
UNIX and C
Michael A. Saum

University of Tennessee

Department of Mathematics

UNIX and C – p.1/49

Overview
• Why UNIX?
• Choosing an Editor
• The Shell Environment
• Directories, Files, and Processes
• Secure Shell
• Example 1: Basic and Simple
• Example 2: I/O
• Example 3: Dynamic Memory Allocation
• Example 4: Using a Makefile
• C, MATLAB, and FORTRAN

UNIX and C – p.2/49

Why UNIX?
• The best programming environment for C and

FORTRAN programming.
• Access to full LATEX, MATLAB, MAPLE

capabilities.
• Not susceptible to Windows virii (87% of all

reports of infections during 2002 concerned
Windows 32 viruses.)

• A well-patched and well-maintained Unix system
is very well-secured against viruses.

• Secure access to fast machines.
• GUI (Graphical User Interface).

UNIX and C – p.3/49

Choosing an Editor
• vi or vim: I use this editor because:

• I’m used to it and comfortable with the
command syntax.

• The program itself loads quickly.
• All UNIX machines have vi.
• I don’t care about GUI.

• emacs: GUI, extremely configurable. There is a
learning curve here as with vi.

• pico: Plain text editor, same interface as pine
(e-mail client). Non-GUI.

• xedit: Plain GUI text editor.
• Choose One!

UNIX and C – p.4/49

The Shell Environment
• The shell is the program that is running and

interpreting your commands when you open a
terminal window.

• There are various shells available, zsh is the
default for most users in the Math Department.
Other shells include csh, bash, and ksh.

• The environment is a collection of environment
variables which aid the shell in identifying
defaults for various application programs.

• To see what environment variables are defined,
type the command env.

• To get out of the shell, type exit.

UNIX and C – p.5/49

The Shell Env., contd.
• To add your own environment variables, you can

create (using your favorite editor) a file in your
home directory named .zshrc

• An important environment variable one should
set is the PRINTER environ-
ment variable. Add the following line to .zshrc:

export PRINTER=A001
• Other printers commonly used are A107, A317,

and A317-duplex.
• One can write scripts which utilize what is called

a shell programming language; different shells,
different syntax. Access to environment variables
is available.

UNIX and C – p.6/49

Directories
• All UNIX directory structures are tree structures

and have the following directories in common:
/ The root directory

/bin Commands needed for minimal system operability

/etc Critical startup and configuration files

/lib and /usr/lib Libraries for the C compiler

/usr/include C Header files

/tmp temporary file space (non-permanent!)

/home yours and others home directories

... many more!

• Directories are considered to be files of a special
type.

• Allways know where you are in the tree!

UNIX and C – p.7/49

Directory Commands
Managing directories is essential to productive
programming on UNIX. Note: Use the man command when you don’t know

exactly how a command works.

Command Description Common options

pwd Print Working Directory see man pages

mkdir Make a directory see man pages

rmdir Remove an empty directory see man pages

cd Change to a directory no options - returns to home directory; cd -

returns to directory you last issued cd; cd ..

returns to the next higher hierarchial directory

level

ls List directory contents see man pages, ls -alrt lists directories

with maximum information on files, in reverse

time sorted order

du List directory disk useage see man pages, du -H displays disk useage in

Human readable form

UNIX and C – p.8/49

Regular Files
• Regular files are just a bag o’ bytes.
• Regular hidden files begin with a . (for example,
.zshrc)

• * and ? are any and single wildcard characters
and can be used in any file name pattern (they are
expanded by the shell). For example *.c would
match any files that have a .c extension.

• There are two types of regular files, binary and
ASCII.

• file file name will tell you information
about what type of file file name is.

UNIX and C – p.9/49

Files, contd.
• Common Extensions

Binary executeables, *.o, *.dvi, *.gz, *.z,

*.tar, image files, sound files, movie files, · · ·

ASCII Text files, shell command scripts, *.c, *.h,

*.m, *.f, .*.cpp, *.ps, *.pdf,*.tex,

*.html, · · ·

• If you bring a file up in your favorite text editor
and it looks like garbage, it is probably a binary
file. Exit without saving.

