My version of a solution to problem 4.19 in the 18th homework set:
\#19 First, I will prove a lemma to use in the proof of the main problem.
Lemma: $1+2 n \leq 2^{n}$ for all $n \in \mathbb{N}$ such that $n \geq 3$.

Proof of Lemma:

Let $\mathrm{n}=3$. Then $1+2 n=7 \leq 8=2^{n}$. Now suppose for some $w \in \mathbb{N}$ that $1+2 w \leq 2^{w}$. We want to show that

$$
1+2(w+1) \leq 2^{w+1}
$$

Since $w \in \mathbb{N}$ it is clear that $w \geq 1 / 2$. By property B, $2 w \geq 1$ and by property A, $2 w+(2 w+2) \geq 1+(2 w+2)$, or $4 w+2 \geq 2 w+3$. The induction hypothesis states that $1+2 w \leq 2^{w}$, so again by B , we get that $2+4 w \leq 2^{w+1}$. Property D implies then that

$$
2^{w+1} \geq 2 w+3=2(w+1)+1
$$

which is what we wanted to show. Finally by the axiom of induction, $1+2 n \leq 2^{n}$ for all $n \in \mathbb{N}$ such that $n \geq 3$.

Main Problem: Prove that $n^{2} \leq 2^{n}+1$.

Proof of main problem:

Let $n=1$. Then $n^{2}=1 \leq 2^{1}+1=2^{n}+1$. Let $n=2$. Then $n^{2}=4 \leq 2^{2}+1=2^{n}+1$. So the statement is true for $n=1,2$ and we need only show it is true for $n \geq 3$. We can do this by induction.
Let $n=3$. Then $n^{2}=9 \leq 2^{3}+1=9=2^{n}+1$. Now assume that for some $w \in \mathbb{N}, w \geq 3$, that $w^{2} \leq 2^{w}+1$. We need to show that this implies that $(w+1)^{2} \leq 2^{w+1}+1$.

By the lemma, we know that $1+2 w \leq 2^{w}$. Since $2^{w}=2^{w} \cdot 1=$ $2^{w}(2-1)=2^{w+1}-2^{w}$, we have that

$$
1+2 w \leq 2^{w+1}-2^{w}
$$

and by property A

$$
2^{w}+1+2 w \leq 2^{w+1}
$$

The induction hypothesis and property A imply that $w^{2}+2 w \leq 2^{w}+$ $1+2 w \leq 2^{w+1}$. So, by A and D, we have

$$
(w+1)^{2}=w^{2}+2 w+1 \leq 2^{w+1}+1
$$

which is what we wanted to show.
By the axiom of induction, $n^{2} \leq 2^{n}+1$ for all $n \geq 3$, and since we showed that $n^{2} \leq 2^{n}+1$ for $n=1,2$, we have that in fact $n^{2} \leq 2^{n}+1$ for all $n \in \mathbb{N}$.

