Superprocess over a stochastic flow
with superprocess catalyst

Jie Xiong1,2 and Xiaowen Zhou3

1 Department of Mathematics, University of Tennessee,
Knoxville, TN 37996-1300, USA.
E-mail: jxiong@math.utk.edu

2 Department of Mathematics, Hebei Normal University,
Shijiazhuang 050016, PRC

3 Department of Mathematics and Statistics,
Concordia University
7741 Sherbrooke Street West, Montreal, H4B 1R6, Canada.
E-mail: xzhou@mathstat.concordia.ca

Abstract

In this paper, we study the catalytic superprocesses under a stochastic
flow where the catalyst itself is a superprocess under the same flow. Compar-
ing with the study of the superprocess under a stochastic flow with
deterministic catalyst, here we encounter a serious adaptability problem
caused by this common stochastic flow in proving the uniqueness by using
the usual conditional log-Laplace transform approach. To overcome this
difficulty, we find a limiting moment dual and show that the moments
increase not too fast so that the moments determine the distribution. We
also prove the state property by the moment method.

\textbf{Keywords:} Catalytic superprocesses, random medium, branching par-
ticle system

\textbf{AMS 2000 subject classifications:} Primary 60J80; Secondary 60K25.

1 Introduction

Superprocess over a stochastic flow was studied by Skoulakis and Adler [15]
using a moment duality argument. It is conjectured in [15] that the conditional
log-Laplace transform of the superprocess should be the unique solution to a
nonlinear stochastic partial differential equation (SPDE). This conjecture was
proved by Xiong [19]. As the first application of the conditional log-Laplace
approach, Xiong [20] studied the long-term behavior of the superprocesses over a stochastic flow.

A related model has been studied by Wang in two earlier papers ([16], [17]) where the random medium is given by a space-time color-white noise using the moment duality argument. It was proved in Wang ([16], [18]) that the process is absolutely continuous for the uniformly elliptic case and purely-atomic for the degenerate case. For the first case, a SPDE is derived for the density by Dawson et al [7]. This model was later generalized by Dawson et al [6]. For this generalized model, Li et al ([12], [13], [14]) studied the conditional log-Laplace equation and various properties of the process, e.g., the scaling limit, the long-term behavior and the excursion representation.

In this paper, we study a catalyst-reactant pair of superprocesses over a stochastic flow. Without the stochastic flow, this problem has been studied by many authors (see the survey papers of Dawson and Fleischmann [4] and Klenke [11]) since the early work of Dawson and Fleischmann [5].

Now let us introduce our model in details. First, we introduce the catalyst. At independent exponential times (with exponent $\gamma > 0$), the catalyst particles either die or split into 2 with equal probabilities. Between branching times, the motion of the ith particle is governed by an individual Brownian motion $B_{c_i}(t)$ and a common Brownian motion $W(t)$ which applies to all particles in the system:

$$
d\eta_i^t = b_c(\eta_i^t)dt + \tilde{\sigma}_c(\eta_i^t)dB_{c_i}(t) + \sigma_c(\eta_i^t)dW(t)
$$

where b_c, $\tilde{\sigma}_c$, $\sigma_c : \mathbb{R} \to \mathbb{R}$ are continuous maps, W, $B_{c_1}^i$, $B_{c_2}^i$, \cdots are independent (standard) one dimensional Brownian motions, η_i^t is the position of the ith catalyst particle at time t. Skoulakis and Adler [15] proved that the high-density limit ρ_t exists as an $\mathcal{M}_F(\mathbb{R})$-valued process, where $\mathcal{M}_F(\mathbb{R})$ denotes the collection of all finite Borel measures on \mathbb{R}. By a conditional log-Laplace argument, Xiong [19] proved that ρ_t is the unique solution to the following conditional martingale problem (CMP); $\forall \phi \in C^2_b(\mathbb{R}),$

$$
M_t^{\phi} = \langle \rho_t, \phi \rangle - \langle \rho_0, \phi \rangle - \int_0^t \langle \rho_s, a_c\phi'' + b_c\phi' \rangle ds
$$

$$
- \int_0^t \langle \rho_s, \sigma_c\phi' \rangle dW_s
$$

is a continuous P^W-martingale with quadratic variation process

$$\langle M^{\phi} \rangle_t = \int_0^t \langle \rho_s, \gamma \phi'^2 \rangle ds$$

where $a_c = \frac{1}{2} \left(\sigma_c^2 + \tilde{\sigma}_c^2 \right)$, P^W denotes the conditional probability with the whole path of W as given.

Next, we introduce the reactant branching particle system. Let $\mathcal{A} = \{\alpha = n_1 \cdots n_{\ell(\alpha)} : n_i \in \mathbb{N}\}$ denote the collection of particles. We define an arboreal
order in \mathcal{A} as follows: $m_1 \cdots m_p < n_1 \cdots n_q$ iff $p \leq q$ and $m_i = n_i$, $i = 1, 2, \ldots, p$. Let \{\(B_\alpha(t) : t \geq 0, \alpha \in \mathcal{A}\)\} be a family of independent one-dimensional Brownian motions. Let S_α be i.i.d. with common exponential distribution with parameter θ. For $t \geq 0$ and $x \in \mathbb{R}$, let $\eta_\alpha(t, x), \alpha \in \mathcal{A}$, be i.i.d. \mathbb{Z}^+-valued random variables such that

\[
\mathbb{E}^\eta_\alpha(t, x) = 1 \quad \text{and} \quad \mathbb{E}^\eta_\alpha(t, x)^2 = \rho_t(x)
\]

where ρ_t is the Brownian semigroup.

For $\alpha \in \mathcal{A}$, let β_α and ζ_α ($= \beta_\alpha + S_\alpha$) be the birth and death times of the particle α. Then $\beta_\alpha = 0$ if $\ell(\alpha) = 1$; $\beta_\alpha = \zeta_\alpha - 1$ if $\ell(\alpha) > 1$ where $\alpha - 1 = n_1 \cdots n_{\ell(\alpha)} - 1$ is the father of α. The trajectory $\{x_\alpha(t) : \beta_\alpha \leq t \leq \zeta_\alpha\}$ is given by

\[
x_\alpha(\beta_\alpha + t) = x_\alpha(\beta_\alpha) + \int_{\beta_\alpha}^{\beta_\alpha + t} b_r(x_\alpha(s))ds
\]

where $x_\alpha(\beta_\alpha) = x_{\alpha-1}(\zeta_{\alpha-1})$, $b_r, \tilde{\sigma}_r, \sigma_r : \mathbb{R} \to \mathbb{R}$ are continuous maps. Let

\[
\langle X^\theta_t, \phi \rangle = \theta^{-1} \sum_{\alpha \in \mathcal{A}} \phi(x_\alpha(t))1_{[\beta_\alpha, \zeta_\alpha)}(t).
\]

In this paper, we study the limit of X^θ.

Theorem 1. Suppose that $\theta \to \infty$, $\epsilon \to 0$ and $\epsilon^{-2} \theta^{-1} \to 0$. Then $\{X^\theta\}$ is tight in $C([0, \infty), \mathcal{M}_F(\mathbb{R}))$ and the limit X solves the following CMP:

\[
\forall \phi \in C^2_b(\mathbb{R}), \quad \mathbb{E}^{\nu^\theta, \epsilon}(X^\theta_t, \phi) = \langle X^\theta_t, \phi \rangle - \langle X^\theta_0, \phi \rangle - \int_0^t \langle X^\theta, a_r \phi'' + b_r \phi' \rangle ds
\]

\[
- \int_0^t \langle X^\theta, \sigma_r \phi' \rangle dW_s.
\]

is a continuous $\mathbb{P}^{\nu^\theta, \epsilon}$-martingale with quadratic variation process

\[
\langle M^{\nu^\theta, \epsilon} \rangle_t = \langle L_{[X^\theta]}(t), \phi^2 \rangle
\]

where $a_r = \frac{1}{2} \left(\sigma_r^2 + \tilde{\sigma}_r^2 \right)$.

\[
\langle L_{[X^\theta]}(t), \phi^2 \rangle = \lim_{\delta \to 0} \int_0^t ds \frac{1}{\delta} \int_0^\delta du \int X^\theta(dx) \int \rho_s(dy) \int \rho_z(dz)
\]

\[
\mathbb{E}^{\nu^\theta, \epsilon}(u, (x, y), (z, z))\phi^2(z)
\]
is the collision local time between X and ρ, \mathbb{P}^{rc} is the transition probability density of the 2-dimensional diffusion consists of one catalyst particle and one reactant particle, i.e., the diffusion with generator

$$L^{cr}f(x_1, x_2) = a_c(x_1)\partial_{x_1}^2 f + b_c(x_1)\partial_{x_1} f + a_r(x_2)\partial_{x_2}^2 f + b_r(x_2)\partial_{x_2} f$$

$$+ \sigma_c(x_1)\sigma_r(x_2)\partial_{x_1,x_2} f$$

for $f \in C^2_b(\mathbb{R}^2)$.

