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Abstract. We consider the growth of an epitaxial thin film on a continuously
supplied substrate using both the Burton-Cabrara-Frank (BCF) mean-field
model and kinetic Monte-Carlo (KMC) simulation. Of particular interest are
effects due to the finite size of the deposition zone, which is modeled by im-
posing an up- and downwind adatom density equal to the adatom density on
an infinite terrace in equilibrium with a step. For the BCF model, we find this
scenario admits a steady-state pattern with a specific number of steps sepa-
rated by alternating widths. The specific spacing between the steps depends
sensitively on the processing speed and on whether the number of steps is odd

or even, with the range of velocities admitting an odd number of steps typi-
cally much narrower. These predictions are only partially confirmed by KMC
simulations, however, with particularly poor agreement for an odd number of
steps. To investigate further, we consider alternative KMC simulations with
the interactions between random walkers on the terraces neglected so as to
conform more closely with the mean field model. The latter simulations also
more readily allow one to disable the step detachment mechanism, in which
case they agree well with the predictions of the BCF model.

1. Introduction. The epitaxial growth of thin films is an increasingly sophisti-
cated and much studied process where one or more layers of crystalline material
are deposited on an existing crystal. As demand for the resulting materials grows
it seems likely that the means by which the films are produced will gradually shift
from batch to continuous processing, where substrate in the form of wire or tape is
continuously pulled through a fixed deposition zone (Fig. 1). For example, continu-
ous processing is currently used to produce large quantities of superconducting wire
[3, 5, 12]. It is natural to consider this process, which has previously been referred
to as reel-to-reel processing or directional epitaxy [9], in the laboratory frame of
reference, where the mean surface morphology achieves a steady-state. In the con-
text of most existing analysis and simulation of epitaxial growth—which assumes
an infinitely extended substrate, some form of periodic boundary conditions, and a
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quasistatic approximation—bulk motion of the film plays no role. When one con-
siders finite size effects, however, we show that the motion of the film relative to the
boundaries of the deposition zone can significantly affect surface patterns. These
effects will be especially pronounced for small deposition zones or within boundary
layers near the ends of larger deposition zones.

Deposition Zone

V

2L

Figure 1. Sketch of Reel-to-Reel Processing System (side view).
The substrate is being pulled to the left with velocity V and moves
through a fixed deposition zone of length 2L while being exposed to
a uniform deposition flux F . In a steady (or approximately steady)
state, this flux will drive the surface morphology to the right, rela-
tive to the film, at a rate that matches the pulling velocity, leaving
it stationary (or approximately stationary) in the laboratory frame
of reference.

Mathematical models of epitaxial films have taken many forms. We shall consider
two of the more common approaches—a mean field approach, referred to as the
Burton-Cabrera-Frank (BCF) model, and a Markov chain approach, referred to as
kinetic Monte Carlo (KMC). In both of these approaches, the surface of the film
is assumed to grow in discrete layers with a thickness that corresponds to a single
unit cell, often a single atom, of the crystal. Normally, several layers of growth
may be exposed simultaneously and it is the patterns formed by the boundaries of
these layers that are of principal interest. Material is added very slowly by various
deposition processes, allowing time for it to diffuse to the steps on the surface and
incorporate itself into the crystal in a coherent pattern. In KMC, this too is modeled
discretely, with atoms arriving one at a time according to some stochastic process
and the resulting random walkers are referred to as adatoms. In the BCF models,
the deposition is treated in an average sense and one tracks only the mean density of
adatoms as a piecewise smooth function of position. These models will be introduced
more fully in Sections 2 and 3 below. In work closely related to the present study,
Schulze [9] has used both types of models to examine the morphological stability
and fluctuations of the boundary of a single monolayer of growth during directional
epitaxy. We extend this work to study the influence of processing speed in a multi-
step scenario, but restrict our analysis to 1 + 1 dimensional growth (i.e., a one
dimensional surface plus the growth direction.)

