
Homework Set # 5 – SOLUTIONS – Math 435

1. Consider the Fourier sine series of each of the following functions. Do not compute the
coefficients, but use the pointwise convergence theorem to discuss the convergence of each of
the series. Explain what you would expect to see if you plotted a partial sum approximation
via F.S. of each function, paying attention to what would happen at the endpoints.

(a) f(x) = x3 on (0, l)

(b) f(x) = lx − x2 on (0, l)

(c) f(x) = 1
x2 on (0, l).

Solutions:

(a) Since f(x) = x3 and f ′(x) = 3x2 are continuous functions on [0, l] for any l ∈ R, we
know by the pointwise convergence theorem that the fourier series for f will converge to
f on (0, l). There is a mismatch between the value of x3 and that of the sine functions
sin(nπx/l) at x = l, so I would expect the partial sums to approach l3 for x near l,
oscillating in trying to do so, and then abruptly diving down to 0 at x = l. As the
number of terms in the partial sum increases, though, the region over which we see this
behavior shrinks away.

(b) Again, f and f ′ are continuous on [0, l], so the fourier series converges to f on (0, l)
pointwise. This time, there is no mismatch between the boundary values of f and the
sine functions so the partial sums will converge pointwise on [0, l]. In fact, the uniform
convergence theorem applied here, and we will get uniform convergence of the Fourier
series to f on [0, l].

(c) Since f(x) for this case is NOT continuous on [0, l] (undefined at x = 0), we are not
guaranteed pointwise convergence of the fourier series to f(x) on (0, l). The numerical
approximation for the partial sums may be misleading in this case, so its important to
take care when looking at computer approximations (careful what you believe) when
you are not guaranteed convergence.

2. Use the pointwise convergence theorem to explain why it may be that the Fourier series of a
given function could converge even though the Fourier series of it’s derivative might not.

Solution:

The pointwise convergence theorem requires that we know that the derivative of a function
be piecewise continuous also in order to say anything about convergence of the F.S. for the
function itself. Thus, we could have a function f(x) which is piecewise continuous and has a
piecewise continuous derivative, so that its F.S. converges pointwise over (0, l) to f(x). Now,
we know that f ′(x) is piecewise continuous, but it is possible that f ′′(x) is NOT, thus giving
no guarantees about convergence of the F.S. for f ′(x).

3. Let

φ(x) =

{

1 − (1 − x)2 for 0 ≤ x < 1

(1 − x)2 for 1 ≤ x ≤ 2

(a) Find the fourier sine series for φ(x) over (0, 2).

(b) Does the series converge pointwise to φ(x)?



(c) Explain what the Gibbs phenomenon tells you about the behavior of the partial sums
of the Fourier Series for φ near x = 1. [Note: you might find it useful to look at partial
sum approximations via a computer so that you can see (b) and (c) “in action”]

Solution:

(a) We want to express φ(x) in terms of a F. sine S. So, we want

φ(x) =
∞

∑

n=1

an sin(nπx/2) .

We have

an =

∫ 2

0
φ(x) sin(nπx/2) dx

=

∫ 1

0
(1 − (1 − x)2) sin(nπx/2) dx +

∫ 2

1
(1 − x)2 sin(nπx/2) dx

= −
2 cos(nπx/2)

nπ
|10 −

(

−
2(1 − x)2 cos(nπx/2)

nπ
|10 +

∫ 1

0

4(x − 1) cos(nπx/2)

nπ
dx

)

+

(

−
2(1 − x)2 cos(nπx/2)

nπ
|21 +

∫ 2

1

4(x − 1) cos(nπx/2)

nπ
dx

)

=
−2 cos(nπ/2) + 2

nπ
−

2

nπ
−

∫ 1

0

4(x − 1) cos(nπx/2)

nπ
dx −

2(−1)n

nπ
+

∫ 2

1

4(x − 1) cos(nπx/2)

nπ
dx

=
−2 cos(nπ/2) − 2(−1)n

nπ
+

∫ 1

0

8 sin(nπx/2)

n2π2
dx −

∫ 2

1

8 sin(nπx/2)

n2π2

=
−2 cos(nπ/2) − 2(−1)n

nπ
−

16 cos(nπ/2) − 16

n3π3
+

16(−1)n − 16 cos(nπ/2)

n3π3
.

(b) By the pointwise convergence theorem, we get pointwise convergence to φ(x) for the F.S.
everywhere in (0, 2) except at the jump at x = 1, since φ is clearly piecewise continuous
and since

φ′(x) =

{

2 − 2x on 0 < x < 1

−2 + 2x for 1 < x < 2

we know φ′(x) is also piecewise continuous on (0, 2). At x = 1, the F.S. converges to
1/2, while φ(1) = 0.

(c) The Gibbs phenomenon tells us that *near* the jump, we can expect that any partial
sum of the Fourier Series will have an overshoot of about 9% of the jump size. Since our
jump size is 1, we can expect overshoots on either side of the jump of about 0.09. This is
true for ANY partial sum of the Fourier series, no matter how many terms are included,
but the more terms that are included, the closer to the jump the overshoot will lie.

4. Following the steps below solve the fourth order BVP uxxxx = ut if u(0, t) = 0, u(3, t) = 0,
uxx(0, t) = 0, and uxx(3, t) = 0, and explain how to satisfy an initial condition u(x, 0) = φ(x).

(a) Using the method we discussed in class Friday, show that all the eigenvalues of the
operator L(X) = X ′′′′ are positive.

(b) Use seperation of variables and the information you obtained in (a) to find the general
solution to the BVP.



(c) Show using the method discussed in class on Thursday that all the eigenfunctions of L
given the boundary conditions above are orthogonal to one another, and explain how to
apply an intial condition to the solution of the BVP you found in (b).