Remark 2. Usually, the collision local time is defined as (cf. Dawson et al [3] which generalizes that of Barlow et al [1])

$$\lim_{\delta \to 0} \frac{1}{\delta} \int_0^\delta \int_0^t ds \int \mathbb{R} dx p_{\xi}(x) X_s(x)p_{\xi} \cdot \rho_s(x)\phi(x).$$

(5)

If X and ρ have continuous density, these two definitions coincide and is given by

$$\langle L_{[X,\rho]}(t), \phi^2 \rangle = \int_0^t \langle X_s, \rho_s \phi^2 \rangle \, ds.$$

However, they are different in general. For example, take

$$X(dx) = x^{-1/2}1_{x>0}dx, \quad \rho(dx) = (-x)^{-1/2}1_{x<0}dx.$$

Then $L_{[X,\rho]}(t) = ct\delta_0$ where the constant depends on the approximate procedure.

Also, note that by [8] (Theorem 6.4.5, P141),

$$\mathbb{P}^{rc}(u,(x,y),(z,z)) \leq c p_u(x-z)p_u(y-z)$$

and hence,

$$\langle L_{[X,\rho]}(t), \phi^2 \rangle \leq c \lim_{\delta \to 0} \frac{1}{\delta} \int_0^\delta \int_0^t ds \int \mathbb{R} dx p_{\xi}(x) X_s(x)p_{\xi} \cdot \rho_s(x)\phi^2(x)$$

where p_{ξ} is the heat kernel.

In the special case that $\sigma_r = \sigma_c = 1$, $b_r = b_c = \bar{\sigma}_r = \bar{\sigma}_c = 0$, we see that our definition of the collision local time coincides with (5).

Throughout this paper, we make the following assumptions:

(BC) σ_c, $\bar{\sigma}_c$, b_c and σ_r, $\bar{\sigma}_r$, b_r are bounded Lipschitz continuous functions. Further, $\bar{\sigma}_r$ and $\bar{\sigma}_c$ are bounded below away from 0.

(IC) X_0, $\rho_0 \in \mathcal{M}_F(\mathbb{R})$.

In this paper, we first prove in Section 2 the tightness of X^θ and show that each limit point will be a solution to the CMP (3-4).

As indicated by [15] in the study of a related model, it is natural to use the conditional log-Laplace transform of X_t to derive the uniqueness for the
solution to the CMP (3-4). For deterministic branching rate case, this has been studied by [19] and [13]. It has been demonstrated in [20] and [13] that such a log-Laplace transform is useful in deriving properties of the process. Mimic [19], we guess that

$$E_{\mu} W \exp(-\lambda X_t, \phi) = e^{-\lambda (\mu, \gamma t)}$$

where $y_{s,t}$ is governed by the following stochastic partial differential equation (SPDE):

$$y_{s,t}(x) = \phi(x) + \int_s^t \left[(a_r(x) \partial_x^2 y_{u,t}(x) + b_r(x) \partial_x y_{u,t}(x) - \rho_u(x) y_{u,t}(x)^2) du + \int_s^t \sigma_r(x) \partial_x y_{u,t}(x) d\tilde{W}_u, \right]$$

where $d\tilde{W}_u$ is the backward Itô integral. Note that ρ_u is \mathcal{F}_t-measurable and for the backward Itô integral, it requires the integrand to be $\mathcal{F}_{[s,t]}$-measurable. However, it is not clear whether $y_{u,t}(x)$ is $\mathcal{F}_{[s,t]}$-measurable. Therefore, we encounter serious adaptivity problem in solving the SPDE (6). To prove the uniqueness of the solution to the CMP (3-4), we construct a limit moment dual of the process. The following theorem will be proved in Section 3. Recall that p_s is the heat kernel.

Theorem 3. Suppose that

$$\sup_{s>0} \int_{\mathbb{R}^2} p_s(x-y)X_0(dx)\rho_0(dy) < \infty. \quad (7)$$

Then the CMP (3-4) has a unique solution.

Finally, in Section 4, we derive a property of the process based on the moment formula.

Theorem 4. Suppose that Conditions (BC), (IC) and (7) hold, then X_t is absolutely continuous with respect to Lebesgue measure for almost all $t > 0$ and \mathbb{P}_μ-almost surely.

2 Existence of a solution

In this section, we establish the existence of a solution to the CMP (3-4).

Lemma 5.

$$\langle X^0_t, \phi \rangle = \langle X^0_0, \phi \rangle + M^0_t(\phi) + N^0_t(\phi)$$

$$+ \int_0^t \langle X^0_s, \sigma_r \phi' \rangle dW_s + \int_0^t \langle X^0_s, a_r \phi'' + b_r \phi' \rangle ds \quad (8)$$
where M_t^θ and N_t^θ are orthogonal $\mathcal{P}^{\rho,W}$-martingales with quadratic variation processes

$$\langle M^\theta(\phi) \rangle_t = (2\theta)^{-1} \int_0^t \langle X_s^\theta, \bar{a}_r(\phi')^2 \rangle ds$$

(9)

and

$$\langle N^\theta(\phi) \rangle_t = \int_0^t \langle X_s^\theta, (P_r\rho_s)^2 \rangle ds$$

(10)

where $\bar{a}_r = \tilde{a}_r^2$.

Proof: By Itô’s formula, we see that (8) holds with

$$M_t^\theta(\phi) = \sum_{a \in \mathcal{A}} \int_0^t \theta^{-1} \bar{a}_r \phi'(x_a(s)) \mathbf{1}_{[\theta_0, \zeta_\alpha]}(s) dB_a(s)$$

and

$$N_t^\theta(\phi) = \sum_{a \in \mathcal{A}} (\eta_a(\zeta_\alpha, x_a(\zeta_\alpha -)) - 1) \theta^{-1} \phi(x_a(\zeta_\alpha -)) \mathbf{1}_{(0, t]}(\zeta_\alpha).$$

It is clear that $M_t^\theta(\phi)$ is a $\mathcal{P}^{\rho,W}$-martingale with quadratic variation process given by (9). Similar to Li et al [13], we can prove that $N_t^\theta(\phi)$ is a $\mathcal{P}^{\rho,W}$-martingale, orthogonal to $M_t^\theta(\psi)$, with quadratic variation process given by (10).

To consider the limit of X^θ as $\theta \to \infty$ and $\epsilon = \epsilon(\theta) \to 0$, we need some estimates on the moments. To derive formulas for the moments of X_t^θ, we consider the following backward SPDE

$$p^W_{s,t}(x) = \phi(x) + \int_s^t \left(a_r \bar{a}_r^2 p^W_{u,t}(x) + b_r \partial_x p^W_{u,t}(x) \right) du + \int_s^t \sigma_r \partial_x p^W_{u,t}(x) dW_u$$

(11)

where dW denotes the backward Itô integral. For convenience, we denote the solution of (11) formally by

$$p^W_{s,t}(x) = \int p^W(s, x; t, du) \phi(u).$$

Lemma 6.

$$\mathbb{E}^{\rho,W} \langle X^\theta_t, \phi \rangle = \langle X_0, p^W_{0,t} \rangle = \int X_0(dx) \int p^W(0, x; t, du) \phi(u).$$

(12)

Proof: Take expectations on both sides of (8), we have

$$\mathbb{E}^{\rho,W} X^\theta_t, \phi \rangle = \langle X_0, \phi \rangle + \int_0^t \langle \mathbb{E}^{\rho,W} X^\theta_s, \sigma_r \phi' \rangle dW_s$$

$$+ \int_0^t \langle \mathbb{E}^{\rho,W} X^\theta_s, a_r \phi'' + b_r \phi' \rangle ds.$$

(13)
(12) follows from similar arguments as in Lemma 5.3 in Li et al [13] (take
Z = 0, σ = m = 0 there, and replace (5.1) and (5.2) there by current (13) and
(11)).