More specifically, we study uniform deposition of atoms at rate F on a train of n
steps being pulled with a fixed velocity V through a deposition zone of length 2L. In
a steady (or approximately steady) state, this flux will drive the surface morphology
to the right, relative to the film, at a rate that matches the pulling velocity, leaving
it stationary (or approximately stationary) in the laboratory frame of reference.
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Our interest is in finite-size effects, which we model by imposing an equilibrium
concentration of adatoms on the up- and down-stream ends of the deposition zone.
Our principal observation is that this induces an alternating step-spacing pattern,
with two characteristic widths that vary with the pulling velocity. In contrast, one
normally only considers uniformly spaced steps in an infinitely extended system.

In Section 2 we begin with the BCF model, determining the allowed steady-
states and their linear stability. In Section 3, we introduce the KMC model and
corresponding numerical simulations along with modifications to the KMC model
to produce simulations that more accurately reflect assumptions inherent to the
mean field approach and that, therefore, give much better agreement with the BCF
model. We conclude in Section 4.

2. Mean Field Model. The BCF [1] model is a mean-field model formulated in
terms of an adatom density ρi(x, y, t) on each of several discrete terraces i = 1, 2, . . . ,
separated by steps, which are modeled as continuous, smoothly varying curves in the
plane. Typically, the adatom density is small, on the order of 10−7–10−5 adatoms
per unit area. Despite this fact, the number density approximation has received
wide acceptance and seems to offer insight into some pattern formation processes,
such as the step-meandering instability [2].

x = Lx = −L ξ1(t) ξ2(t) ξ3(t) b b b ξn−2(t) ξn−1(t) ξn(t)

ρ0 ρ1 ρ2

ρn−2 ρn−1 ρn

V

h = 0

h = n

b b b

Figure 2. Geometry: n steps, n + 1 terraces (side view). The
steps are descending to the right with their positions measured in
the laboratory frame, and the pulling velocity V is in the opposite
direction.

Fig. 2 illustrates the basic system geometry we consider. Notice that the positions
of the steps are measured in the stationary frame of the deposition zone. Our focus
here is on determining steady states of the 1 + 1 dimensional model. After some
simplifications of the 2+ 1-dimensional model as presented in Schulze [9], we arrive
at:

∂tρj − V ∂xρj = D∂2
xρj + F, ξj < x < ξj+1, j = 0, . . . , n (1)

±D∂xρ
∣

∣

±
± (V + ∂tξj)ρ

∣

∣

±
= k± (ρ − ρe)

∣

∣

±
, x = ξj(t), j = 1, . . . , n (2)

ρn = ρ0 = ρe, x = ±L (3)
(

ρa − [ρ]
+
−

)

(V + ∂tξj) = D [∂xρ]
+
−

, x = ξj(t), j = 1, . . . , n, (4)

where ξj denotes the position of terrace boundaries, ρa is the density of lattice sites
on the surface, and V , F , L and n are parameters identified in the introduction.
The equilibrium adatom density ρe is the expected adatom density on a terrace in
equilibrium with a step, a state we take as an approximate model for the up- and
down-wind conditions in a continuous processing apparatus. The parameters D and
k± specify the rate of surface diffusion and attachment rates at the right, k+, or left,
k−, side of a step. In general, these asymmetric step attachment parameters model
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step edge barriers [6, 8, 10]. The case k+ > k− leads to the much-studied, two-
dimensional meandering instability [2]; the case k+ < k− is known to give rise to a
step-bunching instability [8, 10], where steps combine to form multi-step boundaries.
We take k+ = k− = D, where D is the adatom terrace diffusion coefficient in the
BCF model. Finally, we discard all terms involving step curvature and do not have
any terms representing island nucleation, adatom mobility along step edges, or step
edge kink effects. We will explore the limitations of these assumptions below.

