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Introduction

Epitaxial Growth and Continuous Processing

Epitaxy describes ordered crystalline growth on a mono-crystalline
substrate following the crystal structure of the substrate.

Continuous processing has been used to create large quantities of thin
film coated tapes/wire using a reel-to-reel system [Cui et al.,IEEE Trans.
Appl. Supercond.,1999].

”Directional Epitaxy” [Schulze, J. Crystal Growth, 2006] describes
epitaxy on a continuously supplied substrate.

For small deposition zones or near the ends of a larger system, finite
size effects and boundary conditions are important.
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Simple Reel-to-Reel Processing System (side view)
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Mean Field Approximation

1-D Continuum Model
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Geometry: n steps, n +1 terraces (side view)

1-D Burton-Cabrera-Frank (BCF) continuum model [Burton et al.,Phil. Trans.
Roy. Soc.,1951]:

∂t ρj −V∂xρj = D∂2
x ρj +F , ξj < x < ξj+1, j = 0, . . . ,n
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ρa(V + ∂tξj) = D [∂x ρ]+− +(V + ∂tξj) [ρ]+− , x = ξj(t), j = 1, . . . ,n

ρn = ρ0 = ρe, x = ±L, respectively
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Mean Field Approximation

BCF Approximation

1-D BCF Model
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Mean Field Approximation

BCF Approximation

Quasistatic approximation assumes the adatom density equilibrates fast
compared to the motion of the steps.
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Mean Field Approximation

BCF Approximation

Quasistatic approximation assumes the adatom density equilibrates fast
compared to the motion of the steps.

ρ = ρ−ρe, scale by the diffusive time scale a2/D
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Mean Field Approximation

BCF Approximation

Quasistatic approximation assumes the adatom density equilibrates fast
compared to the motion of the steps.

ρ = ρ−ρe, scale by the diffusive time scale a2/D

1-D BCF Quasistatic Approximation

0 = ∂2
x ρj +F , ξj < x < ξj+1, j = 0, . . . ,n

∂xρj = ρj , x = ξj , j = 1, . . . ,n

−∂xρj−1 = ρj−1, x = ξj , j = 1, . . . ,n

V + ∂tξj = ∂x
(

ρj −ρj−1
)

, x = ξj , j = 1, . . . ,n

ρn = ρ0 = 0, x = ±L, respectively.
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Mean Field Approximation

1-D Dynamical System
The adatom density takes the form:

ρj(x ; t) = Aj(
~ξ; t)+Bj(

~ξ; t)x −
Fx2

2

We then obtain the ODE system:

∂t ξj = Bj(
~ξ, t)−Bj−1(

~ξ, t)−V , j = 1, . . . ,n.

where for fixed set of~ξ, one can easily solve for {Aj ,Bj}
n
j=0 the following block

diagonal linear system:
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BCF Observations

Pairwise Step Patterns (PSP)

A Pairwise Step Pattern (PSP) is an alternating interior terrace width
pattern denoted by δ0 and δ1.

Step locations ξj , j = 1, . . . ,n can be expressed as:

ξj =











−L+ δL +
j
2

δ0 +

(

j
2
−1

)

δ1, j even

−L+ δL +
j −1

2
δ0 +

j −1
2

δ1, j odd
j = 1, . . . ,n.

BCF approximation indicates PSP’s exist and have fundamentally
different character when the number of steps n is odd or even.

When seeking steady states, for a range of V (n), there exists fixed
points.

δL δ0 δ1 δ0 δ1 δ0 δR

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7
x

Pairwise Step Pattern for n = 6 (side view)
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BCF Observations

Steady State Adatom Density Profiles ρ(x) (side view)

Note the existence of PSP for both n odd and n even.

Note the asymmetry for n odd. The two fixed points have the end
profiles interchanged.
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(a) n = 9 (odd) (b) n = 10 (even)
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BCF Observations

∆−V Relation

For n even, a wide range of velocities produces a wide range of δ0’s and
the Jacobian evaluated at the valid fixed points has purely imaginary
eigenvalues.

For n odd, a narrow range of velocities produces two values of δ0 for
each V and the Jacobian evaluated at the two fixed points has
eigenvalues, one with all negative real parts and one with all positive real
parts.
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(a) δ0(V ), n = 14 (even) (b) δ0(V ), n = 13 (odd)
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2+1 KMC

Kinetic Monte Carlo (KMC)

Atomistic growth model in 2+1 dimensions with nearest neighbor
interactions.

State of surface described by integer height h(x ,y) on a square grid
lattice of dimensions M ×N.

Equilibrium boundary conditions at grid boundaries in the x direction;
periodic boundary conditions in the y direction.

We utilize an in-plane lateral nearest neighbor bond counting technique
to determine rates (probabilities) of an adatom moving [Clarke and
Vvedensky,J. Appl. Phys., 1988].

Surface atoms hop to neighboring sites with rates given by R:

∆E = Es +nEn, R = K (T )exp(−∆E/(kBT ))

These hopping rates vary based on the current surface morphology.
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2+1 KMC

KMC Step Edge Contours (plan view)

Evidence of PSP in 2+1 KMC clearly visible.

Requires relatviely short terrace widths to reduce island nucleation
influence.
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V = 10.50, n = 14
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2+1 KMC

KMC δ̄0, BCF δ0

KMC appears to match slope correctly for n even.

Possible reasons for not matching include nucleation, integer resolution
of KMC, other stochastic and 2-D effects.
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1+1 AAKMC

Adatom Kinetic Monte Carlo (AAKMC)

1-D version of KMC, no nucleation, developed in order to be more
like our BCF approximation.

Allows us to then go to larger terrace widths and thus minimize
integer resolution issues and stochastic noise.

Rather than describing the state of the surface, one tracks the
positions of step edges and adatom locations.

Adatom movement is treated as a random walk on flat surface
covering whole domain.

Adatoms do not interact with each other.

When adatom lands in front of step edge, that step edge moves
forward.
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1+1 AAKMC

AAKMC δ̄0, BCF δ0

Note very close matching throught velocity range.
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1+1 AAKMC

Summary

Nonperiodic BC are relevant for small systems or near the boundaries.
Periodic BC are applicable to large systems or far from the boundaries.

”Steady States” exist for continuously processed systems, i.e., the height
profile is stationary and mean step positions don’t change.

These states take the form of a Pariwise Step Pattern (PSP) where the
interior terrace widths alternate between two widths, δ0 and δ1.

AAKMC confirms this with very good agreement with 1-D continuum
approximation.
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