MATH 606-Homework \#2- due April 22, 2005

(1) Consider the PDE $u_{t}=u_{x x}$ for $x \in[0,1]$ with boundary conditions $u(0, t)=u(1, t)=0$ for all t. Let the initial condition be $u(x, 0)=$ $\sin (\pi x)$ so that the general solution is $u(x, t)=e^{\pi^{2} t} \sin (\pi x)$.
(a) Write a program to solve this PDE for $t \in[0,0.5]$, using the forward-time, central-space scheme. Compare the numerical solution at $t=0.5$ with the analytical solution. Do this for three different values of $r=k / h^{2}$, namely $r=0.1,0.25$, and 0.5 . Generate the table for values of $u_{\text {exact }}(0.5,0.5)-u_{\text {approx }}(0.5,0.5)$:
(b) Plot the numerical solution for $h=0.1$ and $r=1$ at $t=0.5$.
(c) Now let your initial condition be the same as in the book for example 2.1. Plot the numerical solution for $h=0.1$ and $r=1$ at $t=0.05$ and 0.10 .
(2) Modify the code from (1) to solve $u_{t}=a u_{x x}+g(x, t)$ for $x \in[0,1]$ with boundary conditions $u(0, t)=u_{L}$ and $u(1, t)=u_{R}$. Here $g(x, t)$ is some function which you will code by using a function file, so that you can change g without changing the rest of the code. Test your code by letting $a=2$ and the exact solution be $u(x, t)=5-2 x+x(1-x) e^{-t}$. Choose g to satisfy $g(x, t)=u_{t}-a u_{x x}$. Again, compare the exact and approximate solutions at $t=0.5$ and $x=0.5$ for the same values of h as in (1).
(3) Solve the same inital-value problem as in (1), this time using CrankNicolson. It is your responsibility to find, or code, a function to solve the resulting tridiagonal matrix system.
(a) Compare the exact solution and numerical solution at $t=0.5$ for very different choices of r. For one fixed value of r, choose some initial h and repeatedly halve it to show that the error is really $O\left(h^{2}\right)$.
(b) Compare the exact solution and numerical solution at $t=0.5$ for very different choices of $\rho=k / h$. For one fixed value of ρ, choose some initial h and repeatedly halve it to show that the error is really $O\left(h^{2}\right)$.
(4) Consider the equation $u_{t}=u_{x x}$ for $x \in[0,1]$ and for all $t \geq 0$ with mixed boundary conditions $a_{L} u_{x}(0, t)+b_{L} u(0, t)=c_{L}$ and $a_{R} u_{x}(0, t)+$ $b_{R} u(0, t)=c_{R}$. Write down the forward-time central-space explicit difference equation (by hand) as the matrix equation

$$
\vec{u}_{j+1}=A \vec{u}_{j}+\vec{d}_{j}
$$

where $\vec{u}_{j}=\left(u_{0, j}, u_{1, j}, \ldots ., u_{n, j}\right)^{\prime}$ in two ways:
(a) discretize $u_{x}(0, t)$ and $u_{x}(1, t)$ using second-order centered differences
(b) discretize $u_{x}(0, t)$ and $u_{x}(1, t)$ using second-order forward difference and backward difference respectively. (this part will be much messier!)

Please zip all m-files into one file called "hw2" and email to me at heather@math.ohio-state.edu by 11:00 am Friday, April 22. Handwritten files should be turned in by the beginning of class the same day.