For f ∈ C^2_b(R^2), let
\[Lf(x_1, x_2) = a_r(x_1)\partial_{x_1}^2 f + b_r(x_1)\partial_{x_1} f + a_r(x_2)\partial_{x_2}^2 f + b_r(x_2)\partial_{x_2} f \]
+ \sigma_r(x_1)\sigma_r(x_2)\partial_{x_1,x_2} f \]

and
\[Gf(x_1, x_2) = \sigma_r(x_1)\partial_{x_1} f + \sigma_r(x_2)\partial_{x_2} f. \]

Let \(P^W_{s,t}(x_1, x_2) \) be the unique solution to the following linear SPDE:
\[P^W_{s,t} = f + \int_s^t L P^W_{r,t} dr + \int_s^t G P^W_{r,t} dW_t. \]
(14)

Again, for convenience, we denote formally
\[P^W_{s,t}(x_1, x_2) = \int P^W(s, (x_1, x_2); t, d(u_1, u_2)) f(u_1, u_2). \]

Lemma 7.
\[\mathbb{E}^W \langle (X_t^\theta)^{\otimes 2}, f \rangle \]
\[= \int \int X_0(dx_1)X_0(dx_2) \int P^W(0, (x_1, x_2); t, d(u_1, u_2)) f(u_1, u_2) \]
+ \[\int_0^t ds \int X_0(dx) \int P^W(0, x; s, dy) (P_t \rho_s)(y) \]
\[\times \int P^W(s, (y, y); t, d(u_1, u_2)) f(u_1, u_2) \]
+ \[\int_0^t ds \int X_0(dx) \int P^W(0, x; s, dy) \theta^{-1} a_r(y) \]
\[\times \partial_{y_1,y_2}^2 \bigg|_{y_1 = y_2 = y} \int P^W(s, (y_1, y_2); t, d(u_1, u_2)) f(u_1, u_2). \]

Proof: Apply Itô’s formula to (8), we have
\[d \langle X_t^\theta, \phi_1 \rangle \langle X_t^\theta, \phi_2 \rangle \]
\[= d(P^\theta-W\text{-mart.}) + \langle X_t^\theta, \phi_1 \rangle \left(\langle X_t^\theta, a_r \phi_1'' + b_r \phi_1' \rangle dt + \langle X_t^\theta, \sigma_r \phi_1' \rangle dW_t \right) \]
+ \[\langle X_t^\theta, \phi_2 \rangle \left(\langle X_t^\theta, a_r \phi_2'' + b_r \phi_2' \rangle dt + \langle X_t^\theta, \sigma_r \phi_2' \rangle dW_t \right) \]
+ \[\left(\langle X_t^\theta, \sigma_r \phi_1' \rangle \langle X_t^\theta, \sigma_r \phi_2 \rangle + \langle X_t^\theta, (P_t \rho_t) \phi_1 \phi_2 \rangle + \theta^{-1} \langle X_t^\theta, a_r \phi_1' \phi_2 \rangle \right) dt. \]
Therefore
\[
\begin{align*}
d \left(\langle X_t^\theta \rangle^{\otimes 2}, f \right) &= \langle X_t^\theta \rangle^{\otimes 2}, \mathbb{L}_t f \rangle dt + \langle X_t^\theta \rangle^{\otimes 2}, \mathbb{G}_t f \rangle dW_t \\
&+ \langle X_t^\theta, (P_t \rho_t) f(x, x) + \theta^{-1} \bar{a}_r \partial^2_{x_1 x_2} \mid x_1 = x_2 = x \rangle f(x_1, x_2) \rangle dt \\
&+ d(P_t^{\rho, W}\text{-}\text{mart.})_t
\end{align*}
\]
holds for \(f = \phi_1 \otimes \phi_2 \). Take expectations on both sides of (16), we have
\[
\begin{align*}
\mathbb{E}^{\rho, W} \langle X_0^\theta, f \rangle &= \int_0^t \langle \mathbb{E}^{\rho, W} \langle X_s^\theta \rangle^{\otimes 2}, \mathbb{L}_s f \rangle ds \\
&+ \int_0^t \langle \mathbb{E}^{\rho, W} \langle X_s^\theta \rangle^{\otimes 2}, \mathbb{G}_s f \rangle dW_s \\
&+ \int_0^t ds \int X_0(dx)p^W(0, x; s, du) \\
&\times \left((P_s \rho_s)(u) f(u, u) + \theta^{-1} \bar{a}_r(u) \partial^2_{u_1 u_2} \mid_{u_1 = u_2 = u} f(u_1, u_2) \right)
\end{align*}
\]
holds for \(f = \phi_1 \otimes \phi_2 \). By approximation, it is easy to see that (17) holds for all \(f \in C^2_b(\mathbb{R}^2) \). Similar to Lemma 5.3 in [13] again (take \(Z = 0, \sigma = 0 \),
\[m = \int X_0(dx)p^W(0, x; s, du) \]
\[
\left((P_s \rho_s)(u) f(u, u) + \theta^{-1} \bar{a}_r(u) \partial^2_{u_1 u_2} \mid_{u_1 = u_2 = u} f(u_1, u_2) \right)
\]
there, and replace (5.1) and (5.2) there by current (17) and (14)), we have (15) holds.

The following corollary follows from the same arguments as (12) and (15).

Corollary 8. Let \(q_{s,t}^W \) and \(Q_{s,t}^W \) be defined similar to \(p_{s,t}^W \) and \(P_{s,t}^W \) (with \(r \) replaced by \(c \)) in (11) and (14). Then
\[
\mathbb{E}^{W} \langle \rho_s, \phi \mid \rho_s \rangle = \int \rho_s(dx) \int q^W(s, x; s', du) \phi(u)
\]
and
\[
\mathbb{E}^{W} \langle \rho_t^{\otimes 2}, f \mid \rho_s \rangle
\]
\[
= \int \int \rho_s(dx_1) \rho_s(dx_2) \int Q^W(s, (x_1, x_2); t, d(u_1, u_2)) f(u_1, u_2)
\]
\[
+ \int_0^s ds' \int \rho_s(dx) \int q^W(s, x; s', dy) \int Q^W(s', (y, y); t, d(u_1, u_2)) f(u_1, u_2).
\]
Here is the key estimate in proving the tightness.

Theorem 9.

$$\sup_{\theta > 0, t \leq T} \mathbb{E} \langle X^\theta_t, P_t \rho_t \rangle^2 < \infty. \quad (19)$$

Proof: Take

$$f(x_1, x_2) = (P_t \rho_t)(x_1)(P_t \rho_t)(x_2)$$

in (15), we have

$$\mathbb{E}^W \langle (X^\theta_t)^2, f \rangle \equiv I_1 + I_2 + I_3$$

where

$$I_1 = \int \int X_0(dx_1) X_0(dx_2) \int P^W(0, (x_1, x_2); t, d(u_1, u_2))(P_t \rho_t)(u_1)(P_t \rho_t)(u_2),$$

$$I_2 = \int_0^t ds \int X_0(dx) \int P^W(0, x; s, dy)(P_s \rho_s)(y) \times \int P^W(s, (y, y); t, d(u_1, u_2))(P_t \rho_t)(u_1)(P_t \rho_t)(u_2)$$

and

$$I_3 = \int_0^t ds \int X_0(dx) \int P^W(0, x; s, dy)\theta^{-1} \tilde{a}_r(y) \times \tilde{\partial}^2_{y_1 y_2} |_{y_1 = y_2 = y} \int P^W(s, (y_1, y_2); t, d(u_1, u_2))(P_t \rho_t)(u_1)(P_t \rho_t)(u_2).$$

By Corollary 8, we have

$$\mathbb{E}^W I_3 = \mathbb{E}^W I_{31} + \mathbb{E}^W I_{32}$$

where

$$I_{31} = \int_0^t ds \int X_0(dx) \int P^W(0, x; s, dy)\theta^{-1} \tilde{a}_r(y) \times \tilde{\partial}^2_{y_1 y_2} |_{y_1 = y_2 = y} \int P^W(s, (y_1, y_2); t, d(u_1, u_2)) \int \int \rho_s(dx_1) \rho_s(dx_2)$$

$$\times \int Q^W(s, (x_1, x_2); t, d(z_1, z_2)) p_r(u_1 - z_1)p_r(u_2 - z_2)$$
and

\[I_{32} = \int_0^t ds \int X_0(dx) \int p^W(0, x; s, dy) \theta^{-1} a_r(y) \]
\[\times \partial^2_{y_1 y_2} |_{y_1 = y_2 = 0} \int p^W(s, (y_1, y_2); t, d(u_1, u_2)) \]
\[\times \int \int \int ds' \int \rho_s(dx') \int q^W(s, x'; s', dy') \]
\[\times \int Q^W(s', (y', y'); t, d(z_1, z_2)) p_e(u_1 - z_1)p_e(u_2 - z_2). \]

Note that

\[E^W I_{31} = \int_0^t ds \int X_0(dx) \int p^W(0, x; s, dy) \theta^{-1} a_r(y) \]
\[\times \partial^2_{y_1 y_2} |_{y_1 = y_2 = 0} \int p^W(s, (y_1, y_2); t, d(u_1, u_2)) \int \int \rho_0(dx_1) \rho_0(dx_2) \]
\[\times \int Q^W(0, (y_1, y_2); s, d(x_1, x_2)) \int Q^W(s, (x_1, x_2); t, d(z_1, z_2)) \]
\[\times p_e(u_1 - z_1)p_e(u_2 - z_2) \]
\[+ \int_0^t ds \int X_0(dx) \int p^W(0, x; s, dy) \theta^{-1} a_r(y) \]
\[\times \partial^2_{y_1 y_2} |_{y_1 = y_2 = 0} \int p^W(s, (y_1, y_2); t, d(u_1, u_2)) \int_0^s ds' \int \rho_0(dx_1) \]
\[\times \int q^W(0, x_1; s', d(v); s, d(v_1, v_2)) \int Q^W(s', (v, v); s, d(v_1, v_2)) \]
\[\times \int Q^W(s, (v_1, v_2); t, d(z_1, z_2)) p_e(u_1 - z_1)p_e(u_2 - z_2) \]
\[= I_{311} + I_{312}. \]