We use a quasistatic approximation which assumes the adatom density equili-
brates fast compared to the motion of the steps. This regime is characterized by
small F and V , which then results in small ρ and, once quasiequilibrium has been
established, slow variation in time. Accordingly, we neglect terms of second order of
smallness in (1)–(4). Rewriting ρ− ρe −→ ρ, and scaling lengths so that the lattice
spacing a = 1 and time so that D = 1, we arrive at the following 1-D continuum
system:

0 = ∂2
xρj + F, ξj < x < ξj+1, j = 0, . . . , n (5)

∂xρj|+ = ρj |+, at x = ξj , j = 1, . . . , n (6)

−∂xρj−1|− = ρj−1|−, at x = ξj , j = 1, . . . , n (7)

ρn = ρ0 = 0, at x = ±L, respectively (8)

V + ∂tξj = ∂x (ρj − ρj−1) , at x = ξj , j = 1, . . . , n. (9)

To avoid overhanging steps, we require the step positions ξ ≡ {ξ1, ξ2, . . . , ξn} to
satisfy

−L < ξ1 < ξ2 < · · · < ξn < L.

Equation (5) admits solutions of the form

ρj(x, t) = Aj(ξ(t)) + Bj(ξ(t))x −
Fx2

2
, j = 0, 1, . . . , n. (10)

Substitution of (10) into (5)–(8) gives the algebraic system:
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. (11)

Note that for boundary conditions other than Dirichlet (8), such as Neumann or
mixed, only the first and last components of the right hand side of (11) need be
modified. The block diagonal structure of the system implies that the adatom
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density profile coefficients {Aj , Bj}
n
j=0 are given by:

Aj =



























FL(2ξ1 + ξ2
1 + L(1 + ξ1))

2(1 + ξ1 + L)
, j = 0

F (ξj+1 − ξj(ξj+1 + 1))

2
, j = 1, . . . , n − 1

−FL(2ξn − ξ2
n + L(ξn − 1))

2(1 − ξn + L)
, j = n

(12)

Bj =



























F (ξ2
1 + 2ξ1 − L2)

2(1 + ξ1 + L)
, j = 0

F (ξj + ξj+1)

2
, j = 1, . . . , n − 1

F (L2 + 2ξn − ξ2
n)

2(1 − ξn + L)
, j = n.

(13)

Equation (9) then takes the form of a nonlinear system of ordinary differential
equations for the step positions ξ(t):

∂tξj = Bj(ξ) − Bj−1(ξ) − V, j = 1, . . . , n. (14)

2.1. Steady State Behavior. We seek steady-state solutions of (14) by setting
∂tξj = 0, giving

Bj(ξ) − Bj−1(ξ) − V = 0, j = 1, . . . , n. (15)

Equation (15) admits solutions of the form:

ξj =











−L + δL +
j

2
δ0 +

(

j

2
− 1

)

δ1, j even

−L + δL +
j − 1

2
δ0 +

j − 1

2
δ1, j odd

j = 1, . . . , n. (16)

We refer to this Ansatz as a pairwise step pattern (PSP), illustrated in Fig. 3
for n = 6. Note that the step-widths (δ0, δ1) repeat throughout the interior of
the domain, and that when δ0 = δ1, one has equidistant step spacing, neglecting
the boundary terrace widths. In addition the following global constraint must be
satisfied:

2L =







δL +
n

2
δ0 +

(n

2
− 1

)

δ1 + δR, n even

δL +
n − 1

2
δ0 +

n − 1

2
δ1 + δR, n odd.

(17)

Intuition suggests that PSP’s can be explained qualitatively as follows. In the
case of symmetric attachment parameters, k+ = k−, half of the atoms deposited on
each terrace will attach to the forward/backward step edge. The speed of a step is
therefore proportional to one half the sum of the lengths of the terraces on either
side. For all steps to have the same speed, the interior terraces must either all have
the same size or alternate in size. The boundary terraces have somewhat different
boundary conditions and therefore need not conform to this pattern.

Using (13) and (15) gives the following equations for the step positions ξ (n ≥ 3):

V =



























F

2

[

(ξ2 − ξ1) + (ξ1 + ξ2)L + ξ1ξ2 + L2

1 + L + ξ1

]

, j = 1

F

2
(ξj+1 − ξj−1) , j = 2, . . . , n − 1

F

2

[

(ξn − ξn−1) − (ξn−1 + ξn)L + ξn−1ξn + L2

1 + L − ξn

]

, j = n.

