Solutions:

Taubes Problems -

1. If I know the graph of u(1, x) = y, then I can approximate some values for u and various values of x, say for two values of x, $x = x_1$ and x_2 . Suppose that I get that $u(1, x_1) \approx y_1$ and $u(1, x_2) \approx y_2$. Then use the fact that for all x we have the formula

$$u(1,x) = Re^{-x^2/(4\mu)}$$

so that in particular

$$y_1 \approx Re^{-x_1^2/(4\mu)}$$

and

$$y_2 \approx Re^{-x_2^2/(4\mu)}$$

We now have a system of two equations with two unknowns $(R \text{ and } \mu)$ that we can solve. Notice that possibly the easiest way to do this is to take $x_1 = 0$ if we can. Then we get that $y_1 \approx R$, and we only need work to solve for μ .

2. Case c > 0: Here $B(x) = c_1 e^{\sqrt{cx}} + c_2 e^{-\sqrt{cx}}$. Thus $B'(x) = c_1 \sqrt{c} e^{\sqrt{cx}} - c_2 \sqrt{c} e^{-\sqrt{cx}}$ and $B''(x) = c_1 c e^{\sqrt{cx}} + c_2 c e^{-\sqrt{cx}} = cB$. Thus the ODE B'' = cB is satisfied by this choice of B.

Case c = 0: Here B(x) = ax + b, so B'(x) = a and B''(x) = 0 = cB. Again the ODE B'' = cB is satisfied by this choice of B.

Case c < 0: Here $B(x) = c_1 \cos(\sqrt{-cx}) + c_2 \sin(\sqrt{-cx})$. Thus $B'(x) = -c_1 \sqrt{-c} \sin(\sqrt{-cx}) + c_2 \sqrt{-c} \cos(\sqrt{-cx})$, and $B''(x) = c_1 c \cos(\sqrt{-cx}) + c_2 c \sin(\sqrt{-cx}) = cB$. Again, the ODE B''(x) = cB(x) is satisfied by our choice of B.

- 4. (a) If $B(x) = \alpha e^{5x} + \beta e^{-5x}$, then $B(0) = \alpha + \beta = 0$ and $B(1) = \alpha e^5 \alpha e^{-5} = 0$, which implies that $\alpha(e^5 e^{-5}) = 0$ so that $\alpha = 0$ must be true. Thus B(x) = 0.
 - (c) If $B(x) = \alpha \cos(\pi x) + \beta \sin(\pi x)$, then $B(0) = \alpha = 0$ and $B(1) = -\alpha = 0$. So $\alpha = 0$ must be true and β can be any real number.
 - (d) If $B(x) = \alpha \cos(2\pi x) + \beta \sin(2\pi x)$, then $B(0) = \alpha = 0$ and $B(1) = \alpha = 0$ and again β is free to be any real number.

Problem 12 from Parkhurst Chapter 11:

$$u_t = M u_{xx} + (b - f)u$$

Here every term in the equation ends up having units of (pop. density)/day if u represents the population density of the insects at position x and time t.