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Noninvertible circle maps may have a rotation interval instead of a unique rotation number. One
may ask which of the numbers or sets of numbers within this rotation interval may be observed
with positive probability in term of Lebesgue measure on the circle. We study this question
numerically for families of circle maps. Both the interval and “observed” rotation numbers are
computed for large numbers of initial conditions. The numerical evidence suggests that within
the rotation interval only a very narrow band or even a unique rotation number is observed.
These observed rotation numbers appear to be either locally constant or vary wildly as the
parameter is changed. Closer examination reveals that intervals with wild variation contain
many subintervals where the observed rotation numbers are locally constant. We discuss the
formation of these intervals. We prove that such intervals occur whenever one of the endpoints
of the rotation interval changes. We also examine the effects of various types of saddle-node
bifurcations on the observed rotation numbers.

1. Introduction

The rotation interval (see definition and references
below) has been the chief object of study when one
considers the topological properties of noninvertible
circle maps. Results about the interval show that
the interval predicts the existence of a multitude
of orbits of various types (see below). Given the
wealth of topological information carried by the ro-
tation interval, it is natural to study the measure
properties of this theory. For instance, although all
the rotation numbers within the interval have a rep-
resentative orbit in existence, one would not expect
all numbers within the interval to be equally likely
in terms of Lebesgue measure on the circle.

In [Young, 1998] a framework was presented in
which one may pose the measure theoretic questions
concerning Birkhoff averages of general dynamical
systems in terms of noninvariant measures. In the
next section we will present the rotation interval
within this framework. Specifically, in the simplest
case we define distributions of rotation numbers as
one defines the distribution of a random variable in
probability. However, as will be seen, complications
may arise which require a more involved approach.
The support of the distribution of rotation numbers
we call the likely rotation set. When this set hap-
pens to be a unique number, or finite set of numbers,
we call them the likely rotation numbers. Of course
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rotation numbers are only defined asymptotically.
To study them numerically the best one can do
is to calculate a finite time rotation number for a
specific orbit. As will be discussed, one should do
this not for a single orbit, but for an ensemble of or-
bits whose initial conditions are chosen randomly.
The resulting ensemble of finite time rotation num-
bers we call observed rotation numbers. The ob-
served rotation numbers converge in an appropriate
sense to the likely rotation set (see Propositions 1
and 2 below).

The body of this paper is dedicated to ex-
ploring rotation numbers numerically within the
context of a family of circle maps. The families
we consider can be represented in the form x 7→
f(x) + a mod 1, in particular we study numerically
the standard family (see Sec. 3 below). Our main
observation after many numerical studies is that the
observed rotation numbers for a given map comprise
a very narrow band, or even unique number within
the rotation interval. This suggests that for most
maps the likely rotation set consists of a single, or
a few likely rotation numbers. We also find that
the observed rotation numbers vary wildly as the
parameter a is varied. Within intervals of wild vari-
ation, we find many “locking intervals”, intervals
where an observed rotation number is constant and
often unique. We prove that locking intervals oc-
cur whenever the endpoints of the rotation inter-
val changes. We also discuss the effects of different
types of saddle-node bifurcations on the observed
rotation numbers.

2. Distributions of Rotation
Numbers

2.1. Notation, definitions and
background

Let f be a noninvertible map of the circle S1 into it-
self. We will assume throughout that f is Cr, r ≥ 0,
and degree one, i.e. homotopic to the identity. Let
π be the usual projection map π : R → S1 : x 7→
z = exp 2πix. Let F be a lift of f , i.e. a one-periodic
map from R into itself such that π ◦F = f ◦ π. Let

ρ(z) ≡ F (x)− x ,

where x ∈ π−1(z) . An interpretation of ρ is as a
measure of the angle of precession.

Given z ∈ S1, let {zi}∞i=0 be the forward orbit
of z under f , (z0 = z and zi+1 = f(zi)) and consider

the sequence:

ρi(F, z) ≡
1

i

i−1∑
j=0

ρ(zj) . (1)

The rotation set of the orbit of z, denoted as
I(F, z), may be defined as the set of limit points
of the sequence (1). It is well known that I(F, z) is
either a point or a closed interval.

The rotation interval, denoted as I(F ), was in-
troduced in [Newhouse et al., 1983] and may be de-
fined in several ways (see [Bamon et al., 1984; Block
et al., 1980; Boyland, 1986; Chenciner et al., 1984]).
One way to define it is as the union of all the rota-
tion sets, i.e.

I(F ) = ∪z∈S1I(F, z) . (2)

If we let

ρ+(z, F ) = lim sup
i→∞

ρi(z, F )

and ρ−(z, F ) = lim inf
i→∞

ρi(z, F ) ,
(3)

then it is equivalent to define I(F ) as the closure
of the range of ρ+ or ρ−.