(18)
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x = −L ξ1(t)

δL

ξ2(t)

δ0

ξ3(t)

δ1

ξ4(t)

δ0

ξ5(t)

δ1

ξ6(t)

δ0

x = L

δR

V

h = 0
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Figure 3. Pairwise Step Pattern for n = 6. Interior terrace widths
appear in an alternating fashion.

For n odd, substituting (16) into (18) gives

V =



























F

2

(

δ2
L

δL + 1
+ δ0

)

, j = 1

F

2
(δ0 + δ1) , j = 2, . . . , n − 1

F

2

(

δ2
R

δR + 1
+ δ1

)

, j = n.

(19)

For n even, δL = δR (due to symmetry), and substituting (16) into (18) gives

V =











F

2

(

δ2
L

δL + 1
+ δ0

)

, j = 1, n

F

2
(δ0 + δ1) , j = 2, . . . , n − 1.

(20)

Following the same procedure for n = 1 one obtains

V =
F

2

(

δ2
L

1 + δL

+
δ2
R

1 + δR

)

, (21)

and for n = 2 one obtains

V =
F

2

(

δ2
L

1 + δL

+ δ0

)

, j = 1, 2. (22)

These conditions place constraints on the step positions (or, equivalently the step
spacings) by forcing all of the steps to move, relative to the substrate, at a velocity
that matches the pulling velocity V .

Solving (19) one obtains for n odd

δ1 =
δ2
L

δL + 1
, (23)

δ0 =
δ2
R

δR + 1
, (24)

and solving (20) for n even

δ1 =
δ2
L

δL + 1
. (25)

One obtains via telescoping sum of (15) that

V =
Bn − B0

n
. (26)
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Figure 4. Steady-state adatom density profiles ρ(x). Cusps form
at step locations, and the height of the steps (not illustrated) in-
creases from right to left.

This equation is important in that it clearly identifies the relationship between the
number of steps n, the pulling velocity V , and the adatom densities on the boundary
terraces that must be satisfied for steady-state solutions.

Two examples of steady-state adatom density distributions exhibiting PSP’s are
shown in Fig. 4. Note the existence of PSP’s for both n odd and n even and that
the cusps form at step locations while the step heights (not shown) are decreasing
to the right.

The differences between n even and n odd for systems exhibiting PSP’s are
illustrated in Fig. 5. When n is even, steady-state solutions exist for a wide range
of velocities, while for n odd steady-state solutions exist over a very narrow range
of velocities. In addition, for n even there is only one steady-state solution for each
V while for n odd there exist two steady-state solutions for each V .

2.2. Non Steady Behavior. For a single step, the ODE for the step position ξ is

∂tξ =
F

2

(

(L + ξ)2

1 + L + ξ
+

(L − ξ)2

1 + L − ξ

)

− V. (27)

Analysis leads to identification of two equilibrium points (V ∗, ξ̄1), (V ∗, ξ̄2) where

ξ̄1,2 = ±

√

(FL − F − V )(L + 1)(FL2 − V L − V )

FL − F − V
. (28)

These equilibrium points can be expressed in terms of δR as (V ∗, δR,1) and (V ∗, δR,2)
via the formula δR = L− ξ. The stability characteristics of these equilibrium points
are illustrated in Fig. 6.

For the single-step case, the stability of the two solution branches can be under-
stood intuitively from the following argument. Due to the quasistatic evolution of
the adatom density, the δR–V curve will give, to a good approximation, the velocity
of a step relative to the substrate when the step is positioned a distance δR from
the right boundary. As the system slowly evolves toward steady state, the velocity
of the step approaches the pulling velocity V. Suppose the initial δR is perturbed
above the upper branch; the corresponding step velocity will then be faster than the
pulling velocity and this will tend to decrease δR, moving the system toward steady
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(a) δ0(V ), n = 14 (even) (b) δ0(V ), n = 13 (odd)

