
Optimizing Floating Point
Calculations, I

Michael A. Saum
msaum@math.utk.edu

Department of Mathematics

University of Tennessee, Knoxville

Optimizing Floating Point Calculations, I – p.1/25

Overview
• Introduction
• Computer Basics
• Intel R© Pentium R© 4 Hardware Archictecture
• Memory Hierarchy
• Cache Basics
• Measuring Program Performance

Optimizing Floating Point Calculations, I – p.2/25

Introduction
• Focus on writing computer programs in C,
FORTRAN

• UNIX (Linux) platform
• Intel R© Pentium R© Hardware Platform
• While above seem very specific, concepts and

techniques are applicable to most programming
environments on most hardware platforms.

Optimizing Floating Point Calculations, I – p.3/25

Computer Basics
• The Five Classic Components of a Computer:

• Input
• Output
• Memory
• Datapath
• Control

• Datapath and Control are the domain of the
Central Processing Unit (CPU) or Processor.

• The CPU runs at a specified clock rate which
relates to how fast the hardware can perform
basic functions. Pentium 4 speeds 3 - 4 GHz.

• Memory access speed typically ranges 400 - 800
MHz.

Optimizing Floating Point Calculations, I – p.4/25

Computer Basics, contd.
• Associated with each CPU is an instruction set

which define what actions the CPU can take.
• A CPU can be classified as either a Reduced

Instruction Set Computer (RISC) or a Complex
Instruction Set Computer (CISC).

• A RISC computer can recognize and execute only
a small number of instructions, usually < 128.

• A CISC computer has a much larger set of
instructions it can recognize and execute.

• Modern Intel R© CPU’s are CISC in principle but
utilize RISC concepts in implementation.

Optimizing Floating Point Calculations, I – p.5/25

Computer Basics, contd.
• Today’s modern CPU’s consist of a number of

different components:
• Fetch/Decode Unit - Fetches instructions to

be executed and Decodes into instructions
which can be processed.

• Arithmetic Logical Unit (ALU) - consists of
specialized processor functions for dealing
with operations involving integer data,
floating point data, etc.

• Write Unit - Handles output to memory.
• Pipelining is a technique in which multiple

instructions are overlapped in execution.

Optimizing Floating Point Calculations, I – p.6/25

Computer Basics, contd.
• The bottom line is that a CPU acts on a stream of

ones and zeros which it iterprets to perform
specific operations.

• A executable program is simply this binary
stream.

• In order to allow one to write a program of any
complexity, we have developed a method to
translate commands from a high level language to
assembly language to machine language which is
processed by the CPU.

• This process of translation is called the
Compilation Process.

Optimizing Floating Point Calculations, I – p.7/25

The Compilation Process
High level program must be translated into machine language and loaded into memory to run.

Src: C/FORTRAN Prg. Compiler Assembly Lang. Prg.

Assembler Obj: Mach. Lang. Linker

Obj: Lib. Routines

Exe: Mach. Lang. Prg. Loader Memory

Optimizing Floating Point Calculations, I – p.8/25

Binary Basics
• All CPU’s have located on the chip a small

number of storage locations called registers.
• These registers are described by how many bits

they contain.
• A 32 bit processor implies that the CPU acts

mostly on registers containing 32 bits.
• A byte is 8 bits.

• A 32 bit address space implies that there are 232

uniquely addressable bytes.

Optimizing Floating Point Calculations, I – p.9/25

Intel R© CPU History
1978 8086 arch., extension of 8 bit microprocessor 8080. 16 bit arch., internal registers 16 bits

wide.

1980 8087 Floating Point Coprocessor extends 8086 instruction set with ∼ 60 floating point

instructions. Stack based instead of register based.

1982 80286 increases address space to 24 bits, elaborate memory mapping model.

1985 80386 extends address space to 32 bits, more flexible register usage.

1989 80486.

1992 Pentium.

1995 Pentium Pro.

1997 MMX extensions. 57 new instructions using floating point stack.

1999 Pentium III. SSE (Streaming Single Instruction Multiple Data [SIMD]) extensions. 70

new instructions. Added 8 separate registers, doubled width to 128 bits, SP packed data

type implies that 4 32 bit FP Ops can be done in parallel. Also includes cache prefetch

and streaming store instructions which bypass cache and write directly to memory.

Optimizing Floating Point Calculations, I – p.10/25

Intel R© CPU History, contd.
2001 Pentium 4 with SSE2 extensions. 144 new instructions. DP packed data type implies that

2 64 bit FP Ops can be done in parallel. Compilers can choose to use 8 SSE registers as

FP registers.

2003 AMD64 extends address space from 32 to 64 bits. Increases number of registers to 16 and

128 bit registers to 16.

2004 Intel embraces AMD64 extensions producing EM64T. SSE3 adds 13 instructions to

support complex arithmetic.

IA-32 is commonly used to describe Intel Pentium 4

CPU’s. These processors have 8 general purpose reg-

isters (GPR) each 32 bits wide. Note that this is the

same since 80386 introduced in 1985.

Optimizing Floating Point Calculations, I – p.11/25

Numeric Datatypes

Optimizing Floating Point Calculations, I – p.12/25

General Purpose Registers

Optimizing Floating Point Calculations, I – p.13/25

SIMD Registers

Optimizing Floating Point Calculations, I – p.14/25

IA-32 Register Summary
• Linear address space 32 bit (4 GB), physical

address space 36 bit (64 GB)
• 8 GPR, 6 segment registers (addressing),

EFLAGS register (control), EIP register
(instruction pointer)

• 8 x87 FPU data registers, misc FPU control
registers

• 8 MMX registers for SIMD operations on 64-bit
packed byte, word, doubleword integers

• 8 XMM data registers for SIMD operations on
128-bit packed SP and DP FP data and on 128-bit
packed byte, word, doubleword, and quadword
integers.

