Homework Set \# 4 - Math 435 Summer SOLUTIONS

1. Solve the heat equation (i.e. - the diffusion equation) $4 u_{x x}=u_{t}$ on a rod of length 2 if $u(x, 0)=\sin \left(\frac{\pi x}{2}\right)$ and $u(0, t)=0=u(2, t)$.
Solution:
We are solving the heat equation on a finite interval (0,2), with dirichlet boundary conditions, so we can use the general solution to this boundary value problem that we derived in class via seperation of variables:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} \pi^{2} t} \sin (n \pi x / 2) .
$$

In order to finish, we need to determine the values of the A_{n} 's. Since

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x / 2)=\sin (\pi x / 2)
$$

we can take $A_{1}=1$ and $A_{n}=0$ for all $n \neq 1$. Thus

$$
u(x, t)=e^{-\pi^{2} t} \sin (\pi x / 2) .
$$

2. Solve the wave equation $3 u_{x x}=u_{t t}$ for a clamped string of length $l=1$ (so $u(0, t)=0=$ $u(1, t))$ such that $u(x, 0)=2 \sin (\pi x) \cos (\pi x)$ and $u_{t}(x, 0)=0$. [hint: use a double angle identity from trig]
Again, we are solving the wave equation on a finite length interval $(0,1)$ with dirichlet boundary conditions, so since we have already solved this general boundary value problem, we can use the solution we obtained via seperation of variables:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi \sqrt{3} t)+b_{n} \sin (n \pi \sqrt{3} t)\right) \sin (n \pi x) .
$$

We need to determine the values of the a_{n} 's and b_{n} 's in order to have solved our problem completely. Since

$$
u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)=2 \sin (\pi x) \cos (\pi x)=\sin (2 \pi x)
$$

we see that we can take $a_{2}=1$ and $a_{n}=0$ for $n \neq 2$. This gives

$$
u(x, t)=\cos (2 \pi \sqrt{3} t) \sin (2 \pi x)+\sum_{n=1}^{\infty} b_{n} \sin (n \pi \sqrt{3} t) \sin (n \pi x) .
$$

It follows that

$$
u_{t}(x, t)=-2 \pi \sqrt{3} \sin (2 \pi \sqrt{3} t) \sin (2 \pi x)+\sum_{n=1}^{\infty} n \pi \sqrt{3} b_{n} \cos (n \pi \sqrt{3} t) \sin (n \pi x)
$$

and

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} n \pi \sqrt{3} b_{n} \sin (n \pi x)=0 .
$$

This tells us that we can take $b_{n}=0$ for all n. Finally, we have

$$
u(x, t)=\cos (2 \pi \sqrt{3} t) \sin (2 \pi x) .
$$

3. Strauss Exercise 4, pg 87 (solve by seperation of variables, in the same way that we did in class)
Letting $u(x, t)=X(x) T(t)$ and subbing in, we have

$$
\frac{T^{\prime \prime}+r T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=\lambda
$$

so that

$$
\begin{aligned}
& X^{\prime \prime}=\lambda X \\
& T^{\prime \prime}+r T^{\prime}=\lambda c^{2} T
\end{aligned}
$$

We again have Dirichlet boundary conditions, so the solution for X is only nontrivial if $\lambda=-\beta^{2}<0$, and we get $X(x)=c_{1} \cos (\beta x)+c_{2} \sin (\beta x)$. Applying the boundary conditions, we have $X(0)=c_{1}=0$ and $X(l)=c_{2} \sin (\beta l)=0$. In order to get a nontrivial solution, we then need that $\beta l=n \pi$ for some $n \in \mathbb{Z}$, or $\beta=n \pi / l$. This tells us that we have a solution X_{n} for each integer n, and

$$
X_{n}(x)=c_{n} \sin (n \pi x / l) .
$$

Now we can solve for the corresponding functions T_{n}. We can try $T_{n}(t)=e^{k t}$. This gives

$$
k^{2}+r k-c^{2} \lambda=0
$$

which has as it's solutions

$$
k=\frac{-r \pm \sqrt{r^{2}+4 c^{2} \lambda}}{2}=\frac{-r \pm \sqrt{r^{2}-4 c^{2} n^{2} \pi^{2} / l^{2}}}{2} .
$$