Figure 5. δ0(V ) relation in the 1-D BCF continuum model with
F = 0.25, 2L = 6000. The range of velocities V for steady-states,
the number of steady-state solutions, and the stability character-
istics of the steady-state solutions depend on whether the number
of steps n is odd or even. Note that for n odd, the upper branch
(solid line) is stable and the lower branch (dashed line) is unstable.

state as indicated by the topmost arrow. A similar analysis reveals the direction
of the three remaining arrows and indicates that the top branch is stable, while
the bottom branch is unstable. This pattern is repeated for larger, odd numbers
of steps and this qualitative argument is supported by the following linear stability
calculations.

Stableb

Unstableb

δR

VV ∗

ξ̄1,δR,1

ξ̄2,δR,2

Figure 6. Stability diagram for n = 1.
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The ODE’s for n ≥ 3 step positions ξ can be written as:

∂tξ = ∂t
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L2 + (ξ1 + ξ2)L + ξ1ξ2 + ξ2 − ξ1

)

2(L + 1 + ξ1)
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2
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...
F (ξn − ξn−2)

2
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2(−L − 1 + ξn)
− V





























.

(29)
The jacobian of the ODE system is thus the tridiagonal matrix:





















−F

2(L + 1 + ξ1)2
F/2

−F/2 0 F/2
. . .

. . .

−F/2 0 F/2

−F/2
F

2(−L − 1 + ξn)2





















=
F
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−(δL + 1)−2 1
−1 0 1

. . .
. . .

−1 0 1
−1 (δR + 1)−2















. (30)

Referring to Fig. 5 (see also Figs. 8,9), one can show that for n even, steady-
states exist for a wide range of velocities, and the Jacobian evaluated at the valid
fixed points has purely imaginary eigenvalues. For n odd, steady-states exist for a
narrow range of velocities, there are two fixed points for each V , and the eigenvalues
of the Jacobian evaluated at the two fixed points have either all negative real parts
(upper branch, solid line) or all positive real parts (lower branch, dashed line).

3. KMC Models.

3.1. 2+1 KMC Model. We employ a standard 2+1 (2D surface with growth in
the third dimension) kinetic Monte Carlo (KMC) model which simulates cube-on-
cube atomistic growth of surfaces with only nearest neighbor interactions consid-
ered. The state of the surface is described by assigning an integer height h(x, y) on
a square grid of dimensions M × N ; atom desorption is not included. We utilize
an in-plane lateral nearest neighbor bond counting model [4] where adatoms hop
(diffuse) to neighboring sites with rates given by

R = K(T ) exp(−∆E/(kBT ))

and the diffusion energy barrier ∆E for each surface atom (adatom) is calculated
by

∆E = Es + nEn,

where Es is a substrate contribution to the energy barrier present at every lattice
location and En is a contribution from each of the lateral nearest neighbors, the
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number of which can vary from one to four. The energy barriers ∆E vary based
on the current surface morphology. The prefactor K(T ) is the hopping attempt
frequency, typically on the order of 1011 − 1013 attempts/second. Thus, if an atom
has an in-plane neighboring atom, it is more tightly bound and it is therefore less
probable that a hopping event will occur.

Following Schulze [9], the present model differs from typical 2+1 KMC models of
atomistic growth in two ways. First, we implement a substrate pulling velocity V
which requires us to shift the substrate in the pulling direction relative to the fixed
deposition zone. Second, instead of imposing periodic boundary conditions in both
the x and y directions, we enforce the equilibrium condition (3) in the x direction
and periodic boundary conditions in the y direction. More specifically, adatoms
hopping out of the deposition zone in the x direction vanish, but are replaced at
the constant rate of Dρe/4 atoms per site per unit of time. Ideally, this boundary
condition, which is meant to model the state of the film outside the deposition zone,
would be enforced in the far-field, but this would slow the simulations by requiring
a larger computational domain in the x direction and complicate somewhat the
analysis presented in the previous section.

