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Abstract. Realistic simulation of biological evolution by necessity re-
quires simplification and reduction in the dimensionality of the corre-
sponding dynamic system. Even when this is done, the dynamics remain
complex. We utilize a Stochastic Cellular Automata model to gain a
better understanding of the evolutionary dynamics involved in the ori-
gin of new species, specifically focusing on rapid speciation in an island
metapopulation environment. The effects of reproductive isolation, mu-
tation, migration, spatial structure, and extinction on the emergence of
new species are all studied numerically within this context.

1 Introduction

From the fossil records and radioactive dating we know that life has existed on
earth for more than 3 billion years [1]. Until the Cambrian explosion around 540
million years ago, life was restricted mainly to single-celled organisms. From the
Cambrian explosion onward however, there has been a steady increase in bio-
diversity, punctuated by a number of large extinction events. These extinction
events caused sharp but relatively brief dips in biodiversity and the fossil record
supports these claims. In our attempt to understand some of the dynamics in-
volved in this process, we decided to look at the speciation process and see if
we could model it in a way that would provide insight into some of the factors
which determine the dynamic behavior of what is an extremely complex process.

Speciation is the process by which new species are formed via evolutionary
dynamics. Speciation can be controlled (or driven) by a number of factors includ-
ing mutation, recombination and segregation, genetic drift, migration, natural
and sexual selection [1–3]. Throughout this paper we say that two populations
are of different species if they are reproductively isolated, i.e., no mating produc-
ing both viable and fertile offspring between the two populations occurs. That
is, we will use the biological species concept [1, 2]. In our model, we can identify
reproductively isolated populations by measuring the differences in their genes;



if their genes are sufficiently different, then there is a very low probability that
they can mate to produce viable and fertile offspring.

Speciation processes are difficult to verify via experiments or observations.
Primary of course is the fact that the time-scales involved in speciation typi-
cally are much longer than human life span. In addition, there does not exist a
continuous fossil record documenting new species, i.e., there are many gaps in
the fossil record. Moreover, existing data on genetic differences between extant
species can be interpreted in a number of alternative ways.

We are thus led to different methods of investigating the speciation process by
using mathematical models. By necessity, models limit the number of parameters
associated with complex behavior. This implies that all factors may not be taken
into account in the simulation of complex processes. However, computer models
do provide a metaphor for the actual dynamics, assuming of course the model’s
algorithms accurately reflect in some sense the actual dynamics being modeled,
i.e., the model is consistent.

Here, we describe a stochastic cellular automata explicit genetic model of
speciation in an island metapopulation. Typically, cellular automata used in
biological application are characterized by a rather small number of states: two
or, very rarely, three, usually focusing on whether a patch is occupied or not
[4–12]. However, even the simplest known biological organisms have hundreds
of genes and hundreds of thousands of DNA base pairs [1, 3]. This implies that
the number of possible genetic states for an organism is astronomically large.
For example, assuming that an organism has only 500 genes each coded by 1000
DNA base pairs, there can be potentially 4500000 ≈ 9.9×10301029 different genetic
states. This enormous dimensionality requires one to develop new methods of
modeling, analyzing, and visualizing the behavior of the corresponding cellular
automata. Below we describe some of the approaches that we have developed
within the context of studying speciation.

2 The CA Deme-Based Metapopulation Model

A common method for performing numerical studies of biological evolution and
speciation is to use an individual-based model in which a finite collection of
individuals are tracked through the birth-reproduction-death cycle as well as
the migration-mutation-survival cycle. Unfortunately, individual-based models
require an enormous amount of computational resources to obtain meaningful
results and are currently not practical for studying large-scale biological diversifi-
cation. Here, instead of an individual-based model we build a deme-based model
[3, 13, 14] in which for each local population we explicitly describe only the ge-
netic state of its most common genotype. This simplified approach is justified if
mutation and migration are sufficiently rare and the local population size is suf-
ficiently small so that only a negligible amount of genetic variation is maintained
within each local population most of the time. We will ignore the dynamics of lo-
cal population sizes. Following Hubbell [15], we disregard ecological differences



between the species. Our main focus will be on genetic incompatibilities (i.e.
reproductive isolation) between different populations.