The types of solutions we get then depend on whether or not k is real or complex, which is determined by the sign of $r^{2}-4 c^{2} n^{2} \pi^{2} / l^{2}$. Since we are given that $0<r<2 \pi c / l$ that implies that $r^{2}<4 \pi^{2} c^{2} / l^{2}$ and since $n \geq 1$, we get $r^{2}<4 \pi^{2} c^{2} n^{2} / l^{2}$, or $r^{2}-4 c^{2} n^{2} \pi^{2} / l^{2}<0$. Hence k is complex and the solutions are

$$
T_{n}(t)=e^{-r t / 2}\left(a_{n} \cos \left(\frac{\sqrt{4 c^{2} n^{2} \pi^{2} / l^{2}-r^{2}}}{2} t\right)+b_{n} \sin \left(\frac{\sqrt{4 c^{2} n^{2} \pi^{2} / l^{2}-r^{2}}}{2} t\right)\right)
$$

This gives us, by the linearity of the PDE and the superposition principle, thatthe general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} e^{-r t / 2}\left(a_{n} \cos \left(\frac{\sqrt{4 c^{2} n^{2} \pi^{2} / l^{2}-r^{2}}}{2} t\right)+b_{n} \sin \left(\frac{\sqrt{4 c^{2} n^{2} \pi^{2} / l^{2}-r^{2}}}{2} t\right)\right) \sin (n \pi x / l)
$$

Now to determine the coefficients, we note that

$$
u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x / l)=\phi(x)
$$

and

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty}\left(-\frac{r}{2} a_{n}+\frac{\sqrt{4 c^{2} n^{2} \pi^{2} / l^{2}-r^{2}}}{2} b_{n}\right) \sin (n \pi x / l)=\psi(x)
$$

so that the a_{n} 's and b_{n} 's can be found by the method Fourier sine coefficients.
[NOTE: the neat thing about this problem is that you can directly see that this really does give you a damped wave - because of the factor $e^{-r t / 2}$ multiplying onto every term, as $t \rightarrow \infty$, $u(x, t) \rightarrow 0$. This is quite different from the solution to the nondamped wave equation, where waves perpetuate indefinitely, with no decrease in amplitude.]
4. Straus, Exercise 6, pg 89.

We let $u(x, t)=X(x) T(t)$ and substitute in the PDE $t u_{t}=u_{x x}+2 u$. This yields $t X T^{\prime}=$ $X^{\prime \prime} T+2 X T$, which can be separated into the two ODE's:

$$
\frac{t T^{\prime}}{T}-2=\lambda
$$

and

$$
\frac{X^{\prime \prime}}{X}=\lambda
$$

Since we have homogeneous Dirichlet Boundary conditions, and we are working with our usual ODE for $X(x)$, we know that $X_{n}(x)=C_{n} \sin (n x)$ for each n in the integers are all the possible solutions. Now solving the ODE for T, we have

$$
t T^{\prime}-(2+\lambda) T=0,
$$

or

$$
T^{\prime}-\frac{2+\lambda}{t} T=0 .
$$

Separating variables, we get:

$$
\frac{T^{\prime}}{T}=(\lambda+2) / t
$$

so integrating both sides yields

$$
\ln |T|=(\lambda+2) \ln |t|+C
$$

or

$$
T=C e^{(\lambda+2) l n|t|}=C t^{\lambda+2}
$$

Since there is a value of λ for each integer n by

$$
\lambda=-n^{2}
$$

, we have

$$
T_{n}(t)=D_{n} t^{-n^{2}+2}
$$

Thus

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} t^{\left(-n^{2}+2\right)} \sin (n x)
$$

is the general solution to our BVP.
Now, applying the inital condition we see

$$
u(x, 0)=0
$$

regardless of our choices of the values for A_{n} 's! So ANY values of A_{n} 's work and we get infinitely many possible solutions to the IBVP. This problem is not well-posed.
5. Strauss, exercise 1, page 92