Fig. 7(a) illustrates step edge contours for a representative step profile obtained
by running a 2+1 KMC simulation undergoing 500 ML of deposition. In this snap-
shot, PSP is evident. One can also see a small bit of curvature to the step edge
profiles, the presence of which presents a difficulty in obtaining terrace widths for
comparison to the terrace widths obtained with a 1-D BCF model. Fig. 7(b) il-
lustrates step edge contours for a representative step profile obtained by running
a 2+1 KMC simulation undergoing 500 ML of deposition. Running at a velocity
of V = 11.0 sites/sec, 1-D BCF theory predicts that there should be a stable 14
step PSP. However, 2+1 KMC produces a stable 13 step pattern where the last two
steps are bunched together, almost stacked on top of each other.

In order to allow for comparison of 2+1 KMC results with a 1-D BCF model we
proceed in the following manner. Consider an n-step simulation which is run with
a constant pulling velocity V for a long enough time to allow for any transients to
dissipate. We sample K times during the run after the transient period and obtain
height profiles across the domain (i.e., hk(x, y), k = 1, . . . , K.) One can then obtain
effective terrace widths by calculating the level set area for each integer height h and
divide by the constant width of the domain to obtain {wik}

n
i=0, the set of terrace

widths at sample time tk. We then average over space and time the alternating
interior terrace widths to obtain

δ̄0 =



























1

K

K
∑

k=1

2

n − 1

n−1

2
−1

∑

i=0

w2i+1,k, n odd

1

K

K
∑

k=1

2

n

n

2
−1

∑

i=0

w2i+1,k, n even.

(31)

Fig. 8 illustrates 2+1 KMC δ̄0 calculations compared with δ0 calculations for 1-D
BCF steady-states. In these runs, F = 0.5ML/s and L = 165. After 500 seconds
of simulation time running at a fixed velocity V , V is incremented by ∆V = 0.05.
As one can see, while there is agreement in general with the slope of the 2+1 KMC
data when compared to the 1-D BCF calculations, there is not real good agreement
with δ0(V ) as determined by the two different models.
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Figure 7. 2+1 KMC step edge contours (plan view): (a) shows a
snapshot of the edge contours after 1000 seconds of simulation time
for F = 0.5 ML/sec, n = 14, and V = 10.5 sites/sec, exhibiting a
pairwise step pattern. (b) shows a snapshot of the edge contours
after 1000 seconds of simulation time for F = 0.5 ML/sec, n = 13,
and V = 11.0 sites/sec, which does not exhibit a pairwise step
pattern. The 13 step pattern illustrated here is stable in the 2+1
KMC simulations, however 1-D BCF theory predicts that there
should exist a PSP for 14 steps.

There are several factors present in the KMC simulations that are absent from
the BCF model as formulated here, any of which one might suspect is contribut-
ing to the differences outlined above: two dimensional effects such as kinks and
step curvature; adatom interactions (including island nucleation); random fluctu-
ations; other time dependent effects, such as systematic oscillations; and adatom
detachment from step edges. As the modified simulations presented below will
demonstrate, step detachment appears to be the dominant source of disagreement.
It is also clear, however, that island formation would invalidate the BCF analysis
and steps were taken to avoid this regime in the KMC simulations. It is well known,
for example, that when the terrace width is much larger than the mean diffusion
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Figure 8. Comparison between KMC simulations (δ̄0) and 1-D
BCF (δ0) steady state predictions. Each data point represents δ0

averages running at a fixed velocity V for 500 seconds of simulation
time, after which V is incremented by ∆V = 0.05 and a new set of
averages are taken. Note that 2+1 KMC is not in agreement with
1-D BCF steady state predictions over the velocity range simulated.

length of adatoms on a flat surface, islands will form. To keep island nucleation
as low as possible we were restricted to cases with relatively small terrace widths.
Utilizing a small En also helps, as this increases detachment rates and thus reduces
nucleation by breaking up small clusters. Finally, a lower flux F also reduces nucle-
ation, but at the cost of considerably increased simulation time. The various effects
noted above are not, however, independent. The reduced terrace widths needed to
avoid nucleation, for example, enhance the effects of random fluctuations leading to
step collisions with each other and with the boundaries.