Then

\[E I_{312} = \int_0^t ds \int_0^s ds' \int X_0(dx) \int \int p^W(0, x; s', dz) p^W(s', z; s, dy) \theta^{-1} a_r(y) \]
\[\times \partial^2_{y_1 y_2} |_{y_1 = y_2 = 0} \int p^W(s, (y_1, y_2); t, d(u_1, u_2)) \int \rho_0(dx_1) \]
\[\times \int q^W(0, x_1; s', dv) \int Q^W(s', (v, v); s, d(v_1, v_2)) \]
\[\times \int Q^W(s, (v_1, v_2); t, d(z_1, z_2)) p_e(u_1 - z_1)p_e(u_2 - z_2). \]
It is easy to show that
\[\mathbb{E}p^W(0, x; s', dz)q^W(0, x_1; s', dv) = \mathbb{P}^{rc}(s', (x, x_1), d(z, v)) \]
where the notation \(\mathbb{P}^{rc} \) represents the transition probability for the two-dimensional diffusion consists of 1 catalyst point and 1 reactant particle. Similarly, we have
\[\mathbb{E}p^W(s', z; dy)Q^W(s', (v, v); s, d(v_1, v_2)) = \mathbb{P}^{rc}(s - s', (z, v, v), d(y, v_1, v_2)) \]
and
\[\mathbb{E}p^W(s, (y_1, y_2); t, d(u_1, u_2))Q^W(s, (v_1, v_2); t, d(z_1, z_2)) = \mathbb{P}^{rrcc}(t - s, (y_1, y_2, v_1, v_2), d(u_1, u_2, z_1, z_2)). \]

Hence
\[\mathbb{E}I_{312} = \int_0^t ds_0 \int_0^s ds' \int X_0(dx) \int p_0(dx_1) \int \mathbb{P}^{rc}(s', (x, x_1), d(z, v)) \]
\[\times \int \mathbb{P}^{rc}(s - s', (z, v, v), d(y, v_1, v_2)) \theta^{-1}(y) \]
\[\times \partial_{y_1 y_2}^2 \mathbb{P}^{rrcc}(t - s, (y_1, y_2, v_1, v_2), d(u_1, u_2, z_1, z_2)) \]
\[\times p_c(u_1 - z_1)p_c(u_2 - z_2). \] \hfill (20)

Let \(\xi_t = \xi_t(y_1, y_2, v_1, v_2) \) be the 4-dimensional diffusion with transition probability \(\mathbb{P}^{rrcc} \) and initial location \((y_1, y_2, v_1, v_2)\). We now want to estimate
\[\partial_{y_1 y_2}^2 \mathbb{E}p_c(\xi_t^1 - \xi_t^3)p_c(\xi_t^2 - \xi_t^4) \]
\[= \mathbb{E} \partial_{y_2} \left(p'_c(\xi_t^1 - \xi_t^3)p_c(\xi_t^2 - \xi_t^4)\partial_{y_1}(\xi_t^3 - \xi_t^4) \right. \]
\[+ p_c(\xi_t^1 - \xi_t^3)p'_c(\xi_t^2 - \xi_t^4)\partial_{y_1}(\xi_t^2 - \xi_t^4) \]
\[= \mathbb{E} p'_c(\xi_t^1 - \xi_t^3)p_c(\xi_t^2 - \xi_t^4)\partial_{y_1}(\xi_t^3 - \xi_t^4) \]
\[+ 2\mathbb{E} p'_c(\xi_t^1 - \xi_t^3)p'_c(\xi_t^2 - \xi_t^4)\partial_{y_1}(\xi_t^3 - \xi_t^4)\partial_{y_2}(\xi_t^2 - \xi_t^4) \]
\[+ \mathbb{E} p'_c(\xi_t^1 - \xi_t^3)p_c(\xi_t^2 - \xi_t^4)\partial_{y_1 y_2}(\xi_t^3 - \xi_t^4) \]
\[+ \mathbb{E} p_c(\xi_t^1 - \xi_t^3)p'_c(\xi_t^2 - \xi_t^4)\partial_{y_1}(\xi_t^3 - \xi_t^4) \]
\[+ \mathbb{E} p_c(\xi_t^1 - \xi_t^3)p'_c(\xi_t^2 - \xi_t^4)\partial_{y_1 y_2}(\xi_t^3 - \xi_t^4). \]

Now we only consider the first term. Note that
\[p''_c \leq cc^{-2}. \]
So
\[1st \leq cc^{-2}\mathbb{E} |\partial_{y_1}(\xi_t^1 - \xi_t^3)\partial_{y_2}(\xi_t^2 - \xi_t^4)| \leq cc^{-2} \]

11
where the last inequality follows from Theorem 5.4 in ([8], p.122). The other terms can be treated similarly. Now we can continue (20) with
\[E \int_{0}^{t} ds \int_{0}^{s} ds' \int X_{0}(dx) \int \rho(dx_{1}) = c e^{-2\theta^{-1}}. \]
Take \(e^{-2\theta^{-1}} \to 0 \). We have \(E I_{312} \to 0 \). \(I_{311} \) and \(I_{32} \) can be treated similarly. Therefore, \(E I_{3} \to 0 \). Similar calculations for \(I_{1} \) and \(I_{2} \) yield that
\[\sup_{\theta > 0, t \leq T} E(I_{1} + I_{2} + I_{3}) < \infty. \]
This proves (19).

Proof of Theorem 1: From (19), we easily get the tightness of \((X^{\theta}, \langle M^{\theta}(\phi) \rangle, \langle N^{\theta}(\phi) \rangle) \).
Further, it is easy to show that for \(t > 0 \) fixed, \(X_{t}^{\theta}(\phi)^{2} \) and \(\langle N^{\theta}(\phi) \rangle \) are uniformly integrable.
It is clear that \(M^{\theta}(\phi) \to 0 \). Suppose that \((X^{\theta}, \langle N^{\theta}(\phi) \rangle) \to (X, \Lambda) \). We only need to show that \(\Lambda(t) = \langle L_{X,M}(t), \phi^{2} \rangle \).

Now we adapt the argument in the proof of Theorem 3.4 in Xiong and Zhou [21]. Note that
\[
\begin{align*}
&\mathbb{E}(\Lambda(t) - \Lambda(s) | \mathcal{F}_{s}) \\
= &\lim_{\theta \to \infty} \mathbb{E}(\langle N^{\theta}(\phi) \rangle_{t} - \langle N^{\theta}(\phi) \rangle_{s} | \mathcal{F}_{s}) \\
= &\lim_{\theta \to \infty} \mathbb{E} \left(\int_{s}^{t} \langle X_{w}^{\theta}, P_{t}(\theta)\rho_{u}\phi^{2} \rangle dw \bigg| \mathcal{F}_{s} \right) \\
= &\lim_{\theta \to \infty} \mathbb{E} \left(\int_{s}^{t} dw \int X_{w}^{\theta}(dx) \int p^{W}(s, x; u, dy) P_{t}(\theta)\rho_{u}(y)\phi^{2}(y) \bigg| \mathcal{F}_{s} \right)
\end{align*}
\]
where the last equality follows from (12). By (18), we can continue with
\[
\begin{align*}
&\mathbb{E}(\Lambda(t) - \Lambda(s) | \mathcal{F}_{s}) \\
= &\lim_{\theta \to \infty} \mathbb{E} \left(\int_{s}^{t} dw \int X_{w}^{\theta}(dx) \int p^{W}(s, x; u, dy) \int dz p_{z}(y - z) \\
&\times \int \rho_{s}(dw) q^{W}(s, w; u, y)\phi^{2}(y) \bigg| \rho_{s}, X_{s}^{\theta} \right) \\
= &\int_{s}^{t} dw \int X_{s}(dx) \int \rho_{s}(dw) \int dy \mathbb{E}^{w}(u - s, (x, w), (y, y))\phi^{2}(y).
\end{align*}
\]
Therefore,

\[
\int_0^t \frac{1}{\delta} \mathbb{E}(\Lambda(s + \delta) - \Lambda(s)|\mathcal{F}_s) \, ds = \int_0^t \frac{1}{\delta} \int_s^{s+\delta} du \int X_s(dx) \int \rho_s(dy) \int dz \mathbb{P}^{rc}(u - s, (x, y), (z, z))\phi^2(z).
\]

Take \(\delta \to 0\), we have

\[
\Lambda(t) = \lim_{\delta \to 0} \int_0^t \frac{1}{\delta} \int_0^\delta du \int X_s(dx) \int \rho_s(dy) \int dz \mathbb{P}^{rc}(u, (x, y), (z, z))\phi^2(z) = \langle L_{[X,\rho]}(t), \phi^2 \rangle.
\]

\[\square\]

3 Moment duality

In this section, we first establish a moment duality for the process \((X_t, \rho_t)\). Then we verify Carleman’s condition to show that the distribution of \((X_t, \rho_t)\) is determined by the moments.