We have $k X^{\prime \prime} T=X T^{\prime}$, so that

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{k T}=\lambda
$$

. We know that the general solution for X is $X=c_{1} e^{r t}+c_{2} e^{-r t}$, where $r= \pm \sqrt{\lambda}$. We can first check the case where $\lambda>0$, or $\lambda=\beta^{2}$. This yields $X(x)=c_{1} e^{\beta x}+c_{2} e^{-\beta x}$ and we can apply the boundary conditions $X(0)=0$ and $X^{\prime}(l)=0$. We then have $c_{1}=-c_{2}$ and $c_{1} \beta\left(e^{\beta l}+e^{-\beta l}\right)=0$. In order for the latter to be true, we need $c_{1}=0$ and so we have only the trivial solution $X(x)=0$ for all x.
Now we can check the case for $\lambda=0$. This gives $X(x)=c x+d$, and applying the boundary conditions we have $d=0$ and $c=0$, so that again we get only the trivial solution.
Finally we look at the case $\lambda<0$ or $\lambda=-\beta^{2}$. This yields $X(x)=c_{1} \cos (\beta x)+c_{2} \sin (\beta x)$. Applying $X(0)=0$ gives $c_{1}=0$. Applying next that $X^{\prime}(l)=0$ gives $c_{2} \beta \cos (\beta l)=0$ so that in order to obtain something nontrivial, we must take $\beta l=\frac{(2 n-1) \pi}{2}$, or $\beta=\frac{(2 n-1) \pi}{2 l}$. We then see we have an infinite family of solutions $X_{n}(x)=c_{n} \sin \left(\frac{(2 n-1) \pi x}{2 l}\right)$.
We can proceed to find the solutions $T_{n}(t)$ associated to each $X_{n}(x)$. For a fixed $n, \lambda=$ $-\frac{(2 n-1)^{2} \pi^{2}}{4 l^{2}}$, so the equation for T_{n} is

$$
T_{n}^{\prime}=-\frac{k(2 n-1)^{2} \pi^{2}}{4 l^{2}} T_{n}
$$

and the solution is $T_{n}(t)=D_{n} e^{-\frac{k(2 n-1)^{2} \pi^{2} t}{4 l^{2}}}$. So, for each n, we have a solution $u_{n}(x, t)=$ $A_{n} e^{-\frac{k(2 n-1)^{2} \pi^{2} t}{4 l^{2}}} \sin \left(\frac{(2 n-1) \pi x}{2 l}\right)$ to the boundary value problem, and the general solution is then (by the superposition principle and the fact that our PDE is linear)

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\frac{k(2 n-1)^{2} \pi^{2} t}{4 l^{2}}} \sin \left(\frac{(2 n-1) \pi x}{2 l}\right) .
$$

We are given no initial condition for this problem, so we are done!
6. Show that IF $U(x)$ is a (steady-state) solution to $U_{x x}=0$ on $(0, l)$ with

$$
\begin{aligned}
U(0) & =g \\
U(l) & =h
\end{aligned}
$$

for some fixed constants g, h, and IF \tilde{u} is a solution to $\tilde{u}_{x x}=\tilde{u}_{t}$ on $(0, l)$ with

$$
\begin{aligned}
\tilde{u}(0, t) & =0 \\
\tilde{u}(l, t) & =0
\end{aligned}
$$

where $\tilde{u}(x, 0)=f(x)-U(x)$, THEN $u(x, t)=\tilde{u}(x, t)+U(x)$ solves $u_{x x}=u_{t}$ where

$$
\begin{aligned}
u(0, t) & =g \\
u(l, t) & =h
\end{aligned}
$$

and $u(x, 0)=f(x)$.
[${ }^{* *}$ NOTE: The point of this problem is that it allows us to solve BVP's with nonhomogeneous boundary conditions by building a solution from the homogeneous b.c. problem and the corresponding steady-state problem... Notice that the seperation of variables technique breaks down if we have inhomogeneous b.c.'s]
7. Solve problem 8 from section 5.1 of Strauss using exercise 6 above.