Reproductive isolation will be defined by the threshold model [3, 13] in which
two genotypes are not reproductively isolated and, thus, belong to the same
species if they differ in less than Km genes. We will refer to parameter Km as
mating threshold. In some implementations of the model, we allow for multiple
populations per patch. A simple heuristic approach for doing this is to introduce
another threshold genetic distance, say Kc (> Km), reaching which will allow for
coexistence in a patch. We will refer to parameter Kc as coexistence threshold.
If the genetic divergence between two populations is below Kc, the competition
between them prevents their coexistence.

We consider here a large area divided into smaller connected areas called
patches. Each patch can be empty or occupied by one or more populations.
We model the habitat patches as nodes on a two dimensional grid. This is a
spatially explicit metapopulation model (which is often also called a lattice model

or stepping-stone model), in which migration is restricted to close or neighboring
patches.

Our metapopulation model simulates evolution of bit strings in a two dimen-
sional geometry. Each bit string can be considered to represent the DNA of a
population. The length L of this binary DNA string is specified as input. Note
that the number of possible genetic states is 2L. We then simulate metapopula-
tion dynamics within and between a given set of habitat niches (or patches).

What we are left with then after a time is a situation in which many geneti-
cally different populations exist in different habitat patches. Through a clustering
process, we can then determine which populations are close to each other ge-
netically by some measure. This process of grouping thus determines clusters of
similar populations, or species.

Our model dynamics occur on a time generation basis. For each generation we
determine stochastically whether each of the major events occurs in the following
order:

1. Patch Extinction.
2. Single Population Extinction.
3. DNA Strand Mutation.
4. Population Migration.

Patch extinction is a situation where all populations in a specific patch go
extinct. The exact details are not important, it could be due to depletion of a
viable food supply in the habitat patch or due to some catastrophic extinction
event which wipes out the populations such as a fatal disease epidemic.

Single population extinction can occur under similar circumstances, however
rather than the whole patch (which can include many populations) going extinct,
only a single population within the patch goes extinct.

Migration of individuals has two effects. First, migrants can found a new pop-
ulation in a patch previously not occupied by a species. Second, migrants coming
into an occupied patch can bring genes that may spread in a local population
(see below).



Bit strings change independently at each locus. The probability per genera-
tion that an allele at a locus changes to an alternative state is set to be

µe = µ + m N , (1)

where µ is the probability of mutation per locus, m is the probability of migra-
tion, and N is the number of neighboring populations of the same species that
have the alternative allele fixed at the locus under consideration. Expression (1)
utilizes the fact that the probability of fixation of an allele that does not affect
fitness is equal to its frequency [16]. With migration, new alleles are brought in
the patch both by mutation (at rate µ) and migration (at rate mN ). In this ap-
proximation, the only role of migration is to bring in new alleles that are quickly
fixed or lost by random genetic drift. For example, if initially both the focal
population and its four neighbors have allele 0 at the locus under consideration,
then the probability that an alternative allele 1 is fixed in the focal population
per generation is µe = µ. However, once this has happened, the probability of
focal population switching back to allele 0 is µe = µ + 4m. If the migration rate
m is much larger than the mutation rate per locus µ, switching back will hap-
pen much faster. As time increases, populations accumulate different mutations,
diverge genetically and become reproductively isolated species.

3 Model Implementation

There are two main computer programs utilized to implement our model of the
speciation process, Evolve and Cluster. As described above, Evolve simulates the
evolution of bit strings in a two dimensional grid based geometry undergoing
evolutionary dynamical processes. Cluster then determines which group of bit
strings or populations are within a specified Hamming distance of each other. The
clustering method is single linkage clustering [17] with an input parameter K.
In most cases, we set parameter K to the mating threshold Km. This procedure
produces clusters of mutually compatible populations (i.e. biological species).

Since the clustering process is hierarchical in nature, output from Cluster can
also be used to identify and group populations in a taxonomic manner, providing
insight into the hierarchical structure of the simulated populations. For example,
let us specify an increasing sequence of clustering thresholds K1 < K2 < K3 <
. . .. Then, all populations at a genetic distance less than K1 can be thought of
as belonging to the same species, all populations at genetic distances that are
larger or equal than K1 but are smaller than K2 can be thought of as belonging
to different species within the same genus, all populations at genetic distances
that are larger or equal than K2 but are smaller than K3 can be thought of as
belonging to different species and genera within the same family, etc.