Perhaps the most important fact about the ro-
tation interval is that given any α ∈ I(F ) there
exists z ∈ S1 such that I(F, z) = {α}. In fact,
given any subinterval [α, β] ⊂ I(F ), there exists
z ∈ S1 such that I(F, z) = [α, β] [Bamon et al.,
1984]. Given these remarkable existence results, we
now move on to the question of measure theory.
Specifically, one is led to ask: Given some α ∈ I(F )
or some Borel subset S of I(F ) what is the mea-
sure of the subset of S1 for which I(z, F ) is α or is
contained in S?

That is, if we choose a point z ∈ S1 randomly
(using a uniform distribution on the circle) what is
the probability that I(z, F ) is α or in S?

The real valued function on the state space of a
dynamical system, such as ρ : S1 → R is often called
an observable. The limit (if it exists) of a sum of
the form (1) is commonly called a Birkhoff average
of the observable. In [Young, 1998] the distribu-
tion of a general Birkhoff average was studied and
a probability distribution was defined, the meaning
of which in the present context is roughly what is
called for in the question above. We now describe
the distribution in the present context.

Let m denote the projected Lebesgue measure
on S1, (m(S1) = 1). We do not assume m is invari-
ant under f . Actually, we could let m be any Borel
probability measure, but Lebesgue measure is the
only one we find interesting. A natural partition of
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S1 is as follows:

A(f) =

{
z ∈ S1 : I(F, z) =

{
p

q

}
∈ Q

}
B(f) = {z ∈ S1 : I(F, z) = {α} ∈ R\Q} (4)

C(f) = {z ∈ S1 : I(F, z) is not a point} .

If I(F ) is not a point, then A(f), B(f), and
C(f) are all nonempty [Bamon et al., 1984]. One
might ask the following: “Are A(f), B(f) and C(f)
m-measurable? If so, what are their measures?”

An affirmative answer to the first question is
easily obtained (see [Young, 1998]).

In some cases a partial answer to the second
question is known. For instance, if f has a hy-
perbolic attracting periodic point or a measurable
periodic attractor [Milnor, 1985], then A will con-
tain the basin of this attractor and so A will have
positive Lebesgue measure. Or, if m is an invari-
ant measure, then the Birkhoff–Khinchin Ergodic
Theorem (see [Cornfeld et al., 1982]) implies that
m(A ∪ B) = 1. If m is ergodic then there exists
α such that ρ(z) = α for almost every z ∈ S1.
However, in general, a complete answer to this ques-
tion is out of reach (see [de Melo & van Strien, 1993,
p. 328]).

2.2. The distribution of rotation
numbers

In the case m(C) = 0 we may define a distribu-
tion in a standard way. First note that the state-
ment m(C) = 0 is equivalent to the statement that
{ρi(z)} converges almost everywhere as i → ∞.
Define ρ̄(z) to be the limit of the sequence wherever
it exists and assign it an arbitrary value elsewhere
(i.e. on C). Since ρi(z) is a sequence of measurable
(in fact continuous) functions, ρ̄(z) is measurable.

Definition 1. For m(C) = 0, define µ to be a real
valued function on the Borel sets of R given by

µ(S) = ρ̄∗m(S) = m({z ∈ S1 : ρ̄(z) ∈ S}) ,

S ∈ B ,

i.e. the pushforward of m along ρ̄. We call the mea-
sure µ the rotation distribution of F .

In the terminology of probability theory, ρ̄ is a
random variable since it is a measurable real valued
function and µ = mρ ≡ m ◦ ρ−1 is the distribution
of ρ̄. (see e.g. [Shiryayev, 1979, p. 168].)

Definition 2. For m(C) = 0, we call the support
of µ the likely rotation set of f .

Under the condition m(C) = 0, the measure µ
carries the measure theoretic information about the
rotation interval. For instance, if f has a periodic
attractor which attracts m-almost every z ∈ S1,
then µ will be the atomic probability measure sup-
ported on the rotation number of the attractor.

Before we proceed to the case m(C) > 0, we
first recall a result which illustrates the potential
usefulness of this concept and which is helpful in
motivating the extension of the distribution.

Definition 3. For any i ∈ N and any Borel set S
define

µi(S) = ρi∗m(S) = m({z ∈ S1 : ρi(z) ∈ S})

We call µi the ith rotation distribution.
It was shown [Young, 1998] that µi converges

to the rotation distribution µ as i → ∞. How-
ever, each µi is absolutely continuous whereas µ
may be singular (as in the case where m is ergodic).
Thus we cannot expect convergence to occur in a
strong sense, i.e. µi(S) → µ(S) as i → ∞ for ev-
ery Borel set S. Instead, we use the definition of
weak convergence (sometimes called convergence in
distribution).

