Homework Set # 8 — Math 435 — SOLUTIONS Due date: 3/13/2013

1. (a) Find the Fourier sine series, the Fourier cosine series and the full Fourier series expansion
of e* on (0,2) or (—2,2) as appropriate. (Note that once you’ve done the work for finding
the sine and cosine series coefficients, you need only divide by 2 and change the limits of
integration in the integrals used to find the coeffs for the full series - this will save you
alot of work!)

(b) Use MATLAB to plot the approximation by each type of series (for example, using
the full series we have f(z) ~ 2Ao + Z;V:l(An cos(nmz/l) + By sin(nmzx/l))) for N =
3,5,10, 100, each one plotted on the same axes along with a plot of the actual function
f(x) = € (you should have one plot for each type of Fourier series). All of these plots
should only be over the interval [-2,2] - and make sure you label each curve. [Let me
know if you need some guidance on these MATLAB parts]

Solution:

For the sine series, we want to write
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2
n=1

and we need to find the coefficients A,, that make this equality true.
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We can add the final integral to both sides to get that
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Fourier Sine Series Approx for €
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Similarily, we can find the coeffs for the cosine series by:
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We can add the final integral to both sides to get that
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Fourier Cosine Series Approx for €
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If we use the same integration by parts, but change our limits of integration to [—2, 2]
in order to find the full Fourier series for e*, we get
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so that B, = 42_(;172:2(62 —e72). We also have By = %fi et dr = 62*26



(c) Now plot (one for each FS type) just the approximate Fourier series for x € [—10, 10]
with V = 10. What do you notice? Explain the differences in what you see.
Solution

In the case of the sine series, we see the result we had on [0, 2] mirrored over the line z = y
to [—2,0] (so that it is odd) and then the region from [—2,2] is repeated periodically

over the whole line. This is because a sine series is always an odd function and of period
20 = 4.



Fourier Sine Series for €* defined over [-2,2] plotted for x in [-10,10]

In the case of the cosine series, we see the result we had on [0, 2] mirrored over the y-axis
to [—2,0] (so that it is even) and then the region from [—2,2] is repeated periodically
over the whole line. This is because a cosine series is always an even function and of
period 21 = 4.



Fourier Cosine Series for €* defined over [-2,2] plotted for x in [-10,10]
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In the case of the full series, we see the plot for the full F'S obtained for (—2,2) repeated
periodically of period 4 across the real line. This is because the full fourier series is
always a periodic function of period 2I, and the full fourier series was created to match
e” on the fundamental period interval (—2,2).



Full Fourier Series for e* defined over [-2,2] plotted for x in [-10,10]
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where u(x,0) = f(z) — U(z), THEN u(x,t) = a(x,t) + U(x) solves uzy = u; where

and u(z,0) = f(x).

[**NOTE: The point of this problem is that it allows us to solve BVP’s with nonhomogeneous
boundary conditions by building a solution from the homogeneous b.c. problem and the
corresponding steady-state problem... Notice that the seperation of variables technique breaks
down if we have inhomogeneous b.c.’s]

Solution:

Letting v = @ + U, we have u; = 4; + Uy = @z + 0 since U is independent of t. Also, we
have Uy, = Ugy + Upy = Ugq + 0, since Uy, = 0. By the PDE for 4, we then have u; = ;.



Finally, v(0,t) = @(0,t) + U(0) = 04+ g = g and u(l,t) = a(l,t) + U(l) = 0+ h = h. The
initial condition is obtained by wu(z,0) = a(x,0) + U(x) = f(x) — U(z) + U(x) = f(x).

. Solve problem 8 from section 5.1 of Strauss using exercise one above.

The system we want to solve is: u; = g, on [0, 1], with conditions w(0,t) = 0, u(1,t) = 1,
u(z,0) = bz/2 for x € (0,2/3) and u(x,0) = 3 — 2z for x € (2/3,1). The steady state
solution to this problem satisfies Uy, = 0 and U(0) = 0, U(1) = 1, so U(z) = =. We
need to then solve the homogeneous dirichlet be heat equation @ = @y, with @(0,t) = 0
and @(1,t) = 0, and @(z,0) = f(x) —x. We know the general solution to this BVP is
u(z, t) =7, Ape Tt sin(nmz), so applying the initial condition we have

ZA sin(nmx) = f(z) —x .

We can find the coefficients A,, by recognizing this has the form of a Fourier sine series, and
SO
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Integrating we have
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. A string (with density p = 1 and tension T = 4) with fixed ends at z = 0 and x = 10 is hit
by a hammer so that u(z,0) = 0 and
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0 otherwise .

Find the height of the string u(x,t) for all x € (0,10) and all £ > 0. (Your answer WILL be
a bit messy...)

Solution

Our solution to the BVP is u(x,t) = Yo7 (Ansin(®Z) 4 B, cos("E)) sin(2FE.  Applying
the first initial condition we have

ZB sin( mm =0



so that B, = 0 for every n. Applying the second initial condition, we have

@0 = 5 10

0 otherwise .
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We can now use the fact that we have a Fourier sine series here to find the coefficients A,,.
We will need
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. Problem 15 section 5.2 of Strauss.
Solution

Since |sin(x)| is an even function, the coefficients for the sine terms in the full fourier series
will vanish (=0) and we will have a pure cosine series.

. Using parts of our discussion in class, solve the fourth order equation gy = u if u(0,t) =0,
w(3,t) =0, uze(0,t) =0, and uy,(3,t) = 0.

Solution

Using separation of variables, we have X;) = TTI = A. We know by our work in class that

since we have the above homogeneous boundary conditions, we will have eigenvalues A > 0
only. So, we will check the cases A = 0 and A > 0. If A = 0, we have X (z) = az® +bz? +cx+d
and applying our boundary conditions we get: d =0, 27a +9b+ 3¢ = 0, 2b = 0 and 18a = 0.
Thus a = b =c=d =0 and we get only the trivial solution.

Now we check A = 8% = 0. Then the characteristic equation for X — 84X = 0 is 4 — g4 =
We can factor this as (72 — 82)(r? + 82) = 0 so that the roots are r = +3, +i3 and X (z) =
c1€7% 4 coe™P% 4¢3 cos(Bx) + ey sin(Bz). Applying the first three boundary conditions we get:

cgt+cat+e3=0
1638 + e3¢0 + ¢3c08(383) + ey sin(38) = 0
B*(c1+c2—c3) =0

This tells us that ¢3 = 0 and so ¢a = —c;. Subbing that into the second equation gives
c1(e38 — e73P) 4 ¢4sin(38) = 0. Now applying our final condition gives 5%(cie?? — cie™% —
¢y sin(34)) = 0. This leads us to conclude that ¢; = 0 and so ¢4 sin(35) = 0. Our only hope
for a nontrivial solution is to have 33 = n7 or 8 = %=t. Thus we get infinitely many solutions

for X, one for each n, and
nmx
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Now we can solve for the corresponding functions T;, with A, = g* = (%)% T, = %Tn, SO

Xn(z) = Cysin(

that T,, = Dpe 81 *_ Our final solution is then

ninde mrx
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Aside: Because our BC’s meet the symmetry condition for operator L(u) = tuzyz, Which we
discussed in class, we know that if we had an initial condition, at this point we can use the
Fourier series method to uniquely determine the coefficients A,,.



