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Abstract

We consider generalizations of commuting squares, called twisted commuting squares,
obtained by having the commuting square orthogonality condition hold with respect
to the inner product given by a faithful state on a finite dimensional ∗-algebra. We
present various examples of twisted commuting squares, most of which are compu-
tationally easy to work with, and we prove an isolation result. We also show how
parametric families of (not necessarily) twisted commuting squares yield associative
deformations of the matrix multiplication.

1 Introduction

Commuting squares were introduced by S. Popa in [12] (see also [5]), as invariants and
construction data for subfactors. A commuting square is a square of inclusions:P ⊂ R

∪ ∪ , τ
S ⊂ Q


where R, P , Q, S are finite dimensional ∗−algebras (i.e., of the form ⊕ki=1Mni(C)) with a
fixed trace τ on R, such that P 	 S ⊥ Q	 S. We denoted byP 	 S, Q	 S the orthogonal
complements of S in P , Q. The orthogonality is with respect to the inner product < x, y >τ=
τ(y∗x) defined by τ on R.

Commuting squares arise naturally in the lattice of inclusions forming the standard in-
variant of a subfactor. Conversely, one can construct from a commuting square a finite index
hyperfinite subfactor, by iterating Jones’ basic construction ([4]). Many of the known ex-
plicit examples of subfactors were obtained using this construction. However, computing the
standard invariant of the subfactor associated to a commuting square (by using Ocneanu’s
compactness argument, see [5]) turns out to be quite hard, and has been done so far only
for a handful of examples (see for instance [5], [1], [9]). One of the problems is that even the
easiest examples, based on complex Hadamard matrices, can be technically difficult to work
with (see for instance [9]).

In this paper we weaken the commuting square condition, by replacing the trace τ with
a faithful state ϕ. We call the resulting structure a twisted commuting square. Our main
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motivation is the possibility to construct finite index subfactors from twisted commuting
squares, which will be discussed in a future paper.

The paper is organized as follows: In Section 2 we introduce the main definitions and
discuss possible normalizations for twisted commuting squares.

In Section 3 we prove an isolation result for twisted commuting squares, which is a
generalization of the first author’s Span Condition from [8]. This allows us to determine, for
many of the examples we consider, if they are isolated or part of parametric families.

Section 4 is dedicated to examples of twisted commuting squares similar to the commuting
squares based on (complex) Hadamard matrices. They are obtained for R = Mn(C), P = D
the diagonals, Q = uDu∗ for some unitary u, and ϕ(·) = τ(·a) for some a ∈ Mn(C) positive
invertible. If the twisted commuting square condition is satisfied, we call u an a−Hadamard
matrix. When a = In, this is the same as a Hadamard matrix. While there aren’t many
Hadamard matrices of small dimensions (see [3], [14]), looking at a−Hadamards provides a
richer class of examples - see for instance Proposition 4.3.

Finally, in Section 5 we use parametric families of (twisted or not) Hadamard commuting
squares to obtain associative deformations mλ of the matrix multiplication. Our results can
also be extended to multiplications on finite dimensional ∗-algebras. It turns out that certain
families of (twisted) commuting squares yield associative multiplications of the form

mλ(x, y) = m(x, y) + (λ− 1)m′(x, y) + (λ̄− 1)m′′(x, y), |λ| = 1

where m,m′ and m′′ are all associative multiplications.
Deformations of the multiplication are of interest in Quantum Algebra with applications

to High Energy Physics. For instance, the approach to the theory of integrable systems via
the Lenard-Magri scheme ([6]) uses compatible Poisson structures, which could be obtained
from linear associative deformations of the multiplication (see for instance [10]).

2 Preliminaries

Definition 2.1. A twisted commuting square of matrix algebras is a square of inclusions:P ⊂ R
∪ ∪ , ϕ
S ⊂ Q


where R, P , Q, S are finite dimensional ∗−algebras (i.e., of the form ⊕ki=1Mni(C)) and ϕ is
a faithful state on R, satisfying:

projϕ,Pprojϕ,Q = projϕ,Qprojϕ,P = projϕ,S

where projϕ,V denotes the orthogonal projection from R to the subspace V , with respect to
the inner product defined by ϕ on R: 〈x, y〉 = ϕ(y∗x).