Definition 4. Let {µi}∞i=1 be a sequence of Borel
probability measures. We say that µi converges
weakly to a Borel measure µ, denoted µi ⇀ µ, if
for every test function ψ ∈ Cb(R) (bounded contin-
uous) we have:∫

R
ψdµi →

∫
R
ψdµ, as i→∞ .

Proposition 1. [Young, 1998 ]. If m(C) = 0, then
µi ⇀ µ.

The significance of this proposition is that µi
may be approximated numerically to any degree of
accuracy and thus µ may be approximated.

The ideas are fairly standard, but for the sake of
completeness we describe briefly the approximation
of µi by finite computations. Consider the space of
sequences Ω = {ω = (z1, z2, . . .) : zk ∈ S1} with
the product measure induced by m. Denote by δx
the unit atomic measure at {x}. That is, if S is any
subset of R

δx(S) =

{
1, if x ∈ S ,
0, otherwise
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Definition 5. Given (z1, z2, . . .) ∈ Ω, define a
measure µij on the subsets of R by

µij =
1

j

j∑
k=1

δρi(zk) .

Proposition 2. Suppose m(C) = 0. Given i ∈ N,
then µij ⇀ µi (weakly) j → ∞, almost surely with
respect to the product measure on Ω.

Thus to approximate µi, it is appropriate to
randomly choose a large number of initial condi-
tions {zk} and calculate ρi(zk) for each.

Proof. Given ψ ∈ Cb then

∫
R
ψdµij =

1

j

j∑
k=1

ψ(ρi(zk)) .

Denote αk = ρi(zk) and consider the space Ωi of
sequences of the form {αk}, along with the product
measure induced by µi = mρi ≡ m ◦ ρ−1

i . It is clear
that (ρi)

−1 induces a measure preserving map from
Ωi to Ω. It is a well-known result that

1

j

j∑
k=1

ψ(αk)→
∫
ψdµi, as j → +∞ ,

almost surely with respect to the measure on Ωi.
But, that implies almost sure convergence with re-
spect to the product measure on Ω. �

The set Oik ≡ {ρi(zj) : 0 ≤ j < k} we call the
observed rotation set. This set converges topologi-
cally to the likely rotation set almost surely as i, k
go to infinity.

Of course an obstacle to real numerical compu-
tations is that chaotic orbits may be calculated ac-
curately for only a few iterations. However, there is
evidence that for a large set of parameter values the
map fa has either a periodic measurable attractor
or an absolutely continuous measure (see [Jakobson,
1981; Graczyk & Sweitek, 1997]). In both cases,
the sensitivity on initial conditions is irrelevant to
the calculation; either because orbits are asymptot-
ically stable, or shadowing occurs. In practice it is
the case that quantities of complex systems are of-
ten studied by studying those characteristics along
a large ensemble of orbits (see e.g. [Afraimovich &
Zaslavsky, 1998]). Results similar to Proposition 1

may provide some justification for such studies, at
least in spirit.

In light of Proposition 1, it was proposed that
a satisfactory extension of the rotation distribution
to the case m(C) 6= 0 should agree with Definition 1
when m(C) = 0 and should be such that whenever
µi converges weakly, it agrees with the limit. In a
profound sense, if µi does not converge weakly, then
the dynamical system (S1, f) is very badly behaved
with respect to ρ. If there is no weak convergence of
µi, then any number of finite calculations, even with
exact precision, are meaningless. Following the ter-
minology of Young [1998] we make the definitions:

Definition 6. If the sequence of measures µi con-
verges weakly, then we say that (S1, f) is statisti-
cally rotation predictable. In this case we call the
limit the rotation distribution of f and denote it by
µ. The support of the measure µ we call the likely
rotation set of f .

3. The Standard Family of
Circle Maps

By the standard family of maps we mean the maps
on the circle defined by

Ta,b(x) = x+ a+ b sin 2πx mod 1 , (5)

When

b > b0 ≡
1

2π
≈ 0.1591549431 . . . . (6)

then Ta,b is not invertible and the rotation interval
is potentially, but not necessarily, nontrivial.