First, we need the following lemma.

Lemma 10. If \((\rho, X)\) is a solution to the CMP (1-4), then it solves the following martingale problem (MP):

\[
N^{c,\phi}_t \equiv \langle \rho_t, \phi \rangle - \langle \rho_0, \phi \rangle - \int_0^t \langle \rho_s, a_c\phi'' + b_c\phi' \rangle \, ds
\]

and

\[
N^{r,\psi}_t \equiv \langle X_t, \psi \rangle - \langle X_0, \psi \rangle - \int_0^t \langle X_s, a_r\psi'' + b_r\psi' \rangle \, ds
\]

are continuous martingales with quadratic covariation processes

\[
\langle N^{c,\phi} \rangle_t = \int_0^t \langle \rho_s, \sigma_c\phi' \rangle^2 \, ds + \int_0^t \langle \rho_s, \gamma \phi^2 \rangle \, ds,
\]

\[
\langle N^{r,\psi} \rangle_t = \int_0^t \langle X_s, \sigma_r\psi' \rangle^2 \, ds + \langle L_{[X,\rho]}(t), \psi^2 \rangle,
\]

and

\[
\langle N^{c,\phi}, N^{r,\psi} \rangle_t = \int_0^t \langle \rho_s, \sigma_c\phi' \rangle \langle X_s, \sigma_r\psi' \rangle \, ds.
\]
Proof: Since $M^{c,\phi}$ is a $P^{\rho,W}$-martingale, it is clearly a martingale. For $s < t$, we have
\[
\mathbb{E}(M^{c,\phi}_t M^{c,\psi}_t | \mathcal{F}_s) = \mathbb{E}(\mathbb{E}(M^{c,\psi}_t | \sigma(\rho, W) \vee \mathcal{F}_s) M^{c,\phi}_t | \mathcal{F}_s)
\]
\[
= \mathbb{E}(M^{r,\psi}_s M^{c,\phi}_t | \mathcal{F}_s)
\]
\[
= M^{r,\psi}_s M^{c,\phi}_t.
\]
Hence $\langle M^{c,\phi}, M^{r,\psi} \rangle_t = 0$. Similarly,
\[
\langle M^{r,\psi}, W \rangle_t = \langle M^{c,\phi}, W \rangle_t = 0.
\]
Hence
\[
N^{c,\phi}_t = M^{c,\phi}_t + \int_0^t \langle \rho_s, \sigma_c \phi' \rangle dW_s
\]
is a martingale. Similarly, $N^{r,\psi}_t$ is a martingale. Further, we have
\[
\langle N^{c,\phi}, N^{r,\psi} \rangle_t = \int_0^t \langle X_s, \sigma_r \psi' \rangle \langle \rho_s, \sigma_c \phi' \rangle ds.
\]
The other statement can be proved similarly. \[\square\]

Apply Itô’s formula to (3) and (1), we have
\[
d\Pi^n_t (X_t, \phi_i)
\]
\[
= \sum_{j=1}^{n} (\Pi_{i \neq j} \langle X_t, \phi_i \rangle) \left(\langle X_t, a_r \phi''_j + b_r \phi'_j \rangle dt + \langle X_t, \sigma_r \phi'_j \rangle dW_t + dM^{r,\phi}_t \right)
\]
\[
+ \frac{1}{2} \sum_{1 \leq j \neq k \leq m} (\Pi_{i \neq j,k} \langle X_t, \phi_i \rangle)
\]
\[
\left(\langle X_t, \sigma_r \phi'_j \rangle \langle X_t, \sigma_r \phi'_k \rangle dt + \langle L[X, \rho](dt), \phi_j \phi_k \rangle \right)
\]
and
\[
d\Pi^n_t (\rho_t, \psi_i)
\]
\[
= \sum_{j=1}^{n} (\Pi_{i \neq j} \langle \rho_t, \psi_i \rangle) \left(\langle \rho_t, a_c \psi''_j + b_c \psi'_j \rangle dt + \langle \rho_t, \sigma_c \psi'_j \rangle dW_t + dM^{c,\psi}_t \right)
\]
\[
+ \frac{1}{2} \sum_{1 \leq j \neq k \leq m} (\Pi_{i \neq j,k} \langle \rho_t, \psi_i \rangle)
\]
\[
\left(\langle \rho_t, \sigma_c \psi'_j \rangle \langle \rho_t, \sigma_c \psi'_k \rangle + \langle \rho_t, \gamma \psi_j \psi_k \rangle \right) dt.
\]
Let
\[
f(x_1, \ldots, x_m; y_1, \ldots, y_n) = \Pi^n_{i=1} \phi_i(x_i) \Pi^n_{j=1} \psi_j(y_j)
\]
and
\[
F_{m,n,f}(X, \rho) = \langle X^\otimes m \otimes \rho^\otimes n, f \rangle.
\]
Define the generator for \(m + n \)-points motion as

\[
A_{m,n} f(x_1, \cdots, x_m; y_1, \cdots, y_n) = \sum_{j=1}^m \left(a_r(x_j) \frac{\partial^2 f}{\partial x_j^2} + b_r(x_j) \frac{\partial f}{\partial x_j} \right) + \frac{1}{2} \sum_{1 \leq j \neq k \leq m} \sigma_r(x_j) \sigma_r(x_k) \frac{\partial^2 f}{\partial x_j \partial x_k}
\]

\[
+ \sum_{j=1}^n \left(a_c(y_j) \frac{\partial^2 f}{\partial y_j^2} + b_c(y_j) \frac{\partial f}{\partial y_j} \right) + \frac{1}{2} \sum_{1 \leq j \neq k \leq n} \sigma_c(y_j) \sigma_c(y_k) \frac{\partial^2 f}{\partial y_j \partial y_k}
\]

\[
+ \frac{1}{2} \sum_{j=1}^m \sum_{k=1}^n \sigma_r(x_j) \sigma_c(y_k) \frac{\partial^2 f}{\partial x_j \partial y_k}.
\]

Apply Itô’s formula to (21) and (22), we see that

\[
F_{m,n,f}(X_t, \rho_t) - \int_0^t \frac{1}{2} \sum_{1 \leq j \neq k \leq m} \left< X_s^\otimes (m-2) \otimes L_{[X,\rho]}(ds) \otimes \rho_s^\otimes n, G_{jk}^r f \right>
\]

\[
- \int_0^t \left(F_{m,n,A.m.n,f}(X_s, \rho_s) + \frac{1}{2} \sum_{1 \leq j \neq k \leq n} F_{m,n-1,G_{jk}^c f}(X_s, \rho_s) \right) ds \tag{23}
\]

is a martingale, where

\[
G_{jk}^r f(x_1, \cdots, x_{m-2}; y; y_n) = f(x_1, \cdots, x, \cdots, x, \cdots, x_{m-2}; y_1, \cdots, y_n)
\]

and

\[
G_{jk}^c f(x_1, \cdots, x_m; y_1, \cdots, y_{n-2}, y) = \gamma f(x_1, \cdots, x; y_1, \cdots, y_1, \cdots, y_{n-2}),
\]

where the \(x \) and \(y \) are at their respective \(j \)th and \(k \)th places. By approximation, we can show that (23) holds for other bounded smooth function \(f \) (instead of a product). Note that

\[
\int_0^t \frac{1}{2} \sum_{1 \leq j \neq k \leq m} \left< G_{jk}^r f, X_s^\otimes (m-2) \otimes L_{[X,\rho]}(ds) \otimes \rho_s^\otimes n \right>
\]

\[
= \lim_{\delta \to 0} \int_0^t \frac{1}{2} \sum_{1 \leq j \neq k \leq m} F_{m-1,n+1,G_{jk}^r \delta f}(X_s, \rho_s) ds,
\]

where

\[
G_{jk}^r \delta f(x_1, \cdots, x_{m-2}, x; y_1, \cdots, y_n)
\]

\[
= \frac{1}{\delta} \int_0^\delta \! dc \int_{\mathbb{R}} \! d\zeta P_{r c}(\epsilon, (x, y), (z, z)) \times f(x_1, \cdots, z, \cdots, z, \cdots, x_{m-2}; y_1, \cdots, y_n).
\]
Now we construct an approximate dual process \((m_t, n_t, f^\delta_t)\) as follows: \((m_t, n_t)\) is a birth-death process with a rate \(\frac{1}{2}m(m - 1)\) to jump from \((m, n)\) to \((m - 1, n + 1)\) and a rate \(\frac{1}{2}n(n - 1)\) from \((m, n)\) to \((m - 1, n + 1)\). Namely, the second component is Kingman’s coalescent process but gives a birth to the second type during its coalescent event.