Equivalently, the commuting projections condition above can be written as:

2



P 	ϕ S ⊥ϕ Q	ϕ S

where the orthogonal complements and the orthogonality are considered with respect to the
inner product defined by ϕ.

One of the simplest (but rich in examples) classes of twisted commuting squares is ob-
tained by letting P = D,Q = uDu∗ be two copies of the diagonal matrices D ⊂ R = Mn(C),
where u is a unitary matrix. If we let τ denote the normalized trace on Mn(C), then the
faithful state ϕ is of the form ϕ(x) = τ(xa), for some positive invertible matrix a ∈ Mn(C).
The twisted commuting square condition becomes a relation between u and a, generalizing
the notion of complex Hadamard matrix.

Definition 2.2. Let a ∈ Mn(C) be positive and invertible, with τ(a) = 1. We say that a
unitary u ∈ Mn(C) is a−Hadamard if D ⊂ Mn(C)

∪ ∪ , ϕ
CIn ⊂ uDu∗


is a twisted commuting square, where ϕ(x) = τ(xa) for x ∈ Mn(C).

Remark 2.3. Since x− ϕ(x)1 is orthogonal to C, with respect to the inner product defined
by ϕ, the commuting square condition can be written as ϕ((y − ϕ(y)1)(x− ϕ(x)1)) = 0, for
all x ∈ D and y ∈ uDu∗. After taking adjoints it also follows ϕ((x−ϕ(x)1)(y−ϕ(y)1)) = 0,
for all x ∈ D and y ∈ uDu∗. Equivalently:

ϕ(xy) = ϕ(x)ϕ(y), for all x ∈ D, y ∈ uDu∗.

Note that this is also equivalent to ϕ(yx) = ϕ(x)ϕ(y) for all x ∈ D, y ∈ uDu∗.

Let (ei,j)1≤i,j≤n denote the matrix units of Mn(C). It follows that umust satisfy τ(uei iu
∗ej ja) =

τ(uei iu
∗a)τ(ej ja) for all i, j, or equivalently

∑
1≤k≤n

aj kuk iuj i =
aj j
n

∑
1≤l≤n

( ∑
1≤k≤n

uk iak l

)
ul i, for all i, j. (1)

Remark 2.4. Note that for a = In, u being a−Hadamard is equivalent to u being a complex
Hadamard matrix, i.e. u is unitary and all its entries are of the same absolute value, |uk l| =
1√
n

.

Definition 2.5. We say that the twisted commuting square

C =

P ⊂ R
∪ ∪ , ϕ
S ⊂ Q
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is isomorphic to the twisted commuting square

C̃ =

P̃ ⊂ R̃
∪ ∪ , ϕ̃

S̃ ⊂ Q̃


if there exists a ∗−algebra isomorphism ψ : R → R̃ such that ψ(P ) = P̃ , ψ(S) = S̃,

ψ(Q) = Q̃ and ϕ̃(ψ(x)) = ϕ(x) for all x ∈ R.

We now present the canonical way to normalize twisted commuting squares and a-
Hadamard matrices. For algebrasB ⊂ A, we recall the notationB′∩A = {a ∈ A such that ab =
ba,∀b ∈ B}.

Lemma 2.6. Let R, P , Q, S be finite dimensional ∗−algebras with a fixed trace τ on R, let
a ∈ R be positive and invertible and let ϕ(x) = τ(ax), x ∈ R. For each unitary element,u,
of R, let

C(u) =

P ⊂ R
∪ ∪ , ϕ
S ⊂ uQu∗

 .

Let q ∈ Q, q′ ∈ Q′∩P , p ∈ a′∩S ′∩P , p′ ∈ a′∩P ′∩R be unitary elements. Assume that C(u)
is a twisted commuting square. Then C(pp′uqq′) is a twisted commuting square isomorphic
to C(u).

Proof. Modifying u to the right by q, q′ does not change the algebra uQu∗ and thus does
not change the twisted commuting square: C(pp′u) = C(pp′uqq′). By applying Ad((pp′)∗) to
C(pp′u) (which leaves R, P , S invariant), we see that C(pp′u) is isomorphic to C(u). Indeed,
we have ϕ(Ad(pp′)(x)) = ϕ(x), since p and p′ commute with a.