UNIX and C – p.10/49

File Commands
• Know the options available for each command

before using the command.
• File Commands

Command Description Common options

ls List file sizes see man pages; ls -l

rm Remove files see man pages; WARNING: This
really removes files from the sys-
tem!

tar Archive files and directories

into single file

see man pages

gzip Compress file see man pages; Saves disk space!

zip/unzip Combo of tar and gzip see man pages; Saves disk space!

grep Search file for text pattern see man pages; Very useful!

find Find files which meet some

criteria

see man pages; Very useful!

UNIX and C – p.11/49

Processes
• Any program that is running in UNIX is

considered to be a process.
• The operating system determines what process

uses the CPU and other resources at what time.
• The command top will provide one with a

continuous updated display of system resource
utilization (i.e., why is my program running so
slow).

• The command ps tells one which processes are
currently running under the current shell.

UNIX and C – p.12/49

Processes, contd.
• Associated with each process is a process id

number (PID), which are displayed from both top
and ps.

• To stop a runaway process, use the command
kill -9 PID .

• Another nice command is pstree , which
provides a different picture of the processes
running than either top or ps.

UNIX and C – p.13/49

Misc. UNIX Commands
• lpr is the command which prints files to a

printer.
• Postscript files print fine on all printers in the

Math Department.
• Raw text files sometimes print poorly on our

printers, it is better to convert to postscript first or
use a2ps or enscript or mpage to print.

• Use acroread to view *.pdf files.
• Use the man pages and the internet to find out

more information on UNIX commands.
• Use cat to type an ASCII file to the display.
• Use more to view an ASCII file one screen at a

time, q quits more. UNIX and C – p.14/49

Secure Shell
• SSH allows one to move securely from one

machine to another with a single login. The only
way to remotely log into Math Department
machines is through ssh. The only two
machines which allow remote access are
goliath.math.utk.edu and
mathsun1.math.utk.edu.

• scp allows one to copy file(s) from one machine
to another.

• sftp also allows one to copy file(s) from one
machine to another.

• Other fast machines in the Math Dept are
agnesi, fubini, fatou, and turing.

UNIX and C – p.15/49

Secure Shell, contd.
• ssh configuration (One time only)

1. ssh-keygen Generate’s unique key,
requires passphrase.

2. Ensure that the following files are in /̃.ssh2
subdirectory: authorization and
id dsa XXXX a.pub, where XXXX may
be 2048 or 1024.

3. authorization should contain the line:
key id dsa XXXX a.pub

UNIX and C – p.16/49

Secure Shell, contd.
• You should ensure that the above two files in your
/̃.ssh2 subdirectory are copied to your
/̃.ssh2 subdirectory on mathsun1 (currently
filesystems are not shared between mathsun1
and the rest of the department machines.)

• After Logging into a Math Department UNIX
machine, open a terminal window and type:
ssh-add. You will be prompted for a
passphrase and should enter the passphrase you
entered when you ran ssh-keygen.

UNIX and C – p.17/49

Secure Shell, contd.
• As long as you are logged onto the machine, you

may jump to any other machine in the Math
Department by just typing:

ssh machine name .
• OpenSSH issues. There are some incompatibilites

between different software implementations of
ssh, the main problems coming with the
OpenSSH implementation. Beware! (Contact Ben
Walker or myself if you are running into
problems here.)

UNIX and C – p.18/49

Algorithms and Language
Choice

• It is always wise to spend time before programming to determine the algorithms to be

implemented and the language to implement them in.

• If one has quick what if programming, then usually MATLAB is the best choice.

• If one has vector or matrix intensive work, MATLAB may be the best choice.

• If one desires nice integrated graphics capability, MATLAB may be the best choice.

• If one has to optimize for speed or memory, then C or FORTRAN is probably the best

choice.

• If one has to link with other libraries and applications, C is probably the best choice.

• If one has to have the program work on a wide variety of platforms, C is probably the best

choice.

• Choose wisely!

UNIX and C – p.19/49

Program Organization
• One has to determine a priori the general overall

structure of a program.
• Every program has a main function or entry point.
• For most computational programming projects,

top-down programming as opposed to object
oriented programming is preferred.

• Modularize your program! It is much easier to
debug five lines of code in a subroutine as
opposed to debugging 100 lines of code in the
main routine.

• Be consistent in naming of variables, use variable
names which make sense.

• Do not be afraid to comment your code.
UNIX and C – p.20/49

Managing the Projcet
• Keep separate programs in separate directories.
• Archive older versions of your program so if you

have to retrieve an earlier version, you can.
• Reuse code you have written before when you

can.
• One can use a2ps , enscript , or mpage to

format and print your source code.