Let \(\tau_0 = 0\) and \(\tau_{m_0 + n_0 - 1} = \infty\), and let \(\{\tau_k : 1 \leq k \leq m_0 + n_0 - 2\}\) be the sequence of jump times of \(((m_t, n_t) : t \geq 0)\). Let \(\{\Gamma^\delta_k \in [0, \infty) : 1 \leq k \leq m_0 + n_0 - 2\}\) be a sequence of random operators which are conditionally independent given \(((m_t, n_t) : t \geq 0)\) and satisfy

\[
P(\Gamma^\delta_k = G^\delta_{ij} | \tau_k = \ell, n_{\tau_k} = \ell - 1) = \frac{1}{\ell(\ell - 1)}, \quad 1 \leq i \neq j \leq \ell
\]

and

\[
P(\Gamma^\delta_k = G^\delta_{ij} | m_{\tau_k} = \ell, m_{\tau_k} = \ell - 1) = \frac{1}{\ell(\ell - 1)}, \quad 1 \leq i \neq j \leq \ell.
\]

For \(\tau_k \leq t < \tau_{k+1}\), we define

\[
f^\delta_t = P^{(m_{\tau_k}, n_{\tau_k})}_t \Gamma^\delta_k P^{(m_{\tau_{k-1}}, n_{\tau_{k-1}})}_{\tau_k - \tau_{k-1}} \Gamma^\delta_{k-1} \ldots P^{(m_{i}, n_{i})}_{\tau_{i-1} - \tau_i} \Gamma^\delta_{i} P^{(m_{0}, n_{0})}_0 f_0
\]
(24)

where \(P^{(m, n)}_t\) is the semigroup generated by \(\mathcal{A}^{m,n}\) of an \(m + n\)-dimensional diffusion process. Then \((m_t, n_t, f^\delta_t)\) is a Markov process taking values on \(\mathbb{N}^2 \times \mathbb{C}\) where \(\mathbb{C} = \cup_{m \geq 1} C(\mathbb{R}^m)\).

Theorem 11.

\[
E(X^{\otimes m} \otimes \rho^{\otimes n}, f) = \lim_{\delta \to 0} E(\mathbb{E}(X^{\otimes m} \otimes \rho^{\otimes n}, f^\delta_t) \exp \left(\frac{1}{2} \int_0^t (m_s(m_s - 1) + n_s(n_s - 1)) ds \right))
\]
(25)

Proof: When \(m = 0\), this theorem has been proved by [6] for all \(n\). In that case, the process \((n_t, f_t)\) does not depend on \(\delta\) and is the dual process of \(\rho_t\). For \(m = 1\), there is no coalescence for the first component and hence, the theorem follows from the case of \(m = 0\) directly. Now we prove our theorem by induction in \(m\).

We assume that (25) holds for \(m\) and prove it for \(m + 1\). To this end, we first verify that

\[
E\left(\langle X_t, 1 \rangle^{m+1} \langle \rho_t, 1 \rangle^n \right) < \infty.
\]
(26)

By (23),

\[
\langle X_t, 1 \rangle^{m+1} \langle \rho_t, 1 \rangle^n - \int_0^t \frac{m(m + 1)}{2} \langle X_s, 1 \rangle^{m-1} \langle \rho_s, 1 \rangle^n \langle L_{X, \rho}(ds), 1 \rangle
\]

\[
- \int_0^t \frac{n(n - 1)}{2} \langle X_s, 1 \rangle^{m+1} \langle \rho_s, 1 \rangle^{n-1} ds
\]
(27)
is a martingale. We estimate
\[
\mathbb{E} \int_0^t (X_s, 1)^{m-1} (\rho_s, 1)^n \langle L_{[X_s, \rho]}(ds), 1 \rangle \\
\leq c \liminf_{\delta \to 0} \mathbb{E} \int_0^t (X_s, 1)^{m-1} (\rho_s, 1)^n \left(X_s \otimes \rho_s, \frac{1}{\delta} \int_0^\delta d \varphi_p(x - y) \right) ds.
\]

Take
\[
f_0(x_1, \ldots, x_m; y_1, \ldots, y_{n+1}) = \frac{1}{\delta} \int_0^\delta d \varphi_{2\delta}(x_m - y_{n+1}).
\]

Now we estimate the process defined by (24). By Friedman [8] (Theorem 6.4.5, P141), we know that $P_t^{(m,n)}$ has a density dominated by $c \varphi_t^{(m+n)}$. Hence, for $\tau_1 \leq t$,
\[
P_{\tau_1}^{(m_0,n_0)} f_0 \leq c \frac{1}{\delta} \int_0^\delta d \varphi_{2\delta}(x - y) \leq c \frac{1}{\sqrt{\tau_1}}
\]
(note that the constant c depends on t but not on τ_1). Hence
\[
f_t^\delta \leq c \Pi_{j=1}^k (\tau_j - \tau_{j-1})^{-1/2}.
\]

Therefore
\[
\mathbb{E} \left(X_s, 1 \right)^{m-1} (\rho_s, 1)^n \left(X_s \otimes \rho_s, \frac{1}{\delta} \int_0^\delta d \varphi_p(x - y) \right) \leq c \mathbb{E} \left(\Pi_{j=1}^k (\tau_j - \tau_{j-1})^{-1/2} \right) < \infty,
\]
where the finiteness above follows from the fact that $\tau_j - \tau_{j-1} \geq 1$ are independent exponential random variables. Applying induction to (27) with respect to n, we can show that (26) holds. Now we proceed to proving (25) for $m + 1$.

Let $0 = t_0 < t_1 < \cdots < t_k = t$ be a partition of $[0, t]$ such that
\[
\max\{t_i - t_{i-1} : 1 \leq i \leq k\} \to 0.
\]
Then
\[
\begin{align*}
&\mathbb{E} \left(X_t^{\otimes m} \otimes \rho_t^{\otimes n}, f \right) \\
&- \mathbb{E} \left[\left(X_0^{\otimes m} \otimes \rho_0^{\otimes n}, f^\delta_0 \right) \exp \left\{ \frac{1}{2} \int_0^t (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right] \\
&= \sum_{i=1}^k \left\{ \mathbb{E} \left[\left(X_{t_i}^{\otimes m_{t-i}} \otimes \rho_{t_i}^{\otimes n_{t-i}}, f^\delta_{t_i} \right) \exp \left\{ \frac{1}{2} \int_0^{t_{t-i}} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right] \\
&- \mathbb{E} \left[\left(X_{t_i-1}^{\otimes m_{t-i-1}} \otimes \rho_{t_i-1}^{\otimes n_{t-i-1}}, f^\delta_{t_i-1} \right) \exp \left\{ \frac{1}{2} \int_0^{t_{t-i-1}} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right] \right\}.
\end{align*}
\]

Note that
\[
\lim_{k \to \infty} \sum_{i=1}^k \left\{ \mathbb{E} \left[\left(X_{t_i}^{\otimes m_{t-i}} \otimes \rho_{t_i}^{\otimes n_{t-i}}, f^\delta_{t_i} \right) \exp \left\{ \frac{1}{2} \int_0^{t_{t-i}} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right] \\
- \mathbb{E} \left[\left(X_{t_i-1}^{\otimes m_{t-i-1}} \otimes \rho_{t_i-1}^{\otimes n_{t-i-1}}, f^\delta_{t_i-1} \right) \exp \left\{ \frac{1}{2} \int_0^{t_{t-i-1}} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right] \right\} = - \int_0^t \mathbb{E} \left(\exp \left\{ \frac{1}{2} \int_u^t (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right)
\]

\[
\begin{align*}
&\left(F_{m_{t-u}, n_{t-u}, A_{m_{t-u}, n_{t-u}}^{f_{t-u}}}(X_u, \rho_u) \\
&+ \frac{1}{2} \sum_{j,k=1}^{n_{t-u}} F_{m_{t-u}, n_{t-u}-1, G_{j,k}^{f_{t-u}}}(X_u, \rho_u) \\
&- \frac{m_{t-u}(m_{t-u} - 1) + n_{t-u}(n_{t-u} - 1)}{2} F_{m_{t-u}, n_{t-u}, f_{t-u}^\delta}(X_u, \rho_u) \right) \, du \\
&- \int_0^t \mathbb{E} \left(\exp \left\{ \frac{1}{2} \int_0^u (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \\
&\frac{1}{2} \sum_{j,k=1}^{m_{t-u}} \left(X_u^{\otimes (m_{t-u} - 2)} \otimes L_{X,\rho}^t(du) \otimes \rho_u^{n_{t-u}}, G_{j,k}^{f_{t-u}} \right) \right) \, du.
\end{align*}
\]
\[
\lim_{k \to \infty} \sum_{i=1}^{k} \{ \mathbb{E} \left[\left. X_{t_i}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right| X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right] \\
- \mathbb{E} \left[\left. X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right| X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right] \exp \left\{ \frac{1}{2} \int_{0}^{t-t_{i-1}} (m_{s}(m_{s} - 1) + n_{s}(n_{s} - 1)) \, ds \right\} \} \\
= \int_{0}^{t} \mathbb{E} \left(\exp \left\{ \frac{1}{2} \int_{0}^{t-u} (m_{s}(m_{s} - 1) + n_{s}(n_{s} - 1)) \, ds \right\} \\
+ \frac{1}{2} \sum_{j,k=1}^{n_{t-u}} \left\langle X_{u}^{\otimes (m_{t-u} - 2)} \otimes L_{X_{u}^{\otimes n_{t-u}}, G_{j,k}^{f_{t-u}}}, \rho_{u}^{\otimes n_{t-u}}, G_{j,k}^{f_{t-u}} \right\rangle \right) \, du \\
+ \int_{0}^{t} \left(\exp \left\{ \frac{1}{2} \int_{0}^{t-u} (m_{s}(m_{s} - 1) + n_{s}(n_{s} - 1)) \, ds \right\} \\
+ \frac{1}{2} \sum_{j,k=1}^{m_{t-u}} \left\langle X_{u}^{\otimes (m_{t-u} - 2)} \otimes L_{X_{u}^{\otimes n_{t-u}}, G_{j,k}^{f_{t-u}}}, \rho_{u}^{\otimes n_{t-u}}, G_{j,k}^{f_{t-u}} \right\rangle \right) \, du \\
\right)
\]