For b > b0, Ta,b(x) has two critical points, c1
and c2, which depend on b. At c1 the function has
a local maximum and at c2 a local minimum. The
points c1 and c2 are given by

ci =
1

2π
arccos

−1

2πb
, (7)

where we give arccos the first two positive values.
One can easily show that for any b, the map Tb,b

has a saddle-node fixed point at x = 3/4, i.e. Ta,b
undergoes a saddle-node fixed point bifurcation at
a = b. For b slightly larger than b0, Tb,b is invertible
in a neighborhood of the saddle-node point. Thus
dynamical orbits may not cross the saddle-node
point and so all orbits are homoclinic to x = 3/4.
However, for b larger, we find that Tb,b(c1) > 3/4,
and so the map is not invertible at x = 3/4. The
transition occurs at a value b1, at which the family
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Fig. 1. Graph of Tb1,b1(x) = x+ b1 sin 2πx. For any b < b1,
the rotation interval for Ta,b is trivial before the saddle-node
bifurcation at a = b.

of maps Tb,b experiences a homoclinic bifurcation of
the form

Tb1,b1(c1) =
3

4
. (8)

The value of b1 is approximated numerically by

b1 ≈ 0.2196418014 . . . .

For b > b1 the saddle-node bifurcation at a = b
will be of a different character than for b < b1 be-
cause orbits may “jump over” the saddle-node fixed
point. As we will show in the discussion, the effect
of the saddle-node bifurcation on the observed ro-
tation number will differ for the cases b0 < b < b1
and b1 < b. See Fig. 1.

One can easily show that there is a parameter
value b2, such that the rotation interval is necessar-
ily nontrivial for b greater than b2. The parameter
b2 is the solution of the equation

T0,b2(c1) = c1 + b2 sin 2πc1 = 1 . (9)

In light of (7), we may write Eq. (9) explicitly as:

cos
√

4π2b22 − 1 =
−1

2πb2
. (10)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x + 0.7326441325*sin(2*pi*x)
x

Fig. 2. Graph of T0,b2(x) = x + b2 sin 2πx. For any b > b2
and all a, the rotation interval for Ta,b is nontrivial.

Solving this equation numerically we find:

b2 ≈ 0.7326441325 . . . . (11)

See Fig. 2.

4. Numerical Studies

In this section we describe how computations were
performed.

First of all we note that the calculation of the
observed rotation numbers lends itself exceptionally
well to distributed computation. For a given map,
one must calculate the ith partial rotation num-
ber starting from several different initial conditions
which are chosen randomly using a uniform distri-
bution (see Sec. 2.2). Since the computation for
each initial condition is completely independent of
all the others, each can be carried out on a sep-
arate processor. In fact many calculations in dy-
namical systems where computations are carried
out for multiple parameter values, or multiple initial
conditions stand to benefit greatly from a distribu-
tive computing approach (see e.g. [de Figueiredo &
Melta, 1998; Monti et al., 1999]). Our calculations
were performed in a distributive manner on clus-
ters of PC’s at Ohio University and the University
of Tennessee using PVM (Parallel Virtual Machine)
software.
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Fig. 3. Color scheme for all the plots of observed rotation
numbers below. The upper and lower functions ρ+(a) and
ρ−(a) are colored blue and green respectively. Observed ro-
tation numbers ρ̌ are indicated by yellow to brown colors.
Darker shades indicate more frequent occurrence of observed
rotation numbers near a given value.

To obtain observed rotation number data, for
each a, 100–200 initial points are chosen at random.
For each plot, 3000–10 000 values of a were studied.
Each initial condition is followed for 50 000–150 000
iterations. The first 20 000–40 000 iterations are dis-
carded. Increasing the number of iterations beyond
150 000 seems to make no difference in the plots.
For each a value, the ρ axis was divided into small
bins and the occurrences of observed rotation num-
bers in each bin was counted. In the plots bins with
observed rotation numbers appear in colors from
yellow to red to brown. Yellow indicates one ob-
served rotation number in the bin, darker shades
indicate more occurrences. See Fig. 3.

Because of symmetry, we only plot for a in the
interval (0, 1/2), rather than (0, 1).

In the calculation of ρ+(a) and ρ−(a), we use a
formulation of the rotation interval that was given
in [Chenciner et al., 1984] which is very convenient
for our purposes. It was shown that

I(F ) = [ρ(F−), ρ(F+)] , (12)

where F+ is the monotonic upper bound of F and
F− is the monotonic lower bound. That is,

F+(x)=sup
y≤x

(F (y)), and F−(x)= inf
y≥x

(F (y)). (13)

For a given F , the functions F± are easily
programmed.

Because F± have constant regions, they typi-
cally have rational rotation numbers and orbits fall
into the periodic behavior rather quickly. Thus ρ±

can usually be calculated very quickly. However
as functions, ρ±(a) are Cantor-like functions, they
are constant almost everywhere, but difference quo-
tients become unbounded. Thus to get a reasonable
representation of ρ±(a), calculations must be per-
formed for very many a values. In the plots, ρ+(a)
appears as blue and ρ−(a) appears as green.