�

Definition 2.7. Let a ∈ Mn(C) be a positive, invertible matrix. We say that two a-Hadamard
matrices u1, u2 are equivalent, written u1 ∼ u2, if there exist unitary diagonal matrices d1, d2
and permutation matrices p1, p2 with p1d1 commuting with a, such that u2 = p1d1u1d2p2.

Remark 2.8. Lemma 2.6 shows that equivalent a-Hadamard matrices yield isomorphic
twisted commuting squares. The converse is also true, since the normalizer of D in Mn(C)
is the set of elements of the form pd, with d diagonal unitary and p a permutation matrix.
The fact that p1d1 commutes with a follows from the preservation of ϕ in the definition of
the isomorphism of twisted commuting squares: ϕ(Ad(p1d1)) = ϕ.

Remark 2.9. It is easy to see that if u ∈ Mn(C) is a-Hadamard and if d ∈ D is unitary,
then dud∗ is dad∗-Hadamard. Thus, we may reduce ourselves to the case when a has the
entries a11, a12, ..., a1n real.
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While complex Hadamard matrices can be normalized (up to equivalence) to have the
first row and column made of 1’s, twisted Hadamard matrices do not allow for such nice
normalizations. The main problem is that we can modify from the left only by elements
which commute with a. The only normalization that we will use is the following.

Remark 2.10. Since we can modify u → ud by diagonal unitaries d, we may assume (up
to equivalence) that the entries u11, u12, ..., u1n are all real.

3 An Isolation Result for Twisted Hadamard Matrices

In this section we generalize the isolation result obtained by the first author in [8] to twisted
commuting squares: we prove that if a certain Span Condition holds, then the twisted com-
muting square is isolated. For simplicity, we will only do this for twisted commuting squares
arising from a-Hadamard matrices. All examples to which we apply the Span Condition in
the next section are of this form.

Definition 3.1. Let a ∈ Mn(C) be positive and invertible, and let u be an a-twisted Hadamard
matrix. We say that u is isolated if there exists δ > 0 such that if v is any a-twisted Hadamard
with ||v − u|| < δ, then v is equivalent to u.

Let u be a−Hadamard and let C be the twisted a-Hadamard commuting square associated
to u

C =

P ⊂ Mn(C)
∪ ∪ , ϕ
C ⊂ Q


where P = D,Q = uDu∗ and ϕ(x) = τ(xa).

For two subspaces V,W of a ∗−algebra R we will use the notation

[V,W ] = span{vw − wv : v ∈ V,w ∈ W}

Definition 3.2. We say that C satisfies the Span Condition if

[aP0, Q] + [P0a,Q] + (a′ ∩ P ) +Q = Mn(C)

where P0 = P 	ϕ CIn

Remark 3.3. When a = In, the span condition becomes [P,Q] + P +Q = Mn(C), which is
the span condition for Hadamard matrices introduced by the first author in [8].

Remark 3.4. For most a’s that we will apply this result to, we have a′∩P = C, so the span
condition becomes [aP0, Q] + [P0a,Q] +Q = Mn(C).

Theorem 3.5. Let u be an a-Hadamard matrix. If the associated twisted commuting square
C satisfies the Span Condition, then u is isolated.
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Proof. Assume that the span condition is satisfied, but u is not isolated. Then there exists
unitaries un, un → I, such that unu are all a−Hadamard matrices, not equivalent to u. So

C(un) =

P ⊂ Mn(C)
∪ ∪ , ϕ
C ⊂ unQu

∗
n


are all twisted commuting squares. By a compactness argument, we may assume after
eventually passing to a subsequence that h = limn→∞

un−I
i||un−I|| exists. Note that ||h|| = 1.

Since un are unitaries, it follows that h is self-adjoint. By the same argument as in Lemma
1.8 from [8], after eventually modifying un → pnunqn with pn ∈ a′ ∩ P and qn ∈ Q unitaries
convering to I, we may assume that h is orthogonal to the vector space (a′ ∩ P ) + Q. By
orthogonal we mean with respect to the canonical inner product on Mn(C), given by the
trace.

Writing the twisted commuting square condition for each un gives ϕ(punqu
∗
n) = ϕ(p)ϕ(unqu

∗
n).

