
Homework Set # 8 – Math 435 – SOLUTIONS Due date: 3/13/2013

1. (a) Find the Fourier sine series, the Fourier cosine series and the full Fourier series expansion
of ex on (0, 2) or (−2, 2) as appropriate. (Note that once you’ve done the work for finding
the sine and cosine series coefficients, you need only divide by 2 and change the limits of
integration in the integrals used to find the coeffs for the full series - this will save you
alot of work!)

(b) Use MATLAB to plot the approximation by each type of series (for example, using
the full series we have f(x) ≈ 1

2A0 +
∑N

n=1(An cos(nπx/l) + Bn sin(nπx/l))) for N =
3, 5, 10, 100, each one plotted on the same axes along with a plot of the actual function
f(x) = ex (you should have one plot for each type of Fourier series). All of these plots
should only be over the interval [-2,2] - and make sure you label each curve. [Let me
know if you need some guidance on these MATLAB parts]

Solution:

For the sine series, we want to write

ex =
∞
∑

n=1

Ansin(
nπx

2
)

and we need to find the coefficients An that make this equality true.

An =

∫ 2

0
ex sin(

nπx

2
) dx

= −
2

nπ
ex cos(

nπx

2
)|20 +

2

nπ

∫ 2

0
ex cos(

nπx

2
) dx

= −
2

nπ

(

e2(−1)n − 1
)

+
4

n2π2
ex sin(

nπx

2
)|20 −

4

n2π2

∫ 2

0
ex sin(

nπx

2
) dx

= −
2

nπ

(

e2(−1)n − 1
)

−
4

n2π2

∫ 2

0
ex sin(

nπx

2
) dx

We can add the final integral to both sides to get that

(1 +
4

n2π2
)

∫ 2

0
ex sin(

nπx

2
) dx = −

2

nπ

(

e2(−1)n − 1
)

or

An =

∫ 2

0
ex sin(

nπx

2
) dx = −

2nπ

n2π2 + 4

(

e2(−1)n − 1
)
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Fourier Sine Series Approx for ex

Similarily, we can find the coeffs for the cosine series by:

Bn =

∫ 2

0
ex cos(

nπx

2
) dx

=
2

nπ
ex sin(

nπx

2
)|20 −

2

nπ

∫ 2

0
ex sin(

nπx

2
) dx

=
4

n2π2
ex cos(

nπx

2
)|20 −

4

n2π2

∫ 2

0
ex cos(

nπx

2
) dx

=
4

n2π2

(

e2(−1)n − 1
)

−
4

n2π2

∫ 2

0
ex cos(

nπx

2
) dx

We can add the final integral to both sides to get that

(1 +
4

n2π2
)

∫ 2

0
ex sin(

nπx

2
) dx =

4

n2π2

(

e2(−1)n − 1
)

or

Bn =

∫ 2

0
ex sin(

nπx

2
) dx =

4

n2π2 + 4
(e2(−1)n − 1)

and B0 =
∫ 2
0 ex dx = e2 − 1.
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Fourier Cosine Series Approx for ex

If we use the same integration by parts, but change our limits of integration to [−2, 2]
in order to find the full Fourier series for ex, we get

An =
1

2

∫ 2

−2
ex sin(

nπx

2
) dx

= −
(−1)n

nπ
(e2 − e−2)−

2

n2π2

∫ 2

0
ex sin(

nπx

2
) dx

or An = − (−1)nnπ
4+n2π2 (e

2 − e−2).

Similarly,

Bn =
1

2

∫ 2

−2
ex cos(

nπx

2
) dx

=
2(−1)n

n2π2
(e2 − e−2)−

2

n2π2

∫ 2

−2
ex cos(

nπx

2
) dx

so that Bn = 2(−1)n

4+n2π2 (e
2 − e−2). We also have B0 =

1
2

∫ 2
−2 e

x dx = e2−e−2

2 .
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(c) Now plot (one for each FS type) just the approximate Fourier series for x ∈ [−10, 10]
with N = 10. What do you notice? Explain the differences in what you see.

