MATH 606 - Homework \#1 - due April 8, 2005

(1) Given an $n \mathrm{x} 1$ array, x, write a Matlab function that accepts x as input and, without using for loops, returns as output a vector y defined in each of the following cases: (Note: you are not allowed to pass n as an input.)
(a) $y_{i}=x_{n-i+1} \quad \forall i=1, \ldots, n$
(b) $y_{i}=x_{n / 2+i} \quad \forall i=1, \ldots n / 2$ and $y_{i}=x_{i-n / 2} \quad \forall i=n / 2+1, \ldots, n$ (for this part, first check that n is even and return an error if it isn't)
(c) $y_{i}=x_{i+1}-2 x_{i}+x_{i-1} \quad \forall i=1, \ldots, n$, where periodic boundary conditions are assumed - i.e. $x_{0}=x_{n}$ and $x_{n+1}=x_{1}$.
(2) Using as few instructions as possible and no for loops, write a Matlab function which takes n as input and generates the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
n+1 & n+2 & n+3 & \ldots & 2 n \\
2 n+1 & 2 n+2 & 2 n+3 & \ldots & 3 n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n(n-1)+1 & n(n-1)+2 & n(n-1)+3 & \ldots & n^{2}
\end{array}\right]
$$

(3) Consider the integral

$$
E_{n}:=\int_{0}^{1} x^{n} e^{x-1} d x
$$

for $n=0,1,2 \ldots$
(a) Show explicitly using integration by parts that we can replace this definition by the following recursive definition of E_{n}

$$
E_{n}=1-n E_{n-1} \quad \text { with } \quad E_{0}=1-1 / e
$$

(b) Write a short computer program (showing results in double precision) to calculate $E_{0}, E_{1}, E_{2}, \ldots, E_{50}$ using the recursive formula in (a). Your result should not seem "reasonable". Why?
(c) To understand what's happening, carry out the following analytical calculation. Let $\tilde{E}_{0}=E_{0}+\epsilon_{0}$ where $\epsilon_{0}=\epsilon \ll 1$. Then $\tilde{E}_{1}=E_{1}+\epsilon_{1}$, and $\tilde{E}_{2}=E_{2}+\epsilon_{2}, \ldots$ for some ϵ_{n} 's >0. Calculate $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{4}$. What do you conjecture is the relationship between ϵ_{n} and ϵ_{0} ? Does this explain why your numerical calculation was not "reasonable"?
(4) Asymptotics:
(a) Show that $\sin (x)=O(1)$, but that $\sin (x) \nsim 1$ as $x \rightarrow \infty$
(b) Show that $\ln (x)=o\left(x^{m}\right)$ for all integers $m>0$ as $x \rightarrow \infty$
(c) Show that $\sinh (x) \sim \cosh (x) \sim e^{x} / 2$ as $x \rightarrow \infty$
(d) Find the asymptotic behavior of $e^{1 / x}$ as $x \rightarrow 0$
(5) Let $u(x)=x \sin (x)$. Generate the table:

h	$D_{h}^{(f)} u(1)$	error $^{(f)}$	$D_{h}^{(c)} u(1)$	error $^{(c)}$	$D_{h}^{(2 f)} u(1)$	error $^{(2 f)}$
.1						
$.1 / 2$						
$.1 / 2^{2}$						
$.1 / 2^{3}$						
$.1 / 2^{4}$						
$.1 / 2^{5}$						
$.1 / 2^{6}$						
$.1 / 2^{8}$						
$.1 / 2^{10}$						

where:

$$
\begin{gathered}
D_{h}^{(f)} u(x):=\frac{u(x+h)-u(x)}{h} \\
D_{h}^{(c)} u(x):=\frac{u(x+h)-u(x-h)}{2 h} \\
D_{h}^{(2 f)} u(x):=\frac{-u(x+2 h)+4 u(x+h)-3 u(x)}{2 h}
\end{gathered}
$$

and $\operatorname{error}(\cdot)=u^{\prime}(1)-D_{h}^{(\cdot)} u(1)$. Please print the value of the D's to at least 10 decimal digits and the errors in scientific notation.
(6) Consider the "standard" second-order central difference approximations for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, namely

$$
f^{\prime}(x) \sim \frac{f(x+h)-f(x-h)}{2 h} \text { and } f^{\prime \prime}(x) \sim \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} .
$$

(Note: know how to derive these!) For fixed x, show that you obtain the same approximation if you take $p(x)$ to be the unique quadratic polynomial which passes through the three points $(x-h, f(x-h))$, $(x+h, f(x+h)),(x, f(x))$ and instead calculate $p^{\prime}(x)$ and $p^{\prime \prime}(x)$.