For ϕ(p) = 0, we can rewrite ϕ(punqu
∗
n) = 0 as:

ϕ(p(un − I)qu∗n) + ϕ(pq(un − I)∗) = 0

After dividing by i||un − I|| and taking the limit as n→∞, we obtain:

ϕ(phq)− ϕ(pqh) = 0

Equivalently: τ(phqa) − τ(pqha) = 0. Which by using the properties of the trace is
equivalent to

τ(h[ap, q]) = 0

This shows that h is orthogonal to [aP0, Q], where P0 = P 	ϕCIn. Since h is self-adjoint
and P0, Q are closed to ∗, it follows that h will also be orthogonal to [aP0, Q]∗ = [P0a,Q].
Thus, h is orthogonal to [aP0, Q] + [P0a,Q] + (a′ ∩ P ) + Q = Mn(C), which implies h = 0,
contradicting ||h|| = 1. �

4 Examples

In this section we present various examples of twisted commuting squares, arising from
unitaries u which are a-Hadamard, for some a positive and invertible. We will avoid the
examples that yield classical commuting squares (without a twist), i.e. based on complex
Hadamard matrices. A catalogue of the known complex Hadamard matrices can be found
at [14]. We start by observing that diagonal matrices a will only give Hadamard examples.

Proposition 4.1. Let a ∈ D be positive and invertible, τ(a) = 1. Then, u is a−Hadamard
if and only if u is a complex Hadamard matrix.

Proof. Let ei j denote the matrix units of Mn(C). Suppose u is a Hadamard matrix. Since
aej j ∈ D, we have τ(uei iu

∗ej ja) = τ(uei iu
∗)τ(ej ja) = τ(uei iu

∗a)τ(ej ja).
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Conversely, suppose u is a−Hadamard and a =
∑

1≤k≤n λkek k. Then

λj|uj i|2 = λjτ(uei iu
∗ej j) = τ(uei iu

∗ej ja) = τ(uei iu
∗a)τ(ej ja) =

λj
n
τ(uei iu

∗a).

Therefore, we have |uj i| = |uk i| for any fixed i and 1 ≤ j, k ≤ n. Because u is unitary, it
follows |uj i| = 1√

n
for all j, i. Hence, u is a Hadamard matrix.

�

Remark 4.2. It is possible for a Hadamard matrix to be a-Hadamard, even if a is not
diagonal. For instance, if a is the matrix having 1 on the diagonal and all the other entries
equal to some t ∈ (0, 1), then it is easy to see that any Hadamard matrix having the first
column made of 1′s (so in particular any Hadamard matrix in normalized form) is also
a−Hadamard.

The next proposition shows that for each n > 4 there exists at least one pair (a, u) with a
positive invertible, and u an a-Hadamard matrix which is not a complex Hadamard matrix.
Moreover, the matrices a, u are circulant matrices. In particular, they commute.

Proposition 4.3. Let n > 4 and let eij denote the matrix units of Mn(C). Let B =
∑n

i,j=1 eij
and let X =

∑n
i=1 eii+1, where the index n+ 1 is identified with 1. Let u = 2

n
B −X and let

a = In + n−4
2n−4(B − In). Then u is a-Hadamard.

Proof. Using B2 = nB, XB = BX = B and X∗B = BX∗ = B, it is immediate to check
that uu∗ = ( 2

n
B −X)( 2

n
B −X∗) = 4

n2nB + In − 4
n
B = In. Thus u is a unitary. It is easy to

see that a is positive and invertible.
We now check that the a-Hadamard condition τ(aekkuellu

∗) = τ(aekk)τ(auellu
∗) holds

for all k, l. This is equivalent to

(u∗a)lk · ukl =
1

n
akk · (u∗au)ll.

Since ua = au, the right part of the equality above is 1
n
. For the left part, notice that

u∗a = ( 2
n
B −X∗)(In + n−4

2n−4(B − In)) = 1
2
B − n

2n−4X
∗. This matrix has all entries equal to

1
2
, except those on positions k + 1, k, which equal 1

2−n . Since u has the entries equal to 2
n
,

except the entries uk,k+1 = 2−n
n

, it follows that (u∗a)lk · ukl = 1
n
.

