Homework Set \# 6 - Math 435 - Summer

1. Solve $u_{x x}+u_{y y}=0$ on the rectangle $0<x<2,0<y<3$, with boundary conditions

$$
\begin{aligned}
u_{x}(0, y) & =0 \\
u_{x}(2, y) & =0 \\
u(x, 0) & =0 \\
u(x, 3) & =3 x
\end{aligned}
$$

2. Consider Laplace's equation on the disk $x^{2}+y^{2}<9$ with boundary condition $u(x, y)=\frac{x^{2}}{3}$ when $x^{2}+y^{2}=9$.
(a) Without solving the equation, give the value of u at the center of the disk.
(b) Solve the equation.
3. Use separation of variables to derive the solution $u(r, \theta)$ to Laplace's equation on the annulus $1<r<3$ with boundary conditions:

$$
\begin{aligned}
& u(1, \theta)=\sin ^{2}(\theta) \\
& u(3, \theta)=0
\end{aligned}
$$

4. Consider the steady-state temperature distribution inside a spherical ball ($r<4$), whose outer boundary sphere is held at a constant temperature of 10 degrees. According to the maximum principle for Laplace's equation in 3D, what can you conclude about $u(x, y, z)$ inside the ball? What does the minimum principle tell you?
5. Problem 5 from the exercises for section 7.1 in Strauss.
6. Show that the Green's function is unique for a given domain. (hint: take the difference of two of them and use the proof that solutions to Laplace's equation with Dirichlet b.c.'s are unique)
7. The Neumann function $N(x, y)$ for a domain D is defined exactly like the Green's function in Section 7.3 except that (ii) is replaced by the Neumann boundary condition

$$
\frac{\partial N}{\partial n}=0
$$

for $x \in \partial D$. In this case, we get the analogous statement to Theorem 7.3.1: If $N\left(x, x_{0}\right)$ is the Neumann function, then the solution of the Dirichlet problem is given by the formula

$$
u\left(x_{0}\right)=-\iint_{\partial D} N\left(x, x_{0}\right) \frac{\partial u}{\partial n} d S .
$$

Show this is true.
8. Use Green's functions to solve

$$
\Delta u=0
$$

inside the ball of radius $r=3$, if we assume that $u=\frac{x+y}{3}$ on the boundary of the ball (the sphere of radius 3). Notice that the Green's function expression on a sphere that we talked about in class cannot be used to find the value of u at the origin (why?). How could we find the value of u at the origin? (note: you don't actually have to find the value, just describe how to)