5. Discussion of Results

5.1. The observed rotation set
is very narrow

In all cases which are presently understood,
i.e. when f has a finite number of absolutely con-
tinuous ergodic measures or f has a measurable pe-
riodic attractor, the rotation distribution will be a
finite sum of atomic measures. Our numerical stud-
ies support the hypothesis that for almost all a the
distribution is at least very narrowly supported and
most likely the finite sum of atomic measures.

Two important results for the quadratic map
of the interval given by pλ(x) = λx(1 − x)
suggest that possibly for most parameter values
there is in fact an absolutely continuous invariant
measure, or a hyperbolic periodic attractor. In
[Jakobson, 1981] it was shown that for the quadratic
family there is a set of parameters of positive mea-
sure for which there exist unique absolutely contin-
uous ergodic measures. Recently the Dense Hyper-
bolicity Conjecture was proved [Graczyk & Sweitek,
1997] which states that for the quadratic map the
set of parameter values for which the map has a
hyperbolic attracting orbit is dense in (0, 4). Al-
though the methods used in the proofs of both of
these results were very specialized and at present
there is no hope of proving such results for general
one-parameter families of maps, the results are very
suggestive. The numerical evidence in the present
study seems to support the conjecture that such re-
sults might be true in general.

Although the observed rotation set is very nar-
row in all our experiments, we also observed that
there are regions on which it appears to not col-
lapse to a single point. This could be a residual
effect of the finiteness of our calculations, but could
also be due to the following effect. For hyperbolic
attractors of very high period, the immediate basins
tend to be very narrow. As a result, the average
time required to fall into the immediate basin will
be longer than the number of iterations considered.

5.2. Locking intervals

Very much related to the Dense Hyperbolicity The-
orem referenced above (Sec. 5.1), we observed in-
tervals on which the rotation number locks. These
locking intervals occur on all scales we are able to
resolve. For instance in Fig. 6 the interval given ap-
proximately by (0.11, 0.14) is a locking interval. In
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Fig. 4. Observed rotation numbers and ρ±(a) for Ta(x) = x + a + π/15 sin 2πx. Refer to Fig. 3 for an explanation of the
color scheme.

Fig. 5. Observed rotation numbers and ρ±(a) for Ta(x) = x+ a+ π/10 sin 2πx.



80 M. A. Saum & T. R. Young

Fig. 6. Observed rotation numbers and ρ±(a) for Ta(x) = x+ a+ π sin 2πx.

Fig. 7. Observed rotation numbers and ρ±(a) for Ta(x) = x+ a+ π2 sin 2πx.
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Fig. 8. The observed rotation numbers lock in windows of attracting periodicity for the family Ta(x) = x+ a+π/10 sin 2πx.
The attracting window has period 7 and rotation number 2/7.

Fig. 9. The observed rotation numbers lock in windows of attracting periodicity for the family Ta(x) = x + a + b2 sin 2πx.
The attracting window has period 7 and rotation number 2/7. Note that outside of the locking region the observed rotation
numbers drop off very quickly to a “background” level.
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addition, several seemingly isolated red dots appear
in the plot. Upon closer investigation, these red
dots in fact represent locking intervals. Figures 8
and 9 show close-ups of locking intervals.

Locking intervals are created and destroyed in
the following way. A saddle node creates a stable
periodic point, this undergoes period doubling and
becomes a small chaotic attractor, and this attrac-
tor is eventually destroyed by a “boundary crisis”,
i.e. the attractor collides with its own basin bound-
ary. This creation/destruction of an absorbing pe-
riodic region has been observed to be very common
in one-dimensional dynamics [Grebogi et al., 1983].
For parameter values inside the window of periodic-
ity, the observed rotations numbers become locked
at the (rational) rotation number ρL of the periodic
region.

Even in regions mentioned earlier where the ro-
tation set appears to be a narrow band, more careful
calculations usually result in finding small locking
intervals within the region.

In [Hunt et al., 1997] the average transition
time to periodic attractors was studied. There, it
was determined that for a periodic window of width
∆a the average time required to fall into the peri-

odic attractor is of the order (∆a)−
1
2 . In the graphs

shown the smallest step size for a is of the order of
10−6 (in Fig. 9). Since we could expect to resolve
periodic windows only slightly larger than this, the
expected transition time for the smallest windows
is of order 1000. Since in all our computations we
discarded at least the first 2×104 steps, it is reason-
able to assume that we were able to resolve most of
the periodic windows.

