Review of ch 1

1. Linear system vs augmented matrix
\[a_1 x_1 + \cdots + a_n x_n = b_1 \]
\[\vdots \]
\[a_m x_1 + \cdots + a_n x_n = b_m \]
\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} & b_1 \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{m1} & \cdots & a_{mn} & b_m \\
\end{bmatrix}
\]

2. Solve linear system by elementary row operations
 - Multiply a row by a non-zero constant
 - Interchange two rows
 - Add a multiple of one row to another row

3. Row-echelon form
 - The 1st non-zero element in each row is 1;
 - The rows of zeros are at the bottom
 - The leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row
 - Reduced row echelon form if, in addition
 - Each column that contains a leading 1 has zero everywhere else

4. A linear system has either
 - Exactly one solution
 - Infinite many solutions (consistent free-variable)
 - No solution

5. Homogeneous linear system
\[a_1 x_1 + \cdots + a_n x_n = 0 \]
\[\vdots \]
\[a_m x_1 + \cdots + a_n x_n = 0 \]
has at least one sol. \((x_1 = \cdots = x_n, \text{ trivial sol.})\)

6. Definition of \(A+B, kA, AB, A^T, \text{tr}(A)\)

7. Linear system \(Ax = b\)
8. In general, $AB \neq BA$

9. $O_{m \times n}$ = zero matrix of size $m \times n$
 I_n = identity matrix of size $n \times n$
 $A + 0 = O + A = A$
 $A \cdot 0 = 0 \cdot A = 0$
 $A \cdot I = I \cdot A = A$

10. A is invertible if there is B such that $AB = BA = I$
 $B = A^{-1}$ is the inverse of A

11. A, B both $n \times n$, thus AB is invertible \iff A, B both invertible.
 $(AB)^{-1} = B^{-1}A^{-1}$

12. $(AB)^T = B^TA^T$, $(A^T)^{-1} = (A^{-1})^T$

13. Elementary matrices: obtained from I by a row operation.
 - Row operation on $A \iff$ Multiple A by the elementary matrix

14. How to find A^{-1}?
 - Put A, I together, reduce A to I. Then I is reduced to A^{-1}.

15. The following are equiv.
 a) A invertible
 b) $Ax = \vec{0}$ only the trivial sol.
 c) Reduced echelon form of A is I
 d) $A = E_1 \cdots E_k$
 e) $Ax = \vec{b}$ consistent for each \vec{b}
 f) $Ax = \vec{b}$ exactly one sol. $\vec{x} = A^{-1}\vec{b}$

16. Diagonal, triangular, symmetric matrices

17. A has an LU decomposition if only types 1 & 3 operations needed reducing A to echelon form
$U = \text{echelon form}$

L diagonal: reciprocal of the multiplier of type I

below diagonal: negative of the multiplier of type III
Review of ch 2

1. A \(n \times n \). The \(\det(A) \) is the sum of all signed elementary product

\[
\det(A) = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}
\]

2. \[
\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}
\]

\[
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}
\]

3. If \(A \) is triangular, then \(\det(A) = a_{11}a_{22} \cdots a_{nn} \)

4. \(B \) obtained from \(A \) by row operation
 - type I with multiplier \(k \), \(\det(B) = k \det(A) \)
 - type II, \(\det(B) = -\det(A) \)
 - type III, \(\det(B) = \det(A) \)

5. If \(A \) has two proportional rows (columns), \(\det(A)=0 \)

6. \(A \) invertible \(\iff \) \(\det(A) \neq 0 \)

7. \(A, B, C \ n \times n \), differ only in \(r \)th row,
 \(r \)th row of \(C \) is the sum of \(r \)th rows of \(A \) and \(B \)
 then \(\det(C) = \det(A) + \det(B) \)

8. \(\det(ka) = k^n \det(A) \)
 \(\det(AB) = \det(A) \det(B) \)
 \(\det(A^{-1}) = \frac{1}{\det(A)} \)

9. \(\lambda \) is an eigenvalue of \(A \) if \(A\vec{x} = \lambda \vec{x} \)

 \(\det(A - \lambda I) = 0 \)

10. \(C_{ij} = (-1)^{i+j} M_{ij} \) is the cofactor of \(a_{ij} \)
 \(M_{ij} \) is the minor of \(a_{ij} \)
\[\det(A) = a_{11}C_{11} + \cdots + a_{nn}C_{nn} \]
\[\det(A) = a_{ij}c_{ij} + \cdots + a_{nj}c_{nj} \]

11. \[\text{adj}(A) = (c_{ij})_{n \times n} \]
\[A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \]

12. If \(A \) is invertible, then \(Ax = \bar{b} \) has a unique solution given by
\[x_1 = \frac{\det(A_1)}{\det(A)}, \ldots, x_n = \frac{\det(A_n)}{\det(A)} \]
\[\text{adj}(A) = A_j; \text{ the matrix obtained by replacing the } j\text{th column of } A \text{ by } \bar{b} \]