Evolve-Cluster accepts a wide variety of input and produces a wide variety
of output. In order to provide focus on identifiable trends, we will concentrate
in this paper on the following input to and output from the Evolve-Cluster
simulations as shown in Table 1. (Note that there is no correlation between the
input and output items, they are just lists).



Table 1. Evolve-Cluster Input/Output Parameters of Interest

Input Parameters Output

Geometry (1D, 2D, size) Number of Clusters (Species), NS

Bitwise Mutation Probability, µ Average Pairwise Distance, d̄

Deme Extinction Probability, ED Average Distance from Founder, d̄f

Population Extinction Probability,Ep Time to Speciation, T

DNA strand length, L Duration of Radiation Event, τ

Population Migration Probability, m Cluster Diameter
Patch Carrying Capacity Cluster Range Distribution
Mating, Coexistence and Clustering Thresholds Cluster Average Pairwise Distance

One can visualize our model as follows: Each population is a point in a genetic
hyperspace; the clade (i.e., the whole system of populations) is a cloud of points
which changes its size, structure, and location in the genetic hyperspace. The
diameter of this cloud can be characterized by the average pairwise distance d̄
between members of the clade measuring how diversified the clade is. The average
distance to the founder d̄f characterizes the extent of the overall change (see
Figure 1). As time increases, populations get farther and farther away from each
other while at the same time moving farther away from the founding population.
Of course there is a limit as to how much d̄f and d̄ increase due to the finite
number of loci under consideration. In fact it can be shown that d̄f → L

2 and

d̄ → L
2+g(µ) as t → ∞. [Here, g(µ) → 0 as µ → ∞ and g(µ) > 0 for all µ > 0.

Essentially g(µ) ∼ 1/µ.]

In addition, we can easily calculate how long it takes for speciation to occur,
how many species emerge, and what parameters affect the rate of speciation and
species diversity.

�

d̄f = 0

d̄

(a) t = 0

�

�

d̄

d̄f

(b) t > 0

Fig. 1. The average pairwise distance d̄ and the average distance to the founder d̄f at
two different time moments. The clades are represented by the spheres.
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Fig. 2. A typical speciation curve

Figure 2 illustrates a typical speciation curve (i.e., the number of species or
clusters vs. time). This figure also explains the meaning of two statistics: the
time to speciation T and the duration of radiation τ . Note that the number of
species stays at 1 for a small amount of time, then rises relatively quickly to
reach a stochastic equilibrium level.

All data and results reported in this paper are based on multiple runs of the
same set of parameters, usually between 30 and 50 repeats.

Distance from the Founder, d̄f

One quick check that our model is working well is based on analysis of how
certain dynamics match the theory. In [18, Eq. 4c], it was shown that the aver-
age Hamming distance from a single founding population changes according to
equation

d̄f (t) =
L

2
[1 − exp(−c(µ)t)] (2)

where c(µ) a function only of µ, the mutation rate. This is basically a solution
to a random walk problem on the binary hypercube. Our model showed that
the fit to Equation 2 over hundreds of runs with varying parameter sets truly
is a function only of the mutation rate µ and time. This perhaps is the single
best indication that our model is performing well with prediction and is inter-
nally consistent with the basic mathematical evolutionary theory concepts of
mutation, migration, and extinction.



4 Parameter Studies

Since the Evolve-Cluster model seems to be modeling some aspects of the speci-
ation process well when compared with other models, it now remains to identify
other characteristics of our model. Specifically we will be analyzing the effect of
changing input parameters to first see if the results make qualitative sense and
then use our model to uncover hidden trends and quantitative results.

Geometry Size, Mating Threshold, and Clustering Threshold

Figure 3 contains summary graphs of nine different parameter sets. The graphs
are ordered from top to bottom increasing in 2-D geometry size, 10×10, 14×14,
and 20 × 20. The graphs are ordered from left to right increasing in mating
threshold Km = 5, 10, and 15. Each graph is the summary of fifty runs with
L = 256, m = 0.02 and µ = 0.00004. On each graph there are five curves. The
three speciation curves are for the different clustering thresholds K, while the
other two curves are the average pairwise distance (d̄) between all populations
and the average distance from the founder (d̄f ) as a function of time.

