Solutions:

Taubes Problems -

1. If I know the graph of $u(1, x)=y$, then I can approximate some values for u and various values of x, say for two values of $x, x=x_{1}$ and x_{2}. Suppose that I get that $u\left(1, x_{1}\right) \approx y_{1}$ and $u\left(1, x_{2}\right) \approx y_{2}$. Then use the fact that for all x we have the formula

$$
u(1, x)=R e^{-x^{2} /(4 \mu)}
$$

so that in particular

$$
y_{1} \approx R e^{-x_{1}^{2} /(4 \mu)}
$$

and

$$
y_{2} \approx R e^{-x_{2}^{2} /(4 \mu)}
$$

We now have a system of two equations with two unknowns (R and μ) that we can solve. Notice that possibly the easiest way to do this is to take $x_{1}=0$ if we can. Then we get that $y_{1} \approx R$, and we only need work to solve for μ.
2. Case $c>0$: Here $B(x)=c_{1} e^{\sqrt{c} x}+c_{2} e^{-\sqrt{c x} x}$. Thus $B^{\prime}(x)=c_{1} \sqrt{c} e^{\sqrt{c} x}-c_{2} \sqrt{c} e^{-\sqrt{c} x}$ and $B^{\prime \prime}(x)=$ $c_{1} c e^{\sqrt{c} x}+c_{2} c e^{-\sqrt{c} x}=c B$. Thus the ODE $B^{\prime \prime}=c B$ is satisfied by this choice of B.

Case $c=0$: Here $B(x)=a x+b$, so $B^{\prime}(x)=a$ and $B^{\prime \prime}(x)=0=c B$. Again the ODE $B^{\prime \prime}=c B$ is satisfied by this choice of B.

Case $c<0$: Here $B(x)=c_{1} \cos (\sqrt{-c} x)+c_{2} \sin (\sqrt{-c} x)$. Thus $B^{\prime}(x)=-c_{1} \sqrt{-c} \sin (\sqrt{-c} x)+$ $c_{2} \sqrt{-c} \cos (\sqrt{-c} x)$, and $B^{\prime \prime}(x)=c_{1} c \cos (\sqrt{-c} x)+c_{2} c \sin (\sqrt{-c} x)=c B$. Again, the ODE $B^{\prime \prime}(x)=$ $c B(x)$ is satisfied by our choice of B.
4. (a) If $B(x)=\alpha e^{5 x}+\beta e^{-5 x}$, then $B(0)=\alpha+\beta=0$ and $B(1)=\alpha e^{5}-\alpha e^{-5}=0$, which implies that $\alpha\left(e^{5}-e^{-5}\right)=0$ so that $\alpha=0$ must be true. Thus $B(x)=0$.
(c) If $B(x)=\alpha \cos (\pi x)+\beta \sin (\pi x)$, then $B(0)=\alpha=0$ and $B(1)=-\alpha=0$. So $\alpha=0$ must be true and β can be any real number.
(d) If $B(x)=\alpha \cos (2 \pi x)+\beta \sin (2 \pi x)$, then $B(0)=\alpha=0$ and $B(1)=\alpha=0$ and again β is free to be any real number.

Problem 12 from Parkhurst Chapter 11:

$$
u_{t}=M u_{x x}+(b-f) u
$$

Here every term in the equation ends up having units of (pop. density)/day if u represents the population density of the insects at position x and time t .