(a) Let λ be an eigenvalue of L and X be an eigenfunction so that L(X) = λX.

λ

∫ 3

0
X2 dx =

∫ 3

0
X ′′′′X dx

= X ′′′X|30 −

∫ 3

0
X ′′′X ′ dx

= −

(

X ′′X ′|30 −

∫ 3

0
(X ′′)2 dx

)

=

∫ 3

0
(X ′′)2 dx

so that all eigenvalues λ for this BVP must be positive.

(b) Try solutions u of the form u(x, t) = X(x)T (t). Then for some constant λ we have
X ′′′′ = λX and T ′ = λT . We also have that for nontrivial solutions, X(0) = 0 = X(3)
and X ′′(0) = 0 = X ′′(3). Solving for X, we know that we should try X(x) = erx and
that we will only have nontrivial solutions for positive λ by part (a). Let λ = β4, then
we know r4 = β4 and r = ±β, ±iβ, so X(x) = c1e

βx + c2e
−βx + c3 cos(βx) + c4 sin(βx)

are the real valued solutions to ODE for X. Now if we apply the boundary conditions,
we see that in fact Xn(x) = an sin(nπx

3 ) is a solution to the BVP for each n ∈ Z,
where β = nπ

3 , so that these eigenfunctions each correspond to eigenvalues λn = (nπ
3 )4.

Finally if we find Tn corresponding to Xn for each n, we have Tn = Cne(n4π4t)/(34), and
u(x, t) =

∑

∞

n=1 Xn(x)Tn(t).

(c) Suppose now that λ1 6= λ2 are distinct eigenvalues of L. Then

(λ1 − λ2)

∫ 3

0
X1X2 dx =

∫ 3

0
X ′′′′X2 − X1X

′′′′

2

=
(

X ′′′

1 X2 − X1X
′′′

2

)

|30 −

∫ 3

0
X ′′′

1 X ′

2 − X ′

1X
′′′

2 dx

= −
(

X ′′

1 X ′

2 − X ′

1X
′′

2

)

|30 +

∫ 3

0
(X ′′

1 X ′′

2 − X ′′

1 X ′′

2 ) dx

= 0

Thus, eigenfunctions of L corresponding to distinct eigenvalues of L are orthogonal.
Applying an initial condition gives u(x, 0) =

∑

∞

n=1 Xn(x) =
∑

∞

n=1(an sin(nπx
3 )) = φ(x).

Since all the eigenfunctions are orthogonal on (0, 3), we have for all n = 1, 2, 3, . . .

an =

∫ 3
0 φ(x) sin(nπx

3 ) dx
∫ 3
0 sin2(nπx

3 ) dx
.

So long as φ is at least piecewise continuous and has a p.w. cts first derivative, we know
that the resulting fourier series really will converge to φ on (0, 3), and this gives us a
valid way to determine the coefficients an in u to obtain a unique solution to the IBVP.



5. Solve the equation ut = uxx in (0, 2) with ux(0, t) = 1 and ux(2, t) = t for all t > 0, assuming
that u(x, 0) = 0. Hint: write u and it’s derivatives in terms of Fourier cosine series and
proceed as in class on Friday. Solution:

Let u(x, t) = 1
2u0(t) +

∑

∞

n=1 un(t) cos(nπx/2). Then

u0(t) =

∫ 2

0
u(x, t) dx

and

un(t) =

∫ 2

0
u(x, t) cos(nπx/2) dx

for n > 0. Also, we need ut(x, t) = 1
2v0(t) +

∑

∞

n=1 vn(t) cos(nπx/2), so that

v0(t) =

∫ 2

0
ut(x, t) dx =

du0

dt

and

vn(t) =

∫ 2

0
ut(x, t) cos(nπx/2) dx =

dun

dt
.

Finally, let uxx(x, t) = 1
2w0(t) +

∑

∞

n=1 wn(t) cos(nπx/2), so that

w0(t) =

∫ 2

0
uxx(x, t) dx = ux(x, t)|20 = t − 1

and

wn(t) =

∫ 2

0
uxx(x, t) cos(nπx/2) dx = ux(x, t) cos(nπx/2)|20 +

nπ

2

∫ 2

0
ux sin(nπx/2) dx .

Subbing in and integrating by parts once more, we get

wn(t) = [t(−1)n − 1] −
n2π2

4
un(t) .

Let λn = n2π2/4 in what follows. Now we can use the PDE to link the vi’s and wi’s to get

du0

dt
= t − 1

and
dun

dt
= [(−1)nt − 1] − λnun .

We can solve easity for u0 by integrating to get u0(t) = .5t2 − t + c0. To find the other un’s
we need to solve the ODE

u′

n + λnun = (−1)nt − 1 .

We can multiply both sides by the integrating factor eλnt to get

(uneλnt)′ = eλnt((−1)nt − 1)

so that

eλntun = (−1)n[
teλnt

λn
−

eλnt

λ2
n

] −
eλnt

λn
+ cn .



Finally,

un(t) =
(−1)n

λ2
n

[λnt − 1] −
1

λn
+ cne−λnt ,

so that

u(x, t) =
t2

4
−

t

2
+

c0

2
+

∑

n

un(t) cos(nπx/2) .

Now we need to satisfy the initial condition u(x, 0) = 0. Plugging in to our solution, we get

u(x, 0) =
c0

2
+

∑

n

(

(−1)n+1

λ2
n

−
1

λn
+ cn

)

cos(nπx/2) = 0

so that we can just choose c0 = 0 and cn = (−1)n

λ2
n

+ 1
λn

for all n > 0.