and

\[
\lim_{k \to \infty} \sum_{i=1}^{k} \{ \mathbb{E} \left[\left. X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right| X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right] \\
- \mathbb{E} \left[\left. X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right| X_{t_{i-1}}^{\otimes m_{t_{i-1}}} \otimes \rho_{t_{i-1}}, f_{t_{i-1}}^{\delta} \right] \exp \left\{ \frac{1}{2} \int_{0}^{t-t_{i-1}} (m_{s}(m_{s} - 1) + n_{s}(n_{s} - 1)) \, ds \right\} \} \\
= - \int_{0}^{t} \left(\exp \left\{ \frac{1}{2} \int_{0}^{t-u} (m_{s}(m_{s} - 1) + n_{s}(n_{s} - 1)) \, ds \right\} \\
+ \frac{1}{2} \sum_{j,k=1}^{m_{t-u}} \left\langle X_{u}^{\otimes (m_{t-u} - 2)} \otimes L_{X_{u}^{\otimes n_{t-u}}, G_{j,k}^{f_{t-u}}}, \rho_{u}^{\otimes n_{t-u}}, G_{j,k}^{f_{t-u}} \right\rangle \right) \, du.
\]
Put together, we have

\[
\mathbb{E} \left(X_t^{m} \otimes \rho_t^{n}, f \right) - \mathbb{E} \left[X_0^{m} \otimes \rho_0^{n}, f_1 \right] \exp \left\{ \frac{1}{2} \int_0^t (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} = - \frac{1}{2} \int_0^t \mathbb{E} \left(\exp \left\{ \frac{1}{2} \int_0^{t-u} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right.

\]

\[
\sum_{j,k=1}^{m_t-u} \left(\left< X_u^{(m_t-u-2)} \otimes L_{[X,t]}(du) \otimes \rho_u^{n_t-u}, G_{jk}^{t-u} \right> - \left< X_u^{(m_t-u-2)} \otimes L_{[X,t]}(du) \otimes \rho_u^{n_t-u}, G_{jk}^{t-u} \right> \right) \, du. \tag{29}
\]

Take a subsequence if necessary, we may and will assume that \(L_{[X,t]}^\delta \rightarrow L_{[X,t]} \) in \(C([0,t], \mathcal{M}_F(\mathbb{R})) \) a.s. as \(\delta \rightarrow 0 \). Note that \(m_s(m_s - 1) + n_s(n_s - 1) \) is bounded. The other factor on the right hand side of (29) is dominated by the right hand side of (28). By the dominated convergence theorem, we have

\[
\lim_{\delta \rightarrow 0} \mathbb{E} \int_0^t \left(\exp \left\{ \frac{1}{2} \int_0^{t-u} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right.

\]

\[
\left(\left< X_u^{(m_t-u-2)} \otimes L_{[X,t]}^\delta(du) \otimes \rho_u^{n_t-u}, G_{jk}^{t-u} \right> - \left< X_u^{(m_t-u-2)} \otimes L_{[X,t]}(du) \otimes \rho_u^{n_t-u}, G_{jk}^{t-u} \right> \right) \, du = \mathbb{E} \lim_{\delta \rightarrow 0} \int_0^t \left(\exp \left\{ \frac{1}{2} \int_0^{t-u} (m_s(m_s - 1) + n_s(n_s - 1)) \, ds \right\} \right.

\]

\[
\left(\left< X_u^{(m_t-u-2)} \otimes L_{[X,t]}^\delta(du) \otimes \rho_u^{n_t-u}, G_{jk}^{t-u} \right> - \left< X_u^{(m_t-u-2)} \otimes L_{[X,t]}(du) \otimes \rho_u^{n_t-u}, G_{jk}^{t-u} \right> \right) \, du. \]
Therefore, we only need to prove that

\[
\lim_{\delta \to 0} \int_0^t \left(\exp \left\{ \frac{1}{2} \int_0^{t-u} (m_s(m_s-1) + n_s(n_s-1)) \, ds \right\} \\
\left(\left\langle X_u^{(m_s-2)} \otimes L_{[X,\rho]}(du) \otimes \rho_u^{\otimes m_s-2}, G_{jk}^\delta f_t^{\delta} \right\rangle \\
- \left\langle X_u^{(m_s-2)} \otimes L_{[X,\rho]}(du) \otimes \rho_u^{\otimes m_s-2}, G_{jk}^\delta f_t^{\delta} \right\rangle \right) \right)
\]

= 0 \quad a.s. \quad (30)

Now we fix \(\omega \). Since there are only finite many jumps for the process \((m_{t-u}, n_{t-u}, f_{t-u}^\delta)\), we estimate the limit for the integral over subinterval \([a,b] \) such that no jump occurs in it. In this case, \(f_{t-u}^\delta \) is bounded and equi-continuous in \(u \in [a,b] \). Therefore

\[
\lim_{\delta \to 0} \int_a^b \left(\exp \left\{ \frac{1}{2} \int_0^{t-u} (m_s(m_s-1) + n_s(n_s-1)) \, ds \right\} \\
\left(\left\langle X_u^{(m_s-2)} \otimes L_{[X,\rho]}(du) \otimes \rho_u^{\otimes m_s-2}, G_{jk}^\delta f_t^{\delta} \right\rangle \\
- \left\langle X_u^{(m_s-2)} \otimes L_{[X,\rho]}(du) \otimes \rho_u^{\otimes m_s-2}, G_{jk}^\delta f_t^{\delta} \right\rangle \right) \right)
\]

= 0.

Sum up over all such subintervals, we see that (30) holds.

Now we show that the moments grow not too fast so that the moment problem determines the distribution.

Proof of Theorem 3: First we estimate \(\mathbb{E} \left((X_1, \phi)^m (\rho_1, \psi)^n \right) \). To this end, let \(f_0 = \phi^\otimes m \otimes \psi^\otimes n \). Suppose that \(\phi \) and \(\psi \) are bounded by \(c \). Then

\[
P_{(m,n)}^{(m,n)} f_0 \leq c^{m+n}. \quad (31)
\]

Now we seek the bound for \(P_{\tau_2-\tau_1} \Gamma_1^\delta P_{(m,n)}^{(m,n)} f_0 \). At \(\tau_1 \), if two catalyst particle coalesce, then the bound in (31) remains valid for \(P_{\tau_2-\tau_1} \Gamma_1^\delta P_{(m,n)}^{(m,n)} f_0 \). Suppose that two reactant particles coalesce at time \(\tau_1 \), then

\[
\Gamma_1^\delta P_{(m,n)}^{(m,n)} f_0(x_1, \ldots, x_{m-1}; y_1, \ldots, y_{n+1})
\]

\[
\leq \frac{1}{\delta} \int_0^\delta de \int_{\mathbb{R}} dz p_e(z-x_{m-1}) p_e(z-y_1) c^{m+n}
\]

\[
= \frac{1}{\delta} \int_0^\delta de p_{2e}(x_{m-1} - y_1) c^{m+n}
\]

21
Note that the value of c may have been changed. In fact, we always use c to denote a constant when its specific value is of no concern to us. Hence

$$P_{\tau_2 - \tau_1} \Gamma_{\tau_1}^\delta P_{(m,n)}^{(m,n)} f_0 \leq \frac{1}{\delta} \int_0^\delta \int_0^\delta dp_2(x_m - y_n + 1) c^{m+n}. \quad (32)$$

At τ_2, there are three cases: two catalyst particles coalesce, two reactant particles (not include x_{m-1}), or x_{m-1} coalesces with another reactant particle. For the first case, there is no change for the bound. For the second case, it is easy to see that the bound is

$$c^{m+n} \frac{1}{\delta} \int_0^\delta d\epsilon_2 \frac{1}{\delta} \int_0^\delta d\epsilon_1 p_{2\epsilon_2} (x_m - y_n + 1) p_{2\epsilon_1 + 2\epsilon_2} (x_{m-2} - y_{n+1}).$$

