Pattern Formation During Directional Epitaxy

Michael A. Saum Tim P. Schulze

Department of Mathematics
The University of Tennessee, Knoxville

Sixth International Congress on Industrial and Applied
Mathematics, Zürich, July 16-20, 2007

Epitaxial Growth and Continuous Processing

- Epitaxy describes ordered crystalline growth on a mono-crystalline substrate following the crystal structure of the substrate.
- Continuous processing has been used to create large quantities of thin film coated tapes/wire using a reel-to-reel system [Cui et al.,IEEE Trans. Appl. Supercond.,1999].
- "Directional Epitaxy" [Schulze, J. Crystal Growth, 2006] describes epitaxy on a continuously supplied substrate.
- For small deposition zones or near the ends of a larger system, finite size effects and boundary conditions are important.

Simple Reel-to-Reel Processing System (side view)

1-D Continuum Model

Geometry: n steps, $n+1$ terraces (side view)
1-D Burton-Cabrera-Frank (BCF) continuum model [Burton et al.,Phil. Trans. Roy. Soc.,1951]:

$$
\begin{aligned}
\partial_{t} \rho_{j}-V \partial_{x} \rho_{j} & =D \partial_{x}^{2} \rho_{j}+F, \quad \xi_{j}<x<\xi_{j+1}, j=0, \ldots, n \\
\pm\left. D \partial_{x} \rho\right|_{ \pm} \pm\left.\left(V+\partial_{t} \xi_{j}\right) \rho\right|_{ \pm} & =\left.k_{ \pm}\left(\rho-\rho_{e}\right)\right|_{ \pm}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{a}\left(V+\partial_{t} \xi_{j}\right) & =D\left[\partial_{x} \rho\right]_{-}^{+}+\left(V+\partial_{t} \xi_{j}\right)[\rho]_{-}^{+}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{n} & =\rho_{0}=\rho_{e}, \quad x= \pm L, \text { respectively }
\end{aligned}
$$

BCF Approximation

- 1-D BCF Model

$$
\begin{aligned}
\partial_{t} \rho_{j}-V \partial_{x} \rho_{j} & =D \partial_{x}^{2} \rho_{j}+F, \quad \xi_{j}<x<\xi_{j+1}, j=0, \ldots, n \\
\pm\left. D \partial_{x} \rho\right|_{ \pm} \pm\left.\left(V+\partial_{t} \xi_{j}\right) \rho\right|_{ \pm} & =\left.k_{ \pm}\left(\rho-\rho_{e}\right)\right|_{ \pm}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{a}\left(V+\partial_{t} \xi_{j}\right) & =D\left[\partial_{x} \rho\right]_{-}^{+}+\left(V+\partial_{t} \xi_{j}\right)[\rho]_{-}^{+}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{n} & =\rho_{0}=\rho_{e}, \quad x= \pm L, \text { respectively }
\end{aligned}
$$

BCF Approximation

- Quasistatic approximation assumes the adatom density equilibrates fast compared to the motion of the steps.

$$
\begin{aligned}
\partial_{t} \rho_{j}-V \partial_{x} \rho_{j} & =D \partial_{x}^{2} \rho_{j}+F, \quad \xi_{j}<x<\xi_{j+1}, j=0, \ldots, n \\
\pm\left. D \partial_{x} \rho\right|_{ \pm} \pm\left.\left(V+\partial_{t} \xi_{j}\right) \rho\right|_{ \pm} & =\left.k_{ \pm}\left(\rho-\rho_{e}\right)\right|_{ \pm}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{a}\left(V+\partial_{t} \xi_{j}\right) & =D\left[\partial_{x} \rho\right]_{-}^{+}+\left(V+\partial_{t} \xi_{j}\right)[\rho]_{-}^{+}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{n} & =\rho_{0}=\rho_{e}, \quad x= \pm L, \text { respectively }
\end{aligned}
$$

BCF Approximation

- Quasistatic approximation assumes the adatom density equilibrates fast compared to the motion of the steps.
- $\rho=\rho-\rho_{e}$, scale by the diffusive time scale a^{2} / D

$$
\begin{aligned}
0 & =D \partial_{x}^{2} \rho_{j}+F, \quad \xi_{j}<x<\xi_{j+1}, j=0, \ldots, n \\
\pm\left. D \partial_{x} \rho\right|_{ \pm} & =\left.k_{ \pm}\left(\rho-\rho_{e}\right)\right|_{ \pm}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{a}\left(V+\partial_{t} \xi_{j}\right) & =D\left[\partial_{x} \rho\right]_{-}^{+}, \quad x=\xi_{j}(t), j=1, \ldots, n \\
\rho_{n} & =\rho_{0}=\rho_{e}, \quad x= \pm L, \text { respectively }
\end{aligned}
$$

BCF Approximation

- Quasistatic approximation assumes the adatom density equilibrates fast compared to the motion of the steps.
- $\rho=\rho-\rho_{e}$, scale by the diffusive time scale a^{2} / D
- 1-D BCF Quasistatic Approximation

$$
\begin{aligned}
0 & =\partial_{x}^{2} \rho_{j}+F, \quad \xi_{j}<x<\xi_{j+1}, j=0, \ldots, n \\
\partial_{x} \rho_{j} & =\rho_{j}, \quad x=\xi_{j}, j=1, \ldots, n \\
-\partial_{x} \rho_{j-1} & =\rho_{j-1}, \quad x=\xi_{j}, j=1, \ldots, n \\
V+\partial_{t} \xi_{j} & =\partial_{x}\left(\rho_{j}-\rho_{j-1}\right), \quad x=\xi_{j}, j=1, \ldots, n \\
\rho_{n} & =\rho_{0}=0, \quad x= \pm L, \text { respectively. }
\end{aligned}
$$