UNIX and C – p.21/49

Edit-Compile-Run
• The Edit-Compile-Run cycle is very familiar to

all programmers.
• Make sure you are testing against problems

where you know what the solution should be.
• Modularization makes benchmarking small

segments of code much easier.
• No program ever works the first time.

UNIX and C – p.22/49

Example Problem
• Suppose one is faced with the question:

What is the distribution of dominant
eigenvalues for Hilbert Matrices?

• This question serves as an excellent starting point
to illustrate application development along with
how to do different tasks in the C language.

• The approach here will be to utilize the Power
Method to determine the dominant eigenvalue
and associated eigenvector for a given matrix A.

UNIX and C – p.23/49

Power Method
Require: Square Matrix A : n × n.

Require: Starting Vector X0 : 1 × n.

Require: Tolerance ε, Maximum number of iterations M .

X = X0

for (i = 0; i < M ; i + +) do
Z = AX

s = ||Z||

Z = (1/s)Z

if (||Z − X|| < ε OR ||Z + X|| < ε) then
EXIT LOOP

end if
X = Z

λ = Z
T

AZ

ZT Z

end for
OUTPUT: Dominant eigenvalue λ, associated eigenvector X .

UNIX and C – p.24/49

Example 1: Basic and Simple
• The first step is to ensure that one can calculate

the scaler vector product of two vectors. This
code is shown in ex1.c, the listing of which is
included at the end of this presentation.

• To compile ex1.c,
gcc ex1.c -o ex1

will produce an executeable file named ex1.
Note that if the -o ex1 is not present, then the
executeable will be named a.out by default.

• To run the program
./ex1

UNIX and C – p.25/49

Example 1: Comments
• Lines 1-8 are comments.
• Lines 11-12 includes provide standard definitions

and declarations for any C program.
• Line 15 is necessary for any standalone C

program.
• Lines 18-22 declare and initialize local variables

used in function main. If these lines were placed
before line 15, they would be considered global
variables and are visible from within any function
defined in ex1.c.

UNIX and C – p.26/49

Example 1: Comments, contd.
• Lines 20-21 define two vectors of length 10. In

C, indexing to vector elements begins with 0
(contrast to MATLAB and FORTRAN where
indexing begins with 1).

• Thus, to index over all elements in the vectors
(line 28), the range of the i values in the for loop
ranges from 0 to 9 (10-1).

• Line 25 illustrates how to print a character string.
• Lines 28-30 illustrate the basic for loop. Note

that Line 29 is equivalent to the statement
a = a + c[i]*d[i];

UNIX and C – p.27/49

Example 1: Comments, contd.
• In line 33, the %g format indicates that one is not

too particular about how the number a is to be
printed out. Other formats are %e (exponential)
and %f (single precision floating point) and %d
(integer), with various modifiers to indicate width
and how many decimal places.

• In line 33, the \n format specification indicates
that a newline is to be introduced in the output.

• Line 36 ends the program. By convention, if one
returns a number other than 0, the program ex1
is assumed to have not ended in a normal fashion.

UNIX and C – p.28/49

Example 2: I/O
• Now we will modify ex1.c to produce ex2.c,

which illustrates how modifying existing code
can help to make the program more useful.

• Here we will add the following functionality to
our program:
• Read in Matrix and Vector from input data

file.
• Define and use functions in a modular fashion.
• Perform Matrix Vector Multiply.

UNIX and C – p.29/49

Example 2: Comments
• By creating a separate directory ex2 with the

same parent directory that ex1 has, one can copy
ex1.c in ex1 to ex2.c in ex2. Thus, one can
use ex1.c as a template upon which
modifications will be made to produce ex2.c.

• Lines 15-17 define Function Prototypes which
describe the general form of these functions
which will be detailed later in ex2.c. These
declarations should go before the main function
declaration. Their purpose is to allow the C
compiler to detect errors in passing parameters or
return values during the compilation process.

UNIX and C – p.30/49

Example 2: Comments, contd.
• Line 15 declares a prototype which does not

return any value void, but passes three
arguments to a function called ReadInp.
Arguments 2 and 3 are passed as pointers, i.e.,
addresses of the variables to be passed. Note that
in function prototype declarations, there is no
need to give variable names, just the types of the
return values and the arguments.