�

We now classify the unitaries u that are a−Hadamard, for an arbitrary 2 × 2 positive

invertible matrix a, τ(a) = 1. By remarks 2.9 and 2.10, we may assume a =

(
α λ
λ 2− α

)
∈

M2(R) where 0 < α < 2 and |λ| <
√

2α− α2, and u1 1, u1 2 ∈ R. Then (1) yields the
following equations:

αu21 k + λu1 ku2 k =
α

2

(
αu21 k + (2− α) |u2 k|2 + 2λu1 k<u2 k

)
(2)

λu1 ku2 k + (2− α) |u2 k|2 =
2− α

2

(
αu21 k + (2− α) |u2 k|2 + 2λu1 k<u2 k

)
(3)
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Since the right hand sides of equations 2 and, 3 are all real, u2 k ∈ R. Using this and the
previous equations, we obtain

α(2− α)
(
|u1 k|2 − |u2 k|2

)
= 2(α− 1)λu1 ku2 k. (4)

We note that α = 1 or λ = 0 yields |u1 1| = |u2 1| and |u1 2| = |u2 2| and u unitary
would then imply |u1 1| = |u2 1| = |u1 2| = |u2 2| = 1√

2
. Thus, u is equivalent to the unitary

u = 1√
2

(
1 1
1 −1

)
.

For λ 6= 0 and α 6= 1, let ω = 2(α−1)
α(2−α)λ. Note that each of |ui j| 6= 0 for 1 ≤ i, j ≤ 2

(else, a column of u would be 0) and ω 6= 0. Let r = u1 k

u2 k
and note that r, ω ∈ R. Dividing

equation 4 by u22 k, we get r2 − 1 = ωr. Letting r1 = ω+
√
ω2+4
2

, we see that u1 k = ru2 k
with r ∈ {r1, −1r1 }. Letting u1 1 = ru2 1 and u1 2 = r′u2 2 with r, r′ ∈ {r1, −1r1 }, the unitary

conditions are 1 = r2u22 1 + (r′)2u22 2 = u22 1 + u22 2 and 0 = ru22 1 + r′u22 2 which imply r 6= r′.
Hence, u is equivalent to a unitary of the form:(

rr1
−1
r
r2

r1 r2

)
(5)

where r1 = 1√
1+r2

, r2 = r√
1+r2

, ω = 2(α−1)
α(2−α)λ, and r = ω+

√
ω2+4
2

.

Example 4.4. For a =

(
1+
√
5

2

√
3
3√

3
3

3−
√
5

2

)
, we obtain u =

(√
3
2

−1
2

1
2

√
3
2

)
. A calculation via mathe-

matica shows the span condition is satisfied, so u is isolated among the a-Hadamard matrices.

We now give a parametric family of matrices of order 3 with a corresponding family of
twisted Hadamard matrices.

Example 4.5. Let a =

 1 2t2 − 1 t
2t2 − 1 1 t

t t 1

 where 0 < t < 1. Let x = −1 + t4 −

t
√

2− 3t2 + t6, y = −1 + t4 + t
√

2− 3t2 + t6, w = −t + t3 −
√

2− 3t2 + t6, and z = −t +
t3 +
√

2− 3t2 + t6. Then

u =


1√
2+t2

√
x

2(t2+2)(t2−1)

√
y

2(t2+2)(t2−1)

1√
2+t2

−
√

t2−1
2x(t2+2)

−
√

t2−1
2(t2+2)y

t√
2+t2

1
w

√
2x(t2−1)
(t2+2)

1
z

√
2y(t2−1)
(t2+2)


is a−Hadamard.

While the example above looks hard to work with in general, certain values of t give
unitaries with rational entries.
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Example 4.6. For t = 1
2
, we obtain a =

 1 −1
2

1
2

−1
2

1 1
2

1
2

1
2

1

 and u =

2
3

2
3

1
3

2
3
−1

3
−2

3
1
3
−2

3
2
3

.

A calculation via Mathematica shows the span condition is satisfied, so u is an isolated
a−Hadamard matrix.