Optimizing Floating Point Calculations, I – p.15/25

Intel R© Netburst R© Architecture

Optimizing Floating Point Calculations, I – p.16/25

Cache Basics
Memory on a computer is organized in a hierarchial
manner:

CPU & Registers

L1

L2

Main

Disk

Levels Distance/Access Time

Size of Memory

Optimizing Floating Point Calculations, I – p.17/25

Cache Basics, contd.
• Memory Characteristics

2004 $/GB Type Access Time (ns)

$4K - $10K SRAM - Static (On Chip Caches) 0.5 - 5

$100 - $200 DRAM - Dynamic (Main Memory) 50 - 70

$0.5 - $2 Disk 5e6 - 20e6

• An additional area of memory is called the
Translation Lookaside Buffer (TLB) which
contains virtual – physical address translations.

• TLB’s keep track of large pages of memory that
are in use, either 4KB, or 2MB/4MB starting
addresses.

• When data is needed, best to retrieve from lowest
level cache if available.

Optimizing Floating Point Calculations, I – p.18/25

Cache Basics, contd.
• Temporal locality - Principle that if a data

location is referenced it will be referenced again
soon.

• Spatial locality - Principle that if a data location
is referenced, data locations with nearby
addresses tend to be referenced soon.

• A cache line is usually either 64 or 128 bytes of
contiguous storage.

• When CPU requires a data item not currently in
cache (L1,L2) it will read an entire line of data
into the appropiate cache (L1, L2, or all).

• Levels in cache hierarchy are not inclusive. The
fact that a line is in Level i does NOT imply that
it is also in Level i + 1. Optimizing Floating Point Calculations, I – p.19/25

Cache Structure

Optimizing Floating Point Calculations, I – p.20/25

Cache Characteristics
• Cache Parameters

Characteristic Intel Pentium 4 AMD Opteron

L1 Cache Size 8 KB data, 12K instr trace 64 KB data, 64 KB instr

L1 Assoc. 4-way set assoc. 2-way set assoc.

L1 Line Size 64 bytes 64 bytes

L1 Policy LRU, Write-through LRU, Write-back

L2 Cache Size 512 KB (data and instr) 1 MB (data and instr)

L2 Assoc. 8-way set assoc. 16-way set assoc.

L2 Line Size 128 bytes 64 bytes

L2 Policy LRU, Write-back LRU, Write-back

• Associativity refers to how many locations in cache a line can be mapped to.

• Policy refers to Least Recently Used (LRU), i.e., what gets replaced.

• Write-through and Write-back refer to ensuring data integrity when writing to cache.

Optimizing Floating Point Calculations, I – p.21/25

Program Performance
• The only complete and reliable measure of

computer performance is time.
•

Time =
sec

Prog
=

Instr
Prog

×
Clk cycles

Instr
×

sec
Clk cycle

• Basic components
Component Unit

CPU execution time seconds

Instr Count # Instr retired

Clk cycles/Instr (CPI) Avg. # Clk cycles/Instr

Clk cycle time seconds/Clk cycle

Optimizing Floating Point Calculations, I – p.22/25

Program Performance, contd.
• Algorithm affects Instr Count, possibly CPI
• Programming Language affects Instr Count, CPI
• Compiler affects Instr Count, CPI
• Instr Set Arch. affects Instr Count, clock rate, CPI
• Significant program performance degradation can

occur when cache misses (including TLB misses)
occur on a frequent basis.

Optimizing Floating Point Calculations, I – p.23/25

Conclusions
• Intel R© Pentium R© 4 has much better

computational capabilities than earlier Intel
processors.

• Pipelined execution on Pentium 4 allows up to 3
IA-32 instr to execute in a single clock cycle.

• Pentium 4 L1 Cache is small.
• Pentium 4 MMX/SSE/SSE2/SSE3 extensions

provide enhanced computational capabilities and
allow operating on multiple data items at one
time (SIMD).

• To achieve optimum floating point calculation
performance, need to be able to use these
capabilities.

Optimizing Floating Point Calculations, I – p.24/25

Next Week, Part II
• Algorithms and techniques to utilize cache better.
• Compiler choices and options to enable

utilization of enhanced features.
• High performance libraries designed to run fast,

whats available and how to use.
• Performance Monitoring of applications and

interpretation of results.
• Post-processing and visualization of data and

results.

Optimizing Floating Point Calculations, I – p.25/25

	Overview
	Introduction
	Computer Basics
	Computer Basics, contd.
	Computer Basics, contd.
	Computer Basics, contd.
	The Compilation Process
	Binary Basics
	Intel$^	ext {	extregistered }$ CPU History
	Intel$^	ext {	extregistered }$ CPU History, contd.
	Numeric Datatypes
	General Purpose Registers
	SIMD Registers
	IA-32 Register Summary
	Intel$^	ext {	extregistered }$ Netburst$^	ext {	extregistered }$ Architecture
	Cache Basics
	Cache Basics, contd.
	Cache Basics, contd.
	Cache Structure
	Cache Characteristics
	Program Performance
	Program Performance, contd.
	Conclusions
	Next Week, Part II

