) Show that if in addition B is square and invertible, then $\operatorname{ker}(B A)$ is a subspace of $\operatorname{ker}(A)$.

In conclusion, if B is invertible then $\operatorname{ker}(B A)=\operatorname{ker}(A)$.
7. Let

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & -2 \\
-3 & 1 & 3 & 4 \\
-3 & 8 & 4 & 2
\end{array}\right]
$$

Find bases for each of the following subspaces
(a) The row space of A,
(b) the column space of A,
(c) $\operatorname{ker}(A)$,
(d) $\operatorname{ker}\left(A^{T}\right)$.
8. The vectors $(1,-2,-1),(1,4,8),(0,2,3),(1,2,5)$ are obviously linearly dependent(why?). Identify a subset of linearly indepedent vectors and express the others as linear combinations of these.