We now show how for any n non-prime, n = k ·m, parametric families of a-Hadamards
(a fixed) can be constructed from fixed a-Hadamards of smaller orders. This construction is
a natural generalization of the Dita-Haagerup type Hadamard matrices (see [3],[14])

Proposition 4.7. Let a1 ∈ Mm(C) and a2 ∈ Mk(C) be positive, invertible matrices. Suppose
that b is a2−Hadamard and c1, c2, . . ., ck are a1−Hadamard. Then

u =


b1 1c1 b1 2c2 · · · b1 kck
b2 1c1 b2 2c2 · · · b2 kck

...
...

...
bk 1c1 bk 2c2 · · · bk kck

 is a = a1 ⊗ a2-Hadamard

Proof. Let (ei j)1≤i,j≤m and (fi′ j′)1≤i′,j′≤k be the matrix units for Mm(C) and Mk(C) re-
spectively. Making an appropriate identification of Mkm(C) with Mm(C)⊗Mk(C), we have
u =

∑
p,q bp qcq ⊗ fp q and u∗ =

∑
r,s br sc

∗
s ⊗ fs r. We need to verify that for each i, i′, j, j′

τ (u(ei i ⊗ fi′ i′)u∗(ej j ⊗ fj′ j′)a) = τ (u(ei i ⊗ fi′ i′)u∗a) τ ((ej j ⊗ fj′ j′)a) . (6)

Using the linearity of τ , we have the left side of equation 6 is:∑
p,q,r,s

τ
(
bp qcqei ibr sc

∗
sej ja1 ⊗ fp qfi′ i′fs rfj′ j′a2

)
.

Note that fp qfi′ i′fs rfj′ j′ 6= 0⇔ q = i′ = s, r = j′. Thus, the left side of ( 6) reduces to∑
p

τ (ci′ei ic
∗
i′ej ja1) τ

(
bp i′bj′ i′fp j′a2

)
. (7)

Using similar arguments as above, the right side reduces to:∑
p,r

τ (ci′ei ic
∗
i′a1) τ

(
bi′ qbr i′fp ra2

)
τ (ej ja1) τ (fj′ j′a2) . (8)

Since b =
∑

p q bp qfp q is a2−Hadamard and for a fixed i′, ci′ is a1−Hadamard, we have:∑
p

τ
(
bp i′bj′ i′fp j′a2

)
=

∑
p r

τ
(
bp i′br i′fp r

)
τ (fj′ j′a2) (9)

τ (ci′ei ic
∗
i′ej ja1) = τ (ci′ei ic

∗
i′a1) τ (ej ja1) . (10)

Finally, we plug (10) and (9) into (7) to get (8).
�
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Using the previous proposition, we now give a parametric family of 4×4 of a−Hadamard
matrices, with a fixed.

Example 4.8. Let a =

(
α λ
λ 2− α

)
where 0 < α < 2 and 0 < λ <

√
2α− α2. Let

ω = 2λ(α−1)
α(2−α) and r = ω+

√
ω2+4
2

. Let r1 = 1√
1+r2

, and r2 = r√
1+r2

. Then equation (5) gives

c1 =

(
rr1 − r2

r

r1 r2

)
and c2(t) =

(
rr1

−r2
r

exp(it)
r1 r2 exp(it)

)
are a−Hadamard for any real number t. Furthermore,

u(t) =
1√
2

(
c1 c1
c2(t) −c2(t)

)
is a one parameter family of a⊗ I2-Hadamard matrices.

The simplest parametric family that we were able to obtain is the following:

Example 4.9. Let a =

(
1+
√
5

2

√
3
3√

3
3

3−
√
5

2

)
and λ ∈ T. Then the following is a parametric

family of a-Hadamards:

uλ =


√
3
2

−1
2

√
3
2

−1
2

1
2

√
3
2

1
2

√
3
2√

3
2

−1
2
λ −

√
3

2
1
2
λ

1
2

√
3
2
λ −1

2
−
√
3

2
λ

 .

The span condition can not hold for uλ, as it is not isolated. Indeed, a Mathematica calcu-
lation shows that the dimension of the space from the span condition is 13 for λ = 1.

5 Twisted Hadamard Matrices and Associative Defor-

mations of the Matrix Product

Starting from a parametric family of twisted Hadamard commuting squares, we obtain a
continuous family mt (t ∈ R) of associative multiplications on Mn(C), where m0 is the
canonical matrix multiplication. Moreover, mt will coincide with m0 when restricted to any
of the two MASAs which are the corners of the initial twisted commuting square.