• Note that in line 16, the function MyDotProd
returns a value of type double.

• Line 24 declares a two dimensional array or
matrix A which is dimensioned 4 × 4.

• Line 32 calls the function ReadInp which is
defined in Lines 54-70.

UNIX and C – p.31/49

Example 2: Comments, contd.
• Line 35 calls the function MatVecMult which

is defined in Lines 91-102.
• Lines 38-45 prints out the results. Note the width

and format specifiers in the printf statements.
• Note that the function MyDotProd has both a

function prototype and the source code is present
(Lines 76-86), but is never called from anywhere.
This is ok, because we will be using it later and it
made sense to modularize after working on
ex1.c.

UNIX and C – p.32/49

Example 2: Comments, contd.
• In any C program, there are three files which are

always set up: stdin, stdout, stderr.
• By default, scanf reads input from stdin and
printf prints output to stdout. The shell
assigns stdin to the keyboard and stdout to
the screen.

• These defaults can be changed at runtime through
what is called redirection.

• To compile ex2.c,
gcc ex2.c -o ex2

UNIX and C – p.33/49

Example 2: Comments, contd.
• To run ex2, assuming an input file has been

created called ex2.inp (listing provided in
handouts)

./ex2 < ex2.inp > ex2.out
will read in data from ex2.inp and write all
output to a file ex2.out.

• This allows great flexibility in redirecting stdin
and stdout.

• Modularization is good.
• It is a good idea to make the main program as

clean and readable as possible.

UNIX and C – p.34/49

Example 3: Memory Allocation
• Now we will modify ex2.c to produce ex3.c

adding more functionality.
• Here we will add the following capabilities to our

program:
• Control Input File.
• Introduce global variables.
• Two Dimensional arrays.
• Dynamically allocate memory for variables.

UNIX and C – p.35/49

Example 3: Comments
• In the previous example, two dimensional arrays

were clumsy to deal with, i.e., the arrays were
dimensioned in the main function with a fixed
size.

• This example illustrates how one can dimension
any variable storage only when one needs it,
which allows for one to more closely manage
variable storage.

• In addition, if one has a function which requires a
long argument list, the code can usually be made
more manageable by turning local variables into
global variables.

UNIX and C – p.36/49

Example 3: Comments, contd.
• To compile ex3.c,

gcc -o ex3 -lm ex3.c
• The -lm option to gcc indicates that the math

library should be made available (that is where
the sqrt and pow functions reside).

• Note that man pages exist for most C built-in
functions.

• There is no need to redirect the input file to
stdin as the code is reading in a specific file
name.

UNIX and C – p.37/49

Example 3: Comments, contd.
• Line 13 specifies the math.h file should be

included (needed for sqrt and pow functions).
• Lines 21-26 declare global variables, which are

visible from within any function defined in
ex3.c.

• Line 21 declares a variable of type FILE *, i.e.,
a pointer to a file.

• Note the assignment of a variable to NULL is
basically setting it equal to zero.

• One can think of & as the address-of operator in
C.

UNIX and C – p.38/49

Example 3: Comments, contd.
• Lines 81-83 make a call to malloc which

requests a certain chunk of memory from the
system.

• Lines 16,39, and 68 all declare ReadInp to be a
function which does not return anything and
nothing is passed to it as arguments.

• Lines 54-55 use sqrt and pow functions.
• Lines 72-75 test to see if the input file can be

opened. If it can’t be opened for input, the
program stops completely.

UNIX and C – p.39/49

Example 3: Comments, contd.
• Line 78 reads the first data item in the input file

and stores in the variable n. Note that
fscanf(stdin, ...) is the same as
scanf(...).

• Note that the call to allocate storage for the two
dimensional array A is being requested for n2

elements, each of the storage size associated with
the data type double, or 8 × n2 bytes.

• Lines 88,127 indicate how the one dimensional
vector A is utilized as a two dimensional array,
indexed by i and j.

UNIX and C – p.40/49

Example 4: The Power Method
• Now we will modify ex3.c to produce ex4.c

adding more functionality.
• Here we will add the following capabilities to our

program:
• The Power Method algorithm implementation.
• Use of Makefile.