Solving the steady state system for U, we get

$$
\int U_{x x} d x=\int 0 d x
$$

implies

$$
U_{x}=C_{1}
$$

and then integrating again, we get

$$
U(x)=C_{1} x+C_{2} .
$$

Applying the boundary conditions $U(0)=0$ and $U(1)=1$ results in $U(x)=x$.
Now, we need to find the solution to the corresponding homogeneous problem \tilde{u}. Since it satisfies $\tilde{u}_{t}=\tilde{u}_{x x}$ on $(0,1)$ with $\tilde{u}=\phi(x)-x$ and $\tilde{u}(0, t)=0=\tilde{u}(1, t)$, we know that the solution can be found by seperation of variables. Since we have Dirichlet boundary conditions and it's the heat equation, we get

$$
\tilde{u}(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x) e^{-n^{2} \pi^{2} t}
$$

Now solving for the A_{n} 's can be done by the standard means of finding Fourier sine series coefficients, since

$$
\tilde{u}(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x)=\phi(x)-x .
$$

This means that

$$
\left.A_{n}=\int_{0}^{1}(\phi(x)-x)\right) \sin (n \pi x) d x
$$

Since

$$
\phi(x)= \begin{cases}\frac{5 x}{2} & \text { for } 0<x<2 / 3 \\ 3-2 x & \text { for } 2 / 3<x<1\end{cases}
$$

we get

$$
\phi(x)-x= \begin{cases}\frac{3 x}{2} & \text { for } 0<x<2 / 3 \\ 3-3 x & \text { for } 2 / 3<x<1\end{cases}
$$

so

$$
A_{n}=\int_{0}^{2 / 3} \frac{3 x}{2} \sin (n \pi x) d x+\int_{2 / 3}^{1}(3-3 x) \sin (n \pi x) d x
$$

Now if we use integration by parts, we can find the generic integral

$$
\begin{aligned}
\int_{a}^{b} x \sin (n \pi x) d x & =-\left.\frac{x}{n \pi} \cos (n \pi x)\right|_{a} ^{b}+\int_{a}^{b} \frac{1}{n \pi} \cos (n \pi x d x \\
& =\frac{1}{n \pi}[-b \cos (n \pi b)+a \cos (n \pi a)]+\frac{1}{n^{2} \pi^{2}}[\sin (n \pi b)-\sin (n \pi a)]
\end{aligned}
$$

which we can use to get A_{n}. Subbing in we get

$$
\begin{aligned}
A_{n} & =\frac{3}{2}\left(-\frac{2}{3 n \pi} \cos (2 n \pi / 3)+\frac{1}{n^{2} \pi^{2}} \sin (2 \pi n / 3)\right)-\frac{3}{n \pi}[\cos (n \pi)-\cos (2 n \pi / 3)] \\
& -3\left(\frac{1}{n \pi}\left(-\cos (n \pi)+\frac{2}{3} \cos (2 n \pi / 3)\right)-\frac{1}{n^{2} \pi^{2}} \sin (2 n \pi / 3)\right)
\end{aligned}
$$

This simplifies to

$$
A_{n}=\frac{9}{2 n^{2} \pi^{2}} \sin (2 n \pi / 3)
$$

Plugging these coefficients into the expansion for \tilde{u} defines \tilde{u} completely. Finally we get $u(x, t)=\tilde{u}+x$ to be the solution to our inhomogeneous problem.
8. A string (with density $\rho=1$ and tension $T=4$) with fixed ends at $x=0$ and $x=10$ is hit by a hammer so that $u(x, 0)=0$ and

$$
\frac{\partial u}{\partial t}(x, 0)= \begin{cases}V & \text { if } x \in[-\delta+5, \delta+5] \\ 0 & \text { otherwise }\end{cases}
$$

Find the height of the string $u(x, t)$ for all $x \in(0,10)$ and all $t>0$. (Your answer WILL be a bit messy...)