Associative deformations of the multiplication are a subject of interest in Quantum Al-
gebra with applications to High Energy Physics. For instance, the approach to the theory
of integrable systems via the Lenard-Magri scheme ([6]) uses compatible Poisson structures,
which could be obtained from linear associative deformations of the multiplication (see for
instance [10]).
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Due to the rigidity of semi-simple associative algebras, for t small, the multiplications
mt must be of the form mt(x, y) = ϕ−1t (ϕt(x)ϕt(y)), where ϕt : Mn(C) → Mn(C) is a linear
isomorphism. We will construct, from twisted commuting squares, such families ϕt for which
the structural constants of the multiplications mt are easy to compute. Moreover, we will see
that certain families of commuting squares, such as those arising from Petrescu’s Hadamard
matrices, yield associative multiplications of the form

mλ(x, y) = m(x, y) + (λ− 1)m′(x, y) + (λ̄− 1)m′′(x, y), |λ| = 1

where m,m′ and m′′ are all associative multiplications, with m = m0. Equivalently, this will
give a parametric family of multiplications mt of degree two in t.

Let a ∈ Mn(C) be positive invertible, let ϕ(x) = τ(ax) and let u be an a-Hadamard
unitary with no non-zero entries. Denote P = D, Q = uDu∗. Let pi and qi = upiu

∗,
1 ≤ i ≤ n, denote the minimal projections of P , respectively Q. We begin by finding some
easy formulas for the structural constants of the canonical matrix multiplication m, in the
bases given by pi, qi. Note that piqj span Mn(C):

Proposition 5.1. Let u ∈ Mn(C) be a unitary, P = D and Q = uDu∗. Then

span{pq : p ∈ P, q ∈ Q} = Mn(C)

if and only if u has no zero entries.

Proof. span{pq : p ∈ P, q ∈ Q} = Mn(C) if and only if vi,j = piqj, 1 ≤ i, j ≤ n form a basis
for Mn(C). We have: τ(vk,lv

∗
k′,l′) = τ(pkqlql′pk′) = δk

′

k δ
l′

l τ(pkql) = 1
n
δk

′

k δ
l′

l |ukl|2. So the n2×n2

matrix with entries τ(vk lv
∗
k′ l′) is diagonal and it is invertible if and only if all the diagonal

entries |ukl|2 are non-zero. �

It follows that for all 1 ≤ k, l, k′, l′ ≤ n, the structural coefficients cijklk′l′ of the multipli-
cation satisfy: (pkql)(pk′ql′) = Σn

i,j=1c
ij
klk′l′piqj. By multiplying by pk to the left and ql′ to the

right, it follows (pkql)(pk′ql′) = ckl
′

klk′l′pkql′ , so ckl
′

klk′l′ = ϕ(pkqlpk′ql′)/ϕ(pk)ϕ(ql′) and cijklk′l′ = 0
for (i, j) 6= (k, l′). Thus, we obtain:

(pkql)(pk′ql′) = γk
′l′

kl pkql′ , where γk
′l′

kl =
ϕ(pkqlpk′ql′)

ϕ(pk)ϕ(ql′)
. (11)

Let now ut (t ∈ R) be a continuous parametric family of a−Hadamard unitaries, with
u0 = u. Denote Qt = utDu∗t , so Q0 = Q. Let ϕt : Mn(C)→ Mn(C) be given by

ϕt(pkuplu
∗) = pkutplu

∗
t

for any 1 ≤ k, l ≤ n. For t small, the entries of ut will also be non-zero, so pkutplu
∗
t ,

1 ≤ k, l ≤ n form a basis of Mn(C). It follows that ϕt extends to a linear isomorphism of
Mn(C), and ϕt(pq) = pAd(utu

∗
0)(q) for all p ∈ P, q ∈ Q. Let mt(x, y) = ϕ−1t (ϕt(x)ϕt(y)).