1-D Dynamical System

The adatom density takes the form:

$$
\rho_{j}(x ; t)=A_{j}(\vec{\xi} ; t)+B_{j}(\vec{\xi} ; t) x-\frac{F x^{2}}{2}
$$

We then obtain the ODE system:

$$
\partial_{t} \xi_{j}=B_{j}(\vec{\xi}, t)-B_{j-1}(\vec{\xi}, t)-V, \quad j=1, \ldots, n .
$$

where for fixed set of $\vec{\xi}$, one can easily solve for $\left\{A_{j}, B_{j}\right\}_{j=0}^{n}$ the following block diagonal linear system:

$$
\mathbf{M}(\vec{\xi})\left(\begin{array}{c}
A_{0} \\
B_{0} \\
A_{1} \\
B_{1} \\
\vdots \\
A_{n} \\
B_{n}
\end{array}\right)=\vec{b}(\vec{\xi})
$$

Pairwise Step Patterns (PSP)

- A Pairwise Step Pattern (PSP) is an alternating interior terrace width pattern denoted by δ_{0} and δ_{1}.
- Step locations $\xi_{j}, j=1, \ldots, n$ can be expressed as:

$$
\xi_{j}=\left\{\begin{array}{ll}
-L+\delta_{L}+\frac{j}{2} \delta_{0}+\left(\frac{j}{2}-1\right) \delta_{1}, & j \text { even } \\
-L+\delta_{L}+\frac{j-1}{2} \delta_{0}+\frac{j-1}{2} \delta_{1}, & j \text { odd }
\end{array} \quad j=1, \ldots, n .\right.
$$

- BCF approximation indicates PSP's exist and have fundamentally different character when the number of steps n is odd or even.
- When seeking steady states, for a range of $V(n)$, there exists fixed points.

Pairwise Step Pattern for $n=6$ (side view)

Steady State Adatom Density Profiles $\rho(x)$ (side view)

- Note the existence of PSP for both n odd and n even.
- Note the asymmetry for n odd. The two fixed points have the end profiles interchanged.

(a) $n=9$ (odd)

(b) $n=10$ (even)

$\Delta-V$ Relation

- For n even, a wide range of velocities produces a wide range of δ_{0} 's and the Jacobian evaluated at the valid fixed points has purely imaginary eigenvalues.
- For n odd, a narrow range of velocities produces two values of δ_{0} for each V and the Jacobian evaluated at the two fixed points has eigenvalues, one with all negative real parts and one with all positive real parts.

(a) $\delta_{0}(V), n=14$ (even)

(b) $\delta_{0}(V), n=13$ (odd)

Kinetic Monte Carlo (KMC)

- Atomistic growth model in 2+1 dimensions with nearest neighbor interactions.
- State of surface described by integer height $h(x, y)$ on a square grid lattice of dimensions $M \times N$.
- Equilibrium boundary conditions at grid boundaries in the x direction; periodic boundary conditions in the y direction.
- We utilize an in-plane lateral nearest neighbor bond counting technique to determine rates (probabilities) of an adatom moving [Clarke and Vvedensky,J. Appl. Phys., 1988].
- Surface atoms hop to neighboring sites with rates given by R :

$$
\Delta E=E_{s}+n E_{n}, \quad R=K(T) \exp \left(-\Delta E /\left(k_{B} T\right)\right)
$$

- These hopping rates vary based on the current surface morphology.

KMC Step Edge Contours (plan view)

- Evidence of PSP in 2+1 KMC clearly visible.
- Requires relatviely short terrace widths to reduce island nucleation influence.

KMC $\overline{\delta_{0}}$, BCF δ_{0}

- KMC appears to match slope correctly for n even.
- Possible reasons for not matching include nucleation, integer resolution of KMC, other stochastic and 2-D effects.

Adatom Kinetic Monte Carlo (AAKMC)

- 1-D version of KMC, no nucleation, developed in order to be more like our BCF approximation.
- Allows us to then go to larger terrace widths and thus minimize integer resolution issues and stochastic noise.
- Rather than describing the state of the surface, one tracks the positions of step edges and adatom locations.
- Adatom movement is treated as a random walk on flat surface covering whole domain.
- Adatoms do not interact with each other.
- When adatom lands in front of step edge, that step edge moves forward.

AAKMC $\overline{\delta_{0}}$, BCF δ_{0}

- Note very close matching throught velocity range.

Summary

- Nonperiodic BC are relevant for small systems or near the boundaries. Periodic BC are applicable to large systems or far from the boundaries.
- "Steady States" exist for continuously processed systems, i.e., the height profile is stationary and mean step positions don't change.
- These states take the form of a Pariwise Step Pattern (PSP) where the interior terrace widths alternate between two widths, δ_{0} and δ_{1}.
- AAKMC confirms this with very good agreement with 1-D continuum approximation.