Solution

In the case of the sine series, we see the result we had on [0, 2] mirrored over the line x = y
to [−2, 0] (so that it is odd) and then the region from [−2, 2] is repeated periodically
over the whole line. This is because a sine series is always an odd function and of period
2l = 4.



−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8
Fourier Sine Series for ex defined over [−2,2] plotted for x in [−10,10]

In the case of the cosine series, we see the result we had on [0, 2] mirrored over the y-axis
to [−2, 0] (so that it is even) and then the region from [−2, 2] is repeated periodically
over the whole line. This is because a cosine series is always an even function and of
period 2l = 4.
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Fourier Cosine Series for ex defined over [−2,2] plotted for x in [−10,10]

In the case of the full series, we see the plot for the full FS obtained for (−2, 2) repeated
periodically of period 4 across the real line. This is because the full fourier series is
always a periodic function of period 2l, and the full fourier series was created to match
ex on the fundamental period interval (−2, 2).
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Full Fourier Series for ex defined over [−2,2] plotted for x in [−10,10]

2. Show that IF U(x) is a (steady-state) solution to Uxx = 0 on (0, l) with

U(0) = g

U(l) = h

for some fixed constants g, h,and IF ũ is a solution to ũxx = ũt on (0, l) with

ũ(0, t) = 0

ũ(l, t) = 0

where ũ(x, 0) = f(x)− U(x), THEN u(x, t) = ũ(x, t) + U(x) solves uxx = ut where

u(0, t) = g

u(l, t) = h

and u(x, 0) = f(x).

[**NOTE: The point of this problem is that it allows us to solve BVP’s with nonhomogeneous
boundary conditions by building a solution from the homogeneous b.c. problem and the
corresponding steady-state problem... Notice that the seperation of variables technique breaks
down if we have inhomogeneous b.c.’s]

Solution:

Letting u = ũ + U , we have ut = ũt + Ut = ũt + 0 since U is independent of t. Also, we
have uxx = ũxx + Uxx = ũxx + 0, since Uxx = 0. By the PDE for ũ, we then have ut = uxx.



Finally, u(0, t) = ũ(0, t) + U(0) = 0 + g = g and u(l, t) = ũ(l, t) + U(l) = 0 + h = h. The
initial condition is obtained by u(x, 0) = ũ(x, 0) + U(x) = f(x)− U(x) + U(x) = f(x).

3. Solve problem 8 from section 5.1 of Strauss using exercise one above.

The system we want to solve is: ut = uxx on [0, 1], with conditions u(0, t) = 0, u(1, t) = 1,
u(x, 0) = 5x/2 for x ∈ (0, 2/3) and u(x, 0) = 3 − 2x for x ∈ (2/3, 1). The steady state
solution to this problem satisfies Uxx = 0 and U(0) = 0, U(1) = 1, so U(x) = x. We
need to then solve the homogeneous dirichlet bc heat equation ũt = ũxx with ũ(0, t) = 0
and ũ(1, t) = 0, and ũ(x, 0) = f(x) − x. We know the general solution to this BVP is
u(x, t) =

∑

∞

n=1Ane
−n2π2t sin(nπx), so applying the initial condition we have

u(x, 0) =
∞
∑

n=1

An sin(nπx) = f(x)− x .

We can find the coefficients An by recognizing this has the form of a Fourier sine series, and
so

An = 2

∫ 1

0
(f(x)− x) sin(nπx) dx = 2

∫ 2/3

0

3x

2
sin(nπx) dx+ 2

∫ 1

2/3
(3− 3x) sin(nπx) dx .

Integrating we have

An = 3

(

−x

nπ
cos(nπx)|

2/3
0 +

1

n2π2
sin(nπx)|

2/3
0

)

+ 6

(

−1

nπ
cos(nπx)|12/3 +

x

nπ
cos(nπx)|12/3 −

1

n2π2
cos(nπx)|12/3

)

=

(

−2

nπ
cos(2nπ/3) +

3

n2π2
sin(2nπ/3)

)

+

(

−6(−1)n

nπ
+

6

nπ
cos(2nπ/3) +

6(−1)n

nπ
−

4

nπ
cos(2nπ/3)−

6(−1)n

n2π2
+

6

n2π2
cos(2nπ/3)

)

=
6

n2π2
cos(2nπ/3)−

6(−1)n

n2π2
+

3

n2π2
sin(2nπ/3)

4. A string (with density ρ = 1 and tension T = 4) with fixed ends at x = 0 and x = 10 is hit
by a hammer so that u(x, 0) = 0 and

∂u

∂t
(x, 0) =

{

V if x ∈ [−δ + 5, δ + 5]

0 otherwise .