Although we cannot prove that locking inter-
vals are dense, we can prove a result which shows
that the number of locking intervals is infinite. Con-
sider the functions ρ±(a). As a varies from 0 to 1,
each of these functions must increase continuously
by 1. Typically, this function has a locking interval
for each rational number. For each of these lock-
ing intervals for ρ±, we can prove that there is in
fact a subinterval which is an interval of attracting
periodicity. Specifically,

Proposition 3. Suppose that f has exactly two
critical points c1 and c2 and consider the family
fa = Ra ◦ f. Suppose that [α, β] is a maximal lock-
ing interval for ρ+ (ρ−), with rotation number p/q.
Then there is a subinterval [α, γ] ([γ, β]) for which
fa has an absorbing periodic interval with rotation
number p/q.

Proof. Suppose p/q is irreducible. Define f+ =
π ◦F+(π)−1. Let C0 be the interval on S1 between
c1 and c2 corresponding to where F+ is constant.
For a ∈ [α, β], the preimages Ci = (f+)−i(C0),
i = 0, . . . , q − 1 are mutually disjoint. Otherwise
f+ would have a periodic point of period less than
q, which would contradict the assumption that f+

has rotation number p/q.
Consider that F+ is differentiable, with deriva-

tive 0 at the left endpoints of the intervals cor-
responding to C0. (F+)q is constant on each of
the intervals Ci. Since {Ci} are mutually disjoint,
it follows that (F+)q is differentiable at the left
endpoints of each of these intervals and the deriva-
tives there are 0.

Now consider (F+
α )q−p. This function has a set

of fixed points, but for all other points (F+
α )q(x)−

p < x (because α in minimal). Further, the set of
fixed points must be disjoint from the union of the
intervals corresponding to {Ci}. Otherwise, by the
derivative condition at the left endpoints of {Ci},
there would be points for which (F+

α )q(x)− p > x.
Thus (F+

α )q − p has a set of fixed points which
are disjoint and thus separated from the constant
intervals and so f+

α has a set of periodic orbits
which are disjoint from C0. This means that in fact
fα has such a set, since f = f+ away from C0.
Furthermore for a in some interval, [α, γ′], f+

a

must also have a periodic set which is disjoint from
C0 and thus corresponds to periodic orbits of fa.
By smoothness of f , for some interval [α, γ] these
orbits must attract open sets. �

Locking intervals of the type described in
Proposition 3 may be seen in many of the figures.
For instance such an interval occurs in Fig. 7, for a
approximately in the interval [0.13, 0.143].

5.3. Observed rotation numbers
the edge of windows
of periodicity

We observe that at the two edges of a locking inter-
val the observed rotation numbers appear to decay
away from the locked value ρL in a very predictable
way to a relatively constant background level which
we denote by ρB. See Figs. 8 and 9.

For parameter values outside but near a
window, the region where the periodic attractor
existed continues to act as a pseudo-absorbing
region in that orbits which fall into the region
typically remain there for a relatively long time,



Observed Rotation Numbers 83

giving the appearance of stability. The dynamics
in the background region exhibit characteristics of
hyperbolic dynamics and once an orbit exits the
periodic region, it typically exhibits a chaotic-like
trajectory until it happens to again fall into the
pseudo-absorbing region. Phenomena having these
general characteristics are often said to exhibit
intermittency.

While the orbit is in the pseudo-trapping phase
the partial sums (1) tend toward ρL, and while it
is in the background region the partial sums tend
toward ρB. The actual likely and observed rotation
numbers will be approximated by a weighted aver-
age of these two values, the weightings being the
average time orbits spent in each region.

Elsewhere we will give a detailed study of these
effects [Homburg et al., 2000].

5.4. The likely rotation number
as a function of a parameter
seems to be either locally
constant or varies wildly

As seen in the figures, where the observed rotation
numbers are not obviously locally constant, they
appear to vary wildly with the parameter a. In par-
ticular, the observed rotation numbers do not have
any monotonicity properties with respect to a and
does not appear to have any differentiability away
from the locking intervals. Certainly at the edges
of locking intervals the observed rotation numbers
are not a differentiable function. If locking intervals
are indeed dense, the fact that the rotation numbers
rise on one side and fall on the other would imply
that there is no local monotonicity except inside the
locking intervals.

Actually the situation is even worse. We will
show in [Homburg et al., 2000] that just beyond any
saddle-node or boundary-crisis bifurcation, given
any rational ρ in the interior of the rotation interval
at the bifurcation, there are values of a arbitrarily
close to the bifurcation value for which the map has
ρ as a likely rotation number.