3.2. 1-D AAKMC Model. In order to generate KMC data consistent with the
limitations of the continuum model, we target the issues identified in the previ-
ous section. To achieve this goal, we have implemented a 1 + 1 dimensional KMC
model that treats adatom diffusion as a non-interacting random walk on a flat
terrace. The noninteracting feature is especially important for a one dimensional
surface, as adatoms would interfere with one another at a greatly increased rate.
The steps move forward only when an adatom lands in front of the edge (attach-
ment). Steps can move backward for rare events dictated by an independently
controlled detachment rate. This makes controlling detachment easier than in the
standard KMC simulations presented above, where detachment is dominated by
the hopping rate for a singly coordinated atom. If this rate is reduced, it will re-
duce the dimer break-up rate, greatly enhancing nucleation. Thus, an alternative
to the modified approach we present now would be to make a non-nearest neighbor
KMC that is able to distinguish between detachment from a step and dimer break-
up. We adopted non-interacting random walks instead, because it also allows for
1+1-dimensional simulations, eliminating possible step curvature effects and does
not include nucleation. The latter removes the requirement of working with short
terrace widths. The modified model remains time-dependent with random fluctu-
ations. Indeed, the fluctuations of the step positions are greatly enhanced without
the averaging influence of the second surface dimension. As a result, we find that
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we actually need to greatly increase terrace widths to achieve meaningful average
step positions. (This explains why the results for the modified KMC simulations
are for a wide terrace regime, while the results for the conventional scheme were for
a narrow terrace regime; efforts to match the parameters fail for the reasons just
noted.) This type of simulation has been applied previously (see [11]), where it was
referred to as adatom KMC (AAKMC).

Figures 9 illustrate AAKMC δ̄0 calculations compared with δ0 calculations for
BCF steady-states. The AAKMC model used to calculate data used in Fig. 9(a)
includes adatom detachment, while the AAKMC model used to calculate data used
in Fig. 9(b) does not model adatom detachment. In all of these runs, F = 0.25ML/s
and L = 3000, and each velocity was run for 500 simulation seconds. One can clearly
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(a) 1-D AAKMC (with adatom detachment) δ̄0, 1-D BCF δ0
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(b) 1-D AAKMC (without adatom detachment) δ̄0, 1-D BCF δ0

Figure 9. These figures illustrate the different character of 1-D
AAKMC when adatom detachment is (a) included and (b) ex-
cluded from the simulations. Note that the domain width is large
(L = 3000) and that excellent agreement between the two models
is obtained for the case without adatom detachment. Note that 1-
D AAKMC with adatom detachment provides excellent agreement
for N even over approximately half of the range predicted by 1-D
BCF.
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see that PSP is present in the 1-D AAKMC model and agrees well with what is
predicted by the BCF approximation, including the very narrow range of velocities
V for n odd.

4. Summary. The processing scenario considered in this paper differs from that
typically considered in the epitaxy literature in that the film is moving relative
to the deposition apparatus. We have shown that this can result in important
boundary effects that are not captured by the helical boundary conditions—where
the lowest step in the train reconnects with the highest—typically imposed in the
direction of growth. In particular, the mean-field model reveals novel steady-state
solutions with an alternating step spacing that depends on the processing speed V .
With the number of steps n even, these steady states are neutrally stable while for
n odd, two steady-states coexist over a very narrow range of velocities, with one
stable and one unstable.

While the mean-field model gives important insight into this pattern formation, it
was found to give only partial agreement with standard KMC simulations. In order
to narrow the range of causes of the poor quantitative agreement between the two
models, we used a modified 1+1 dimensional KMC with noninteracting adatoms
and controllable step detachment rates. It was found that the modified simulations
agreed well with the continuum theory when detachment was disabled, and agreed
qualitatively with the standard KMC results when detachment was present. It
would be interesting for future work to address this apparent shortcoming of the
mean field model, perhaps by including an “edge atom” density field, as in the work
of E and Yip [7].
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