Find the height of the string u(x, t) for all x ∈ (0, 10) and all t > 0. (Your answer WILL be
a bit messy...)

Solution

Our solution to the BVP is u(x, t) =
∑

∞

n=1

(

An sin(
nπt
5 ) +Bn cos(

nπt
5 )

)

sin(nπx10 . Applying
the first initial condition we have

u(x, 0) =

∞
∑

n=1

Bn sin(
nπx

10
= 0



so that Bn = 0 for every n. Applying the second initial condition, we have

∂u

∂t
(x, 0) =

∞
∑

n=1

nπAn

5
sin(

nπx

10

{

V if x ∈ [−δ + 5, δ + 5]

0 otherwise .

We can now use the fact that we have a Fourier sine series here to find the coefficients An.
We will need

nπAn

5
=

2

10

∫ 5+δ

5−δ
V sin(

nπx

10
) dx =

−2V

nπ
cos(

nπx

10
)|5+δ
5−δ

Thus,

An =
−10V

n2π2

(

cos(
nπ

2
+

nπδ

10
)− cos(

nπ

2
−

nπδ

10
)

)

5. Problem 15 section 5.2 of Strauss.

Solution

Since | sin(x)| is an even function, the coefficients for the sine terms in the full fourier series
will vanish (=0) and we will have a pure cosine series.

6. Using parts of our discussion in class, solve the fourth order equation uxxxx = ut if u(0, t) = 0,
u(3, t) = 0, uxx(0, t) = 0, and uxx(3, t) = 0.

Solution

Using separation of variables, we have X(4)

X = T ′

T = λ. We know by our work in class that
since we have the above homogeneous boundary conditions, we will have eigenvalues λ ≥ 0
only. So, we will check the cases λ = 0 and λ > 0. If λ = 0, we have X(x) = ax3+bx2+cx+d
and applying our boundary conditions we get: d = 0, 27a+ 9b+ 3c = 0, 2b = 0 and 18a = 0.
Thus a = b = c = d = 0 and we get only the trivial solution.

Now we check λ = β4 = 0. Then the characteristic equation for X(4)− β4X = 0 is r4− β4 =.
We can factor this as (r2 − β2)(r2 + β2) = 0 so that the roots are r = ±β, ±iβ and X(x) =
c1e

βx+ c2e
−βx+ c3 cos(βx)+ c4 sin(βx). Applying the first three boundary conditions we get:

c1 + c2 + c3 = 0

c1e
3β + c2e

−3β + c3 cos(3β) + c4 sin(3β) = 0

β2(c1 + c2 − c3) = 0

This tells us that c3 = 0 and so c2 = −c1. Subbing that into the second equation gives
c1(e

3β − e−3β) + c4 sin(3β) = 0. Now applying our final condition gives β2(c1e
3β − c1e

−3β −
c4 sin(3β)) = 0. This leads us to conclude that c1 = 0 and so c4 sin(3β) = 0. Our only hope
for a nontrivial solution is to have 3β = nπ or β = nπ

3 . Thus we get infinitely many solutions
for X, one for each n, and

Xn(x) = Cn sin(
nπx

3
) .

Now we can solve for the corresponding functions Tn with λn = β4 = (nπ3 )4. T ′

n = n4π4

81 Tn, so

that Tn = Dne
n
4
π
4
t

81 . Our final solution is then

u(x, t) =
∞
∑

n=1

Ane
n
4
π
4
t

81 sin(
nπx

3
) .



Aside: Because our BC’s meet the symmetry condition for operator L(u) = uxxxx which we
discussed in class, we know that if we had an initial condition, at this point we can use the
Fourier series method to uniquely determine the coefficients An.