5.5. Observed rotation numbers at
various types of saddle-node
bifurcations

There are four types of saddle-node bifurcations
with respect to the rotation interval and these four
types have markedly different effects on the ob-
served rotation numbers. Let fa be a one-parameter

family of circle maps which experience a saddle-
node bifurcation for a = asn.

• Type 1a. The rotation interval for fasn is trivial
and there exist a > asn arbitrarily close to asn for
which ρ+(a) = ρ−(a).
• Type 1b. The rotation interval for fasn is trivial

and there exists ā > asn such that ρ+(a) > ρ−(a)
for all a ∈ (asn, ā).
• Type 2. The rotation interval of fasn is nontriv-

ial, and the rotation number of the saddle-node
point coincides with either ρ+(asn) or ρ−(asn).
Further, whichever of ρ+ or ρ− that corresponds
to the rotation number of the saddle-node point,
that function increases on one side of asn.
• Type 3. All other cases.

The saddle-node bifurcations for the standard
family at a = b are of Type 1 when b < b1 and of
Type 2 when b > b2. For bifurcations of Types 1,
ρ±a are both necessarily constant functions to one
side of asn and increasing functions on the other
side of asn. On the increasing side, Proposition 3
implies that there will be attracting periodic orbits
with rotation numbers corresponding to both ρ±

arbitrarily close to asn. This can be clearly seen
in Figs. 10 and 12. For either type of bifurcation
it is known that both ρ+ and ρ− follow repeating
patterns on fundamental intervals in a [Afraimovich
et al., 1996]. For Type 1 bifurcations, these funda-
mental intervals for ρ+ and ρ− are synchronized,
causing the observed rotation numbers to behave
in approximately the same pattern on each funda-
mental interval. Both Types 1a and 1b bifurca-
tions belong to the class of maps studied in [Young,
1999]. In the terminology used there Type 1a bifur-
cations occur when the passing number of the map
is 1. Type 1b bifurcations occur when the pass-
ing number is 2 or greater. The passing number is
defined roughly by the maximum number of itera-
tions one orbit may jump ahead of another. That
maps with passing number 1 are of Type 1a was
shown in [Friedman & Tresser, 1986]. That maps
with passing number 2, or higher, are of Type 1b is
the essence of Proposition 9 of [Young, 2000].

For Type 2 bifurcations, suppose for the sake of
clarity that the saddle-node periodic point has ro-
tation number ρ−asn . Then ρ+

a is typically constant
in a neighborhood of asn (in the sense that ρ+ in-
creases only on a set of measure zero, it is very likely
that it is constant in a neighborhood of asn). It is
also the case that ρ−a is an increasing function of a
to the right of asn. Proposition 3 implies that the
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Fig. 10. Observed rotation numbers at a saddle-node bifurcation in the family Ta(x) = x + a + 0.185 sin 2πx. The saddle-
node occurs at the parameter value a = 0.185. Since ρ+(asn) = ρ−(asn), and there are repeated subintervals on which
ρ+(a) = ρ−(a), this is a Type 1a saddle-node. Refer to Fig. 3 for an explanation of the color scheme.

Fig. 11. A close up of Fig. 10. Observed rotation numbers near a saddle-node bifurcation in the family Ta(x) = x + a +
0.185 sin 2πx. The saddle-node occurs at the parameter value a = 0.185. Note the repeated pattern. It is known that the map
has a repeated universal structure as a↘ asn.
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Fig. 12. Observed rotation numbers at a saddle-node bifurcation in the family Ta(x) = x+a+π/15 sin 2πx. The saddle-node
occurs at the parameter value asn = b = π/15. Since ρ+(asn) = ρ−(asn), and ρ+(a) is strictly greater than ρ−(a) for a > ac,
this is a Type 1b saddle-node.

Fig. 13. A close-up of Fig. 12. Observed rotation numbers near a saddle-node bifurcation in the family Ta(x) = x + a +
π/15 sin 2πx. This is a Type 1b saddle-node. There is a universal pattern, but ρ+(a) is strictly greater than ρ−(a). That is,
the rotation interval is nontrivial.
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Fig. 14. Observed rotation numbers at a saddle-node bifurcation in the family Ta(x) = x+a+ 0.25 sin 2πx. The saddle-node
occurs at the parameter value asn = b = 0.25. Since ρ+(asn) > ρ−(asn), the observed rotation number at asn coincides with
ρ−(asn), and ρ−(a) increases for a > ac, this is a Type 2 saddle-node.

Fig. 15. A close-up of Fig. 14 near the saddle-node bifurcation. There seems to be a universal pattern.
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Fig. 16. Observed rotation numbers at a saddle-node bifurcation in the family Ta(x) = x+a+π/10 sin 2πx. Since ρ−(asn) <
ρ̌(asn) < ρ+(asn), this is a Type 3 saddle-node.