UNIX and C – p.41/49

Example 4: Comments
• Lines 20-35 have additional function prototypes

and global variables defined.
• Line 24 defines an output file where all stdout

output will be directed.
• Line 44-47 open the log file for output.
• Lines 56-79 define an outer loop defining what

size matrix to deal with.

UNIX and C – p.42/49

Example 4: Comments, contd.
• Lines 59-63 set up the Hilbert Matrix A. Note in

line 61 how the integer result (i + j + 1) is being
cast as a double.

• Line 70 calls a function to perform the Power
Method on A, returning how many iterations it
took to achieve convergence.

• Lines 139-174 define an inner loop with a
while loop construct. The only way execution
gets out of this loop is if the while criterion is
satisfied (max iterations exceeded) or if
convergence is obtained (lines 162-164).

UNIX and C – p.43/49

Example 4: Comments, contd.
• In line 163, the break command exits the most

recent loop.
• The variable lambda (declared local to function

main in line 41) is passed to PowerMethod not
by value but by the pointer to its storage using the
& operator. When it is modified in line 172, it is
changed not by value but by the pointer *
operator. Thus, on return from PowerMethod,
lambda has a new value and the local variable has
been changed by the function.

UNIX and C – p.44/49

The Makefile
• Use of a Makefile simplifies the Edit-Compile

cycle by defining a set of rules which when
coupled with dependcies of different source files
can determine what has change and only
recompile those programs.

• Makefiles are essential for large programming
projects with multiple source code files.

• With a Makefile, compilation can be initiated
without leaving the vi or emacs editors. This
speeds up the Edit-Compile-Run cycle
tremendously.

UNIX and C – p.45/49

Makefile, contd.
• When writing a Makefile, realize that anything

that is indented must be indented with a tab and
not spaces.

• You may use the following Makefile as a
template for simple programming projects.

• If you have a Makfile, all one has to do is type
make to recompile the program. If one wants to
remove all object files (*.o) and executeables,
type make clean .

UNIX and C – p.46/49

Example 4: Makefile
#

Makefile

#

#

5 SRC = ex4.c

LIBS = -lm

CFLAGS = $(INCS)

CC = gcc

EXECUTABLE = ex4

10 OBJS = ex4.o

ex4 : $(OBJS)

$(CC) $(CFLAGS) -o $(EXECUTABLE) $(OBJS) $(LIBS)

15 clean:

-/bin/rm -f $(EXECUTABLE) $(OBJS)

UNIX and C – p.47/49

C, FORTRAN, and MATLAB
Thanks to Dr. Alexiades, a comparison of the different

syntactical elements of C, FORTRAN, and MATLAB

is provided in the supplemental handout material.

UNIX and C – p.48/49

Summary Remarks
• If you are serious about programming in C,

obtain a good C reference book.
• The definitive book is The C Programming

Language by Brian Kernighan and Dennis
Ritchie (They were instrumental in the writing of
the first C compiler.)

• There are plenty of tutorials and references on the
internet for any issues related to UNIX, C, or
MATLAB.

• The next seminar will discuss what to do with the
data a program generates, i.e., graphical display
and post-processing analysis.

UNIX and C – p.49/49

	Overview
	Why UNIX?
	Choosing an Editor
	The Shell Environment
	The Shell Env., contd.
	Directories
	Directory Commands
	Regular Files
	Files, contd.
	File Commands
	Processes
	Processes, contd.
	Misc. UNIX Commands
	Secure Shell
	Secure Shell, contd.
	Secure Shell, contd.
	Secure Shell, contd.
	Algorithms and Language Choice
	Program Organization
	Managing the Projcet
	Edit-Compile-Run
	Example Problem
	Power Method
	Example 1: Basic and Simple
	Example 1: Comments
	Example 1: Comments, contd.
	Example 1: Comments, contd.
	Example 2: I/O
	Example 2: Comments
	Example 2: Comments, contd.
	Example 2: Comments, contd.
	Example 2: Comments, contd.
	Example 2: Comments, contd.
	Example 3: Memory Allocation
	Example 3: Comments
	Example 3: Comments, contd.
	Example 3: Comments, contd.
	Example 3: Comments, contd.
	Example 3: Comments, contd.
	Example 4: The Power Method
	Example 4: Comments
	Example 4: Comments, contd.
	Example 4: Comments, contd.
	The Makefile
	Makefile, contd.
	Example 4: Makefile
	C, FORTRAN, and MATLAB
	Summary Remarks

