Math 251 Sample Test 2

- 1. Determine whether the set $\{x^2+76x+23, 13x^2-29x+15, -5x^2+x+28\}$ is linearly independent or not.
- 2. Determine whether the set $\{x^2 + 76x + 23, 13x^2 29x + 15, -5x^2 + x + 28, x^2 3x + 5\}$ is linearly independent or not.
- 3. If A is an $m \times n$ matrix, show that $\operatorname{rank}(A) \leq \min\{m, n\}$.
- 4. Suppose A is a 7×4 matrix. Only one of the following statements is correct. Identify it with justification
 - (a) $\operatorname{rank}(A)$ can be any integer between 0 and 7.
 - (b) $\operatorname{nullity}(A)$ cannot be less that 3.
 - (c) The system $A\mathbf{x} = \mathbf{0}$ cannot have any nonzero solutions.
 - (d) the nullity(A) is at most 4.
- 5. Let A and B be two matrices such that BA can be formed.
 - (a) Show that the row space of BA is a subspace of the row space of A, in other words every linear combination of rows of BA is a linear combination of rows of A.
 - (b) Show that if in addition B is square and invertible, then the row space of A is a subspace of the row space of BA.

In conclusion, if B is invertible then the row spaces of BA and A are identical.

- 6. Let A and B be two matrices such that BA can be formed.
 - (a) Show that $\ker(A)$ is a subspace of $\ker(BA)$. For this, show that if $A\mathbf{x} = \mathbf{0}$, then $BA\mathbf{x} = \mathbf{0}$.
 - (b) Show that if in addition B is square and invertible, then $\ker(BA)$ is a subspace of $\ker(A)$.

In conclusion, if B is invertible then $\ker(BA) = \ker(A)$.

7. Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 & -2 \\ -3 & 1 & 3 & 4 \\ -3 & 8 & 4 & 2 \end{array} \right].$$

Find bases for each of the following subspaces

- (a) The row space of A,
- (b) the column space of A,
- (c) $\ker(A)$,
- (d) $\ker(A^T)$.
- 8. The vectors (1, -2, -1), (1, 4, 8), (0, 2, 3), (1, 2, 5) are obviously linearly dependent(why?). Identify a subset of linearly independent vectors and express the others as linear combinations of these.