In our model, extensive diversification occurs relatively fast. The graphs in
Figure 3 illustrate the fact that d̄ dominates initially, while d̄f eventually becomes
larger than d̄ and stays that way. In addition, the asymptotics are consistent
with those discussed in the previous section. This trend can be understood by
considering the metaphor introduced above; the ball changes diameter quicker
than moving away from the origin initially, i.e., genetic changes go into producing
diversity at a rate quicker than moving the clade as a whole genetically away from
the founding population. After a short time, movement away from the founder
dominates while at the same time genetic diversity between the populations also
increases.

In our model, the probability of a genetic change µe (see equation 1) depends
on the number of neighboring populations of the same species and, thus, on
mating threshold Km. With a higher Km, there are more neighbors of the same
species which effectively reduces the rate of change and dampens d̄ expansion.
This is evidenced by the fact that the higher the mating threshold Km, the closer
the curves d̄ and d̄f track each other. Since the number of loci L and mutation
probability µ are the same in all of these cases, the d̄f curve is the same in all
graphs as expected. It also appears that the larger the size of the system, the
greater the difference between d̄ and d̄f , although the asymptotics still remain
the same as described above. This can be explained by the fact that with a larger
geometry, d̄ increases unchecked by physical boundaries until boundary effects
coupled with the finite number of loci L effectively dampens d̄ expansion and
the asymptotics take over.

As the clustering threshold K increases, the number of species decreases.
This is as expected, since larger clusters (clusters containing more populations)
implies there are less clusters. It is also clear that the number of species increases
as geometry size increases. It appears here that boundary effects do play a role
in speciation, effectively suppressing the speciation process to some extent.
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Fig. 3. The effects of geometry size, mating threshold Km, and clustering threshold K

on the number of species NS , the average pairwise distance d̄, and the average distance
to the founder d̄f as functions of time.

The time to speciation T increases as Km increases. This is due to the fact
that it takes longer to accumulate enough genetic differences to separate popu-
lations into new species. The duration of radiation τ increases as Km increases.
This is due to the observation that radiation still occurs, but is not as rapid as
at lower mating threshold values, more evidence of negative mutation pressure
applied by the higher mating threshold.

There are other observations which can be made from the graphs shown in
Figure 3, including

– T increases as geometry size increases,
– τ is approximately constant as geometry size increases,
– The difference between the number of species at different clustering levels

remains constant in time,



– The difference between the number of species at different clustering levels is
approximately constant as mating threshold increases,

– The difference between the number of species at different clustering levels
increases as geometry size increases,

– τ appears to be much less that T in all cases.

Migration and Patch Carrying Capacity

One of the parameter studies undertaken was to increase the carrying capacity
of each patch in the geometry so that multiple populations per patch could
exist at any time. With multiple populations allowed, the evolutionary dynamics
consist of a series of population splits followed by accumulation of additional
genetic differences between emerging species which eventually allows for their
coexistence in the same patch (when genetic distance is > Kc), which in turn
leads to range expansions and increase in the number of populations per patch.

Figure 4 illustrates some results for a clustering threshold of K = 2 letting
migration rate m vary. Part (a) shows the number of species in the system which
we normalized by the patch carrying capacity (i.e., the number of populations per
patch). Note that increasing the patch carrying capacity increases the number
of species NS in the system disproportionately. NS is essentially constant with a
slight decreasing trend as m increases. Part (b) shows that the average pairwise
distance d̄ increases with the patch carrying capacity; d̄ does not appear to de-
pend on the migration rate. Overall, allowing for multiple populations per patch
stimulates population expansion into multiple ecological habitat niches allowing
for rapid speciation to occur in parallel resulting in even more diversification, all
in approximately the same time frame.
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Fig. 4. The effects of migration rate m on the normalized number of species and on
the average pairwise distance d̄ in a model with 1, 2, 4 or 8 populations per patch.



5 Conclusions

Our CA based metapopulation model allows us to investigate the dynamics of
genetic diversification in a large dimensional state space. The adaptive radiation
regime observed in the model is a rich source of data for helping one to better
understand the speciation process.
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