Solution:

Again, we have the wave equation with dirichlet boundary conditions, so that the solution looks like

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \sin (2 n \pi t / 10)+B_{n} \cos (2 n \pi t / 10)\right) \sin (n \pi x / 10)
$$

In order to satisfty our initial conditions, we note that

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x / 10)=0
$$

which tells us that $B_{n}=0$ for all n, and

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi t / 5) \sin (n \pi x / 10)
$$

Now for the inital velocity:

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} \frac{n \pi A_{n}}{5} \cos (n \pi t / 5) \sin (n \pi x / 10)
$$

so

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{n \pi A_{n}}{5} \sin (n \pi x / 10)
$$

Thus we are expanding our initial velocity in a fourier sine series, so the coefficients are

$$
\frac{n \pi}{5} A_{n}=\frac{1}{5} \int_{0}^{10} u_{t}(x, 0) \sin (n \pi x / 10) d x
$$

and using the definition of $u_{t}(x, 0)$ we get

$$
\frac{n \pi}{5} A_{n}=\frac{1}{5} \int_{5-\delta}^{5+\delta} V \sin (n \pi x / 10) d x
$$

Doing the computation gives

$$
A_{n}=\frac{10 V}{n^{2} \pi^{2}}[\cos ((5-\delta) n \pi / 10)-\cos ((5+\delta) n \pi / 10)]
$$

To this point is fine, but we could also simplify further using the fact that

$$
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
$$

This yields

$$
A_{n}=\frac{20 V}{n^{2} \pi^{2}} \sin (5 n \pi / 10) \sin (\delta n \pi / 10)
$$

which we can sub into

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi t / 5) \sin (n \pi x / 10)
$$

to get our final solution u.
9. Problems 5a and 6a from section 5.1 of Strauss, relying on the FS (sine) we found for $f(x)=x$ on (0,1) in class (and in the book).
(5a) Since $x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2 l}{n \pi} \sin (n \pi x / l)$, we can integrate the series term-by-term to get

$$
\frac{x^{2}}{2}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 l^{2}}{n^{2} \pi^{2}} \cos (n \pi x / l)+C .
$$

So, it just remains to determine C. Note that this gives us a Fourier cosine sereis for $\frac{x^{2}}{2}$, so the C should be the same as the $\frac{1}{2} A_{0}$ of the cosine series. Thus, since

$$
A_{0}=\frac{2}{l} 2 \int_{0}^{l} \frac{x^{2}}{2} d x=l^{2} 3
$$

we get $C=l^{2} 6$, and

$$
\frac{x^{2}}{2}=\frac{l^{2}}{6}+\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 l^{2}}{n^{2} \pi^{2}} \cos (n \pi x / l)
$$

(6a) Now, we can do basically the same thing to get a Fourier series expansion for x^{3}. Integrating the series for $\frac{x^{2}}{2}$ term-by-term gives

$$
\frac{x^{3}}{6}=\frac{l^{2}}{6} x+\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 l^{3}}{n^{3} \pi^{3}} \sin (n \pi x / l)+C .
$$

Thus

$$
x^{3}=l^{2} x+\sum_{n=1}^{\infty} \frac{(-1)^{n} 12 l^{3}}{n^{3} \pi^{3}} \sin (n \pi x / l)+C .
$$

Again, we still need to determine C, but subbing in zero to both sides shows us that $C=0$. We aren't quite done because the $l^{2} x$ term makes the right hand side not quite a Fourier series. If we sub in the sine series for x, we get

$$
x^{3}=l^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2 l}{n \pi} \sin (n \pi x / l)+\sum_{n=1}^{\infty} \frac{(-1)^{n} 12 l^{3}}{n^{3} \pi^{3}} \sin (n \pi x / l),
$$

or

$$
x^{3}=\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{-2 l^{3}}{n \pi}+\frac{12 l^{3}}{n^{3} \pi^{3}}\right) \sin (n \pi x / l) .
$$

10. Problem 15 section 5.2 of Strauss.

Since $|\sin (x)|$ is an even function, the sine coeffients for the full Fourier series over $(-\pi, \pi)$ will be zero. This is because determination of these coefficients are obtained by integrating

$$
\frac{1}{\pi} \int_{-\pi}^{\pi}|\sin (x)| \sin (n x) d x
$$

and the fact that $\sin (n x)$ is an odd function and the product of an even and odd function is again odd, tells us that this integral will be zero, regardless of the value of n.