Proposition 5.2. The associative multiplication mt satisfies: mt(x, y) = m(x, y) for all
(x, y) with x ∈ P or y ∈ Q

11



Proof. We havemt(pq, q
′) = ϕ−1t (pAd(utu

∗
0)(q)Ad(utu

∗
0)(q

′)) = ϕ−1t (pAd(utu
∗
0)(qq

′)) = pqq′ =
m(pq, q′), for all p ∈ P and q, q′ ∈ Q. This shows that mt(x, y) = m(x, y) for all y ∈ Q. The
other equality follows by a similar argument. �

We now find the structural constants of the multiplication mt. From the formula for mt,
we have: mt(pkuplu

∗, pk′upl′u
∗) = ϕ−1(pkutplu

∗
tpk′utpl′u

∗
t ). By arguments similar to those

that lead to (11), we have

pkutplu
∗
tpk′utpl′u

∗
t = γk

′l′

kl (t)pkutpl′u
∗
t , with γk

′l′

kl (t) =
ϕ(pkutplu

∗
tpk′utpl′u

∗
t )

ϕ(pk)ϕ(utpl′u∗t )
.

So we obtain:
mt(pkuplu

∗, pk′upl′u
∗) = γk

′l′

kl (t)pkupl′u
∗.

In the case when a = 1
n
In, so ut = (ukl(t))1≤k,l≤n are all Hadamard matrices, we have

γk
′l′

kl (t) = n2τ(pkutplu
∗
tpk′utpl′u

∗
t ) = n

ukluk′l′
uk′lukl′

. It follows:

Proposition 5.3. Consider a continuous family of Hadamard matrices ut = (ukl(t))1≤k,l≤n,
t real. Then the following is a parametric family of associative multiplications of Mn(C):

mt(pkuplu
∗, pk′upl′u

∗) = γk
′l′

kl (t)pkupl′u
∗, where γk

′l′

kl (t) = n
ukl(t)uk′l′(t)

uk′l(t)ukl′(t)

We now observe that certain families of Hadamard matrices, which depend linearly on
a parameter λ ∈ T, yield multiplications mλ linear in λ, λ̄. This is somewhat surprising, as
the formula for the structural constants γk

′l′

kl (λ) of mλ involves products of four entries of u.
We first recall the family of complex Hadamard matrices of order 4 found by Haagerup

in [3]:

F4(λ) =
1

2


1 1 1 1
1 −1 λ −λ
1 1 −1 −1
1 −1 −λ λ

 , λ ∈ T

We also recall the following family of complex Hadamard matrices of order 7 found by
Petrescu in [11]. Let w = cos2π

6
+ isin2π

6
and let

P7(λ) =
1√
7



λw λw4 w5 w3 w3 w 1
λw4 λw w3 w5 w3 w 1

w5 w3 λw λw4 w w3 1

w3 w5 λw4 λw w w3 1
w3 w3 w w w4 w5 1
w w w3 w3 w5 w4 1
1 1 1 1 1 1 1


, λ ∈ T (12)
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Proposition 5.4. If uλ = F4(λ) or uλ = P7(λ) (λ ∈ T), then the parametric family of
associative multiplications mλ associated to uλ, as in Proposition 5.3, is of the form

mλ = m+ (λ− 1)m′ + (λ̄− 1)m′′, λ ∈ T

where m is the canonical matrix multiplication and m′,m′′ are associative matrix multiplica-
tions.

Proof. To show that mλ can be expressed as m + (λ − 1)m′ + (λ̄ − 1)m′′, it is enough to

show that none of the coefficients γk
′,l′

k,l (λ) contain λ2 or λ̄2. This is clear, since the families
of Hadamard matrices above have the property: no single row or column contains multiples
of both λ and λ̄, and if ukl(λ) and uk′l′(λ) are both multiples of λ (respectively λ̄), then so
are ukl′(λ) and uk′l(λ).

The fact that m′,m′′ must be multiplications follows by writing the associativity of mλ

and identifying the coefficients of λ2, λ̄2, which are linearly independent of 1, λ, λ̄ for λ ∈ T.
�

Remark 5.5. The same holds true for the deformation of multiplication arising from the
twisted a-Hadamard matrices from Example 4.8. It is also true for several other known linear
parametric families of Hadamard matrices.

Remark 5.6. If we use λ̄ = 1/λ, we can write λmλ in the form A+Bλ+Cλ2, with λ ∈ T.
It easily follows that A+Bt+Ct2 is an associative multiplication for any parameter t. Note
that A and C, but not B, are also associative multiplications (for the examples above).
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