Fig. 17. A close-up of Fig. 16. Observed rotation numbers near a saddle-node bifurcation in the family Ta(x) = x + a +
π/10 sin 2πx. This is a Type 3 saddle-node. There is no detectable universal pattern.
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likely rotation sets include values of ρ−a for some
values of a arbitrarily close to asn. Furthermore,
with ρ+ constant, the observed rotation numbers
form a universal pattern on fundamental intervals
corresponding to fundamental intervals for ρ−. See
Figs. 14 and 15.

For all examples we have been able to study,
the effect of Type 3 bifurcations on the observed
rotation numbers is profoundly different from those
seen in the other types of bifurcations. In the other
types of saddle-node bifurcations, the nearby ob-
served rotation numbers vary in a very nonsmooth
way as a is varied. In Type 3 bifurcations, the effect
on the observed rotation numbers is very smooth.
See Figs. 16 and 17.

6. Some Questions for Further Study

As discussed above, for most f the observed rota-
tion sets appear to be either very narrow or isolated
points. It is not clear, and cannot be determined nu-
merically, whether in fact the narrow interval which
is often observed would actually collapse to a single
point in the limit. The first question of importance
is whether or not this is the case.

Question 1. Do there exist f ∈ Endr1(S1) for which
the likely rotation set is nonfinite.

At this point we have no reason to believe that
either the affirmative or negative is true. A related
question is whether there exist f for which µ has a
nontrivial m-absolutely continuous part?

The condition that m(C) = 0 and the condition
that {µi} converge play a large role in this theory.
Thus we raise the following questions:

Question 2. For what classes of circle endomor-
phisms is it always, or at least generically true that
m(C) = 0?

Question 3. For what classes of circle endomor-
phisms does {µi} converge?

In [Young, 1998] the condition that m(C) = 0
and the condition that {µi} converges were dis-
cussed for Birkhoff averages of observables in gen-
eral dynamical systems. These conditions were
shown to be related to very general conditions on
the dynamical systems, independent of the observ-
able in question. However, at this time it is not
known whether or not those general conditions are
typical in either a topological or measure sense.
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I, 145–148.

Cornfeld, I., Sinai, Y. & Fomin, S. [1982] Ergodic Theory
(Nauka, Moscow); translated (Springer).

de Figueiredo, J. B. & Malta, C. [1998] “Lyapunov graph
for two-parameters map: Application to the circle
map,” Int. J. Bifurcation and Chaos 8, 281–294.

de Melo, W. & van Strien, S. [1993] One-Dimensional
Dynamics (Springer-Verlag).

Friedman, B. & Tresser, C. [1986] “Comb structures in
hairy boundaries: Some transition problems for circle
maps,” Phys. Lett. A117, 15–22.

Graczyk, J. & Sweitek, G. [1997] “Generic hyperbolicity
in the logistic family,” Anal. Math. 146, 1–52.

Grebogi, C., Ott, E. & Yorke, J. [1983] “Crises, sud-
den changes in chaotic attractors and transient chaos,”
Physica D7, 181–200.

Homburg, A., Saum, M. & Young, T. [2000] “Inter-
mittency near windows of attracting periodicity and
decay of observed rotation numbers,” preprint.

Hunt, B., Jacobs, J. & Ott, E. [1997] “Scaling of the du-
rations of chaotic transients in windows of attracting
periodicity,” Phys. Rev. E56, 6508–6515.

Jakobson, M. [1981] “Absolutely continuous invari-
ant measures for one-parameter families of one-
dimensional maps,” Commun. Math. Phys. 81,
39–88.

Milnor, J. [1985] “On the concept of attractor,”
Commun. Math. Phys. 99, 177–195.

Monti, M., Pardo, W., Walkenstein, J., Rosa, Jr., E. &
Grebogii, C. [1999] “Color map of Lyapunov expo-
nents of invariant sets,” Int. J. Bifurcation and Chaos
8, 1459–1464.



Observed Rotation Numbers 89

Newhouse, S., Palis, J. & Takens, F. [1983] “Bifurcations
and stability of families of diffeomorphisms,” Publs.
Math. Inst. Hautes Etud. Sci. 57, 5–71.

Shiryayev, A. [1979] Probability, Graduate Texts in Math-
ematics, Vol. 95 (Springer-Verlag).

Young, T. [1998] “Distributions of Birkhoff averages with
respect to noninvariant measures,” preprint.

Young, T. [2000] “Entropy and rotation intervals for cir-
cle maps near saddle-node bifurcations,” Math. Zeit.
234, 487–506.