For the third case,

$$\Gamma_2^\delta P_{\tau_2 - \tau_1} \Gamma_1^\delta P_{(m,n)}^{(m,n)} f_0 \leq c^{m+n} \frac{1}{\delta} \int_0^\delta d\epsilon_2 \int_0^\delta d\epsilon_1 p_{2\epsilon_1 + 2\epsilon_2} (x_{m-2} - y_{n+1}) \rho_{\epsilon_2} (z - x_{m-2}) \rho_{\epsilon_2} (z - y_{n+1}).$$

Hence

$$P_{\tau_3 - \tau_2} \Gamma_2^\delta P_{\tau_2 - \tau_1} \Gamma_1^\delta P_{(m,n)}^{(m,n)} f_0 \leq c^{m+n} \frac{1}{\delta} \int_0^\delta d\epsilon_2 \int_0^\delta d\epsilon_1 p_{2\epsilon_1 + 2\epsilon_2} (z - y_{n+1}) \rho_{\epsilon_2 + \tau_2 - \tau_1} (z - x_{m-2}) \rho_{\epsilon_2 + \tau_2 - \tau_1} (z - y_{n+2}) \leq c^{m+n} \frac{1}{\sqrt{\tau_3 - \tau_2}} p_{2\epsilon_2 + \tau_2 - \tau_1} (x_{m-2} - y_{n+2}).$$

Note that $\tau_3 - \tau_2$ is exponential with parameter no greater than $(m - 1)$. Note that, for the next step, the worst case will involve the second case of the present step. Therefore, the $\tau_4 - \tau_3$ there will be exponential with parameter no greater than $2(m - 2)$. The pattern will be $k(m - k)$. In summary, the worst case estimate will be

$$f_t \leq \Pi_j (\tau_j - \tau_{j-1})^{-1/2} \Pi_k \frac{1}{\delta} \int_0^\delta d\epsilon_k p_{2\epsilon_k + \alpha_k} (x_{i_k} - y_{j_k}).$$

Note that

$$E \left((\tau_j - \tau_{j-1})^{-1/2} \right) \leq c^m m!.$$

Hence

$$E((X_t, \phi)^m (\rho_t, \psi)^n) \leq c^{m+n} m!.$$
Then
\[\mathbb{E} ((\langle X_t, \phi \rangle + \langle \rho_t, \psi \rangle)^m) \leq \sum_{k=0}^{m} \binom{m}{k} c^m k! \leq c^m m!. \]

Note that
\[
\sum_{m \geq 1} \left(\mathbb{E} \left((\langle X_t, \phi \rangle + \langle \rho_t, \psi \rangle)^{2m} \right) \right)^{-1/2m} \geq \sum_{m \geq 1} \left(c^{2m} (2m)! \right)^{-1/2m} \\
\geq c \sum_{m \geq 1} (2m)^{-1} = \infty.
\]

Namely, Carleman’s condition is satisfied and the moment problem determine the distribution (cf. Chung [2]).

\section{The existence of density}

In this section, we study the absolute continuity of the \(\mathcal{M}_F(\mathbb{R}) \)-valued random element \(X_t \). Namely, we prove the existence of the density by a standard second moment calculation. We continue to assume \(X_0 \) and \(\rho_0 \) to be finite.

Proof of Theorem 4: By (25), we have

\[
\mathbb{E} \langle X_t, g \rangle \langle X_t, h \rangle \\
= \int \int X_0(dx_1)X_0(dx_2) \int \mathbb{P}^{rr}(t, (x_1, x_2), d(u_1, u_2))g(u_1)h(u_2) \\
+ \lim_{\delta \to 0} \int_0^t ds \int X_0(dx_1) \int \rho_0(dx_2) \int \mathbb{P}^{\tau}(t-s, (x_1, x_2), d(y_1, y_2)) \\
\times \frac{1}{\delta} \int_0^\delta dz \mathbb{P}(z-y_1)p_\tau(z-y_2) \int \mathbb{P}^{rr}(s, (z, z), d(u_1, u_2))g(u_1)h(u_2) \\
= \int \int X_0(dx_1)X_0(dx_2) \int \mathbb{P}^{rr}(t, (x_1, x_2), d(u_1, u_2))g(u_1)h(u_2) \\
+ \int_0^t ds \int X_0(dx_1) \int \rho_0(dx_2) \int dz \mathbb{P}^{rr}(t-s, (x_1, x_2), (z, z)) \\
\times \int \mathbb{P}^{rr}(s, (z, z), d(u_1, u_2))g(u_1)h(u_2). \quad (33)
\]

Take
\[g = p(\epsilon, x, \cdot) \text{ and } h = p(\epsilon', x, \cdot) \]

Note that
\[
\int \int \mathbb{P}^{rr}(t, (x_1, x_2), d(u_1, u_2))p(\epsilon, x, u_1)p(\epsilon', x, u_2) \to \mathbb{P}^{rr}(t, (x_1, x_2), (x, x)) \quad (34)
\]
and
\[
\int \int \mathbb{P}_{\epsilon}(t, (x_1, x_2), d(u_1, u_2))p(\epsilon, x, u_1)p(\epsilon', x, u_2)
\leq cp(t + \epsilon, x_1 - x)p(t + \epsilon', x_2 - x)
\to cp(t, x_1 - x)p(t, x_2 - x).
\] (35)

As
\[
\int_0^T dt \int dx \int \int X_0(dx_1)X_0(dx_2)p(t + \epsilon, x_1 - x)p(t + \epsilon', x_2 - x)
= \int_0^T dt \int \int X_0(dx_1)X_0(dx_2)p(2t + \epsilon + \epsilon', x_1 - x_2),
\]
and
\[
p(2t + \epsilon + \epsilon', x_1 - x_2) \leq \frac{c}{\sqrt{t}},
\]
by the dominated convergence theorem, we have
\[
\int_0^T dt \int dx \int \int X_0(dx_1)X_0(dx_2)p(t + \epsilon, x_1 - x)p(t + \epsilon', x_2 - x)
\to \int_0^T dt \int dx \int \int X_0(dx_1)X_0(dx_2)p(t, x_1 - x)p(t, x_2 - x).
\] (36)

Making use of the extended dominated convergence theorem (cf. Kallenberg [9], p12), by (34), (35) and (36), we have
\[
\int_0^T dt \int dx \int \int X_0(dx_1)X_0(dx_2)
\times \int \int \mathbb{P}_{\epsilon}(t, (x_1, x_2), d(u_1, u_2))p(\epsilon, x, u_1)p(\epsilon', x, u_2)
\to \int_0^T dt \int dx \int \int X_0(dx_1)X_0(dx_2)\mathbb{P}_{\epsilon}(t, (x_1, x_2), (x, x)).
\] (37)

Note that
\[
\int \int \mathbb{P}_{\epsilon}(s, (z, z), d(u_1, u_2))p(\epsilon, x, u_1)p(\epsilon', x, u_2)
\leq cp(s + \epsilon, z - x)p(s + \epsilon', z - x)
\leq \frac{c}{\sqrt{s}}p(s + \epsilon, z - x).
\]
Similar to the arguments leading to (37), we have that
\[
\int_0^T dt \int dx \int X_0(dx_1)\rho_0(dx_2) \int dz \mathbb{P}^{rc}(t-s,(x_1,x_2),(z,z)) \\
\times \int \mathbb{P}^{rr}(s,(z,z),d(u_1,u_2))p(\epsilon,x,u_1)p(\epsilon',x,u_2) \\
\rightarrow \int_0^T dt \int dx \int \int X_0(dx_1)\rho_0(dx_2) \\
\times \int dz \mathbb{P}^{rc}(t-s,(x_1,x_2),(z,z))\mathbb{P}^{rr}(s,(z,z),(x,x)).
\]
(38)

(33), (37) and (38) show that
\[
\int_0^T \int \mathbb{E}(\langle X_t, p(\epsilon,x,\cdot) \rangle \langle X_t, p(\epsilon',x,\cdot) \rangle) dx dt \\
\rightarrow \int_0^T dt \int dx \int \int X_0(dx_1)X_0(dx_2)\mathbb{P}^{rr}(t,(x_1,x_2),(x,x)) \\
+ \int_0^T dt \int dx \int_0^t ds \int X_0(dx_1) \int \rho_0(dx_2) \\
\times \int dz \mathbb{P}^{rc}(t-s,(x_1,x_2),(z,z))\mathbb{P}^{rr}(s,(z,z),(x,x)).
\]
Therefore, as \(\epsilon \to 0\), \(\langle X_t, p(\epsilon,x,\cdot) \rangle\) converges weakly as elements in \(L^2(\Omega \times [0,T] \times L^2(\mathbb{R}))\). This implies the existence of the density \(X_t(x)\) of \(X_t\). Further, \(\int_0^T dt \int dx \mathbb{E}X_t(x)^2 < \infty\).

5 Acknowledgement

Xiong’s research is supported partially by Alexander von Humboldt Foundation and by NSA. Zhou’s research is supported by NSERC grant N00